Essential Mathematics for Global Leaders I - Spring 2019
Statistics
Back
PARTI: Notion of Probablity
Chapter 1. Basic Probability Theory 必要な確率論
Slides set 1 (pdf)
1.1 Counting 数える
1.2 Probability rules
Slides set 2 (pdf)
1.3 Conditional Probability, Independence, Bayes theorem 条件付き確率、独立性、ベイズの定理
Chapter 2: Random Variables 確率変数
Slides set 3 (pdf)
2.1 Discrete Random Variables 離散悪率変数
2.2 Some important Discrete Random Variables 幾つかの大事な分布
2.3 Operations on random variables 確率変数への作用
2.4 Expected value 期待値
2.5 Variance (discrete case) 分散 (離散の場合)
Slides set 4 (pdf)
2.6 Continuous random variable 連続確率変数
2.7 Some important continuous random variables 大事な連続確率変数の分布
2.8 Expected value and variance (continuous case)
Chapter 3: Sampling Distribution and Central Limit Theorem 標本分布中と心極限定理
Slides set 5 (pdf)
3.1: Introduction to Sampling
3.2 Law of Large Numbers (LoLN) and Central Limit Theorem (CLT)大数の法則と中心極限定理
3.3 Application of the CLT to infer the mean
Slides set 6 (pdf)
3.4 More on sample statistics
PARTII: Statistical Inference
Chapter 4: Null Hypothesis Significant Test (NHST 帰無仮説検定)
Slides set 7 (pdf)
4.1: Concepts and 1st example: z-test
Slides set 8 (pdf)
4.2 chi2 and sample variance カイ二乗検定と標本偏差
4.3 the Student t-test (small or large sample mean: 小or大標本平均)
4.4 Two-sample t-test (equal variance) 2標本t検定 (同偏差)
4.5 Paired difference sampling 対応のあるデータ
4.6 Comparing two population variances: F-test 二つの母集団の偏差を比較する:F検定
Slides set 9 (pdf)
4.7 chi2-test (goodness-of-fit)カイ二乗(簡単な適合度検定)
4.8 chi2-test of independence独立性のカイニ乗検定
4.9 chi2-testfor Homogeneity 同質性の検定
4.10 One-way ANOVA (F-test)一元配置分散分析(F検定)
Chapter5: Confidence Intervals 信頼区間
Slides set 10 (pdf)
5.1 Introduction and CI for normal data (入門、正規母集団のために信頼区間)
5.2 CI and NHST 信頼区間と帰無仮説検定の関係
5.3 Non-normal data and polling 正規でない母集団と投票
5.4 CI for comparing two populations 母集団の二つを比する信頼区間
Chapter 6: Simple Linear Regression(単)線形回帰
Slides set 11 (pdf)
6.1 Introduction
6.2 Estimation for simple linear regression
6.3 Confidence Intervals for a and b
6.4 Prediction interval
Slides set 12 (pdf)
6.5 Relationship with correlation