Essential Mathematics for Global Leaders I

Spring 2019

Statistics

Lecture 9: 2019 July 1st-8th

Xavier DAHAN

Ochanomizu Graduate Leading Promotion Center

Office:理学部2号館503

mail: dahan.xavier@ocha.ac.jp

Where are we? Today's plan

PART II: Statistical inference (推計統計学)

4. Null Hypothesis Significant Test (NHST) 帰無仮説検定

- 4.1 Concepts and 1st example: z-test
- 4.2 chi2 and sample variance (カイ二乗と標本分散)
- 4.3 the Student t-test (Student t-検定)
- 4.4 Two-sample t-test (=variance) 対応のないt検定 4.5 Paired difference sampling 対応のあるデータ
- 4.6 Comparing two population variances: F-test
- 4.7 chi2-test (goodness-of-fit)カイ二乗(簡単な適合度
- 4.8 chi2-test of independence カイニ乗検定による独立性
- 4.9 chi2-test for Homogeneity 同質性の検定
- 4.10 One-way ANOVA (F-test) 一元配置分散分析 (F検定)

Chapter 4: NHST Section 4.7 chi2-test カイニ乗検定

Background 背景: Categorical data

- $X_1, ..., X_k$ i.i.d.r.v. coming from an unknown distribution 未知の独立同分布に従う確率変数 $X_1, ..., X_k$ とする。
- Each measurement of the r.v. X_i falls into k possible categories: $\forall \omega \in \Omega, X_i(\omega) \in \{v_1, ..., v_k\}$ カテゴリー $v_1, ..., v_k$ に属する確率変数の観測 $X_i(\omega) \in \{v_1, ..., v_k\}$
 - Example: $X_i(\omega) \in \{Heads, Tails\}$ for the Bernoulli distribution
 - Example: Polling (投票): $X_i(\omega) \in \{Candidate候補者A, Candidate候補者B, Candidate候補者C,...\}$
- Categorical Data. Want to test:
 - 1) Goodness-of-fit (GOF)適合度
 - 2) independence 独立性
 - 3) Homogeneity 同質性

Chi2-test of "goodness-of-fit (GOF)" (適合度検定)

• Aim:

- from a sample of data $X_1(\omega_1), ..., X_n(\omega_n)$ 標本値 $X_1(\omega_1), ..., X_n(\omega_n)$ から,
 - infer $p_i = P(X = v_i)$ the probability that one random sample X is in category v_i ,

各iに対し一つの標本Xがカテゴリー v_i に属する確率 $p_i = P(X = v_i)$ を推定すると目的する。

- Usual notation 通常の記号
 - *O*="observed" (観測)
 - $O_i = |\{\omega_r : X_r(\omega_r) = v_i\}|$ number of measurements that falls in category v_i
 - *E*="expected" (期待)
 - expected number (=null hypothesis) of data in each category 帰無仮説の下で各々カテゴリーに属するデータの位数。

Chi2-test of "GOF" (適合度検定) in practice

- $E_i = |\{r: X(\omega_r) = v_i\}|$ expected number under H_0 of data in category v_i 帰無仮説の下でカテゴリー v_i に属するデータの位数。
- $p_i = P(X = v_i)$ 未知 unknown
- H_0 :未知 $(p_1, ..., p_k) = (p_{01}, p_{02}, ..., p_{0k})$ 仮定
- Under H_0 (H_0 の下で) thus $E_i = np_{0i}$
- H_A : at least one $p_{0i} \neq p_i$
- Test statistic: $x^2 = \frac{(O_1 E_1)^2}{E_1} + \dots + \frac{(O_k E_k)^2}{E_k}$
- Theorem: Under H_0 , $\chi^2 \sim \chi^2_{n-1}$ (n-1 自由度)
- P-value: $p = P(X > x^2)$ $X \sim \chi_{n-1}^2$ (always 1-sided 常に右側検定: since $\chi^2 \ge 0$)
- Reject H_0 if $p < \alpha$ (α the significance level)

Example: Restaurant's customers

 Ellen is thinking of buying a restaurant and asks about the distribution of lunch costumers.

Ellenさんはレストランを買おうと考えている。ランチのときの客様数の分布を聞いてみる。

- The owner provides the row 1 below. オーナーは以下の行1を挙げる。
- Ellen records data in row 2 herself one week. 1周間にEllenさんは自分でデータを収集して行2に記す.

	М	Т	W	R	F	S
Owner's distribution	.1	.1	.15	.2	.3	.15
Observed $\#$ of cust.	30	14	34	45	57	20

(It is a 1-way table: categories are only in one line)

- Run a chi2 goodness-of-fit test with hypotheses:
 - H_0 :the owner's distribution is correct.
 - H_A : the owner's distribution is not correct.
- 1. The total number of observed costumers is 200.
- 2. Under H_0 the expected counts are: 20 20 30 40 60 30

3.
$$x^2 = \frac{(30-20)^2}{\frac{20}{60-57)^2} + \frac{(14-20)^2}{\frac{20}{30}} + \frac{(34-30)^2}{30} + \frac{(45-40)^2}{40} + \frac{(60-57)^2}{60} + \frac{(20-30)^2}{30} = 5 + 1.8 + 0.533 + 0.625 + 0.15 + 3.33 = 11.441$$

4. df=6-1=5,
$$P(X > x^2) = P(X > 11.441) \le 0.05$$
, $X \sim \chi_5^2$

5. Reject H_0 at significance level 0.05 in favor of the alternative hypothesis H_A : the owner's distribution is wrong. 0.05の有意水準で H_0 を棄却し、対立仮説 H_A の支持に回る。

Chapter 4: NHST Section 4.8 chi2-test for independence 分割表分析 カイニ乗検定による独立性 Example

- Admissions data (入学者) at Berkeley university.
- Is choice of major independent of gender? 主専攻の選択は性別に依存するか?

分割法 Contingency table

	Male	Female		В	B^c
Easy Major	1385	133	 A	1385	133
Difficult Major	1306	1702	A^c	1306	1702

- Let A the event: 'choice of Easy Major' p = P(A) A^c is the 'choice of Difficult Major'
- Let B be the event: 'student is a male' and B^c be the event 'student is a female' q = P(B)

Category	$A \cap B$	$A \cap B^c$	$A^c \cap B$	$A^c \cap B^c$
Probabilty	pq	p(1-q)	(1-p)q	(1-p)(1-q)

- Then we are in the previous case (Section 4.7) with the one-way table above, **if we know p and q**. 確率**p**と**q**が既存のとき、前のカイ二乗検定に帰着した
- However p and q are not known in general. しかし、pもqも未知である。
- We must estimate them. これらを評価しないといけない。

	В	B^c		$\bullet \hat{p} = \frac{X_{11} + X_{12}}{n}$
A	<i>X</i> ₁₁	<i>X</i> ₁₂	$ ightarrow$ \hat{p}	n
A^c	X_{21}	X_{22}		••
	•		_	$\bullet \ \hat{q} = \frac{X_{11} + X_{21}}{n}$
	\widehat{q}			\cdot n

•
$$x^2 = \frac{(X_{11} - n\hat{p}\hat{q})^2}{n\hat{p}\hat{q}} + \frac{(X_{12} - n\hat{p}(1 - \hat{q}))^2}{n\hat{p}(1 - \hat{q})} + \frac{(X_{21} - n\hat{q}(1 - \hat{p}))^2}{n(1 - \hat{p})\hat{q}} + \frac{(X_{22} - n\hat{q}(1 - \hat{p}))^2}{n(1 - \hat{p})(1 - \hat{q})} + \frac{(X_{22} - n\hat{q}(1 - \hat{p}))^2}{n(1 - \hat{p})(1 - \hat{q})}$$
 "sum of 4 squares"

Back to Berkeley admission

• $n = 4526$	
• $\hat{p} = \frac{1385 + 133}{6} \approx 0.34$	
$p = \frac{1}{4526} \approx 0.34$	

•	â	_	1385+1306	~	0.59
	4	_	4526	~	0.59

•
$$x^2 = \cdots \approx 947$$
 df=2

	Male	Female
Easy	1385	133
Difficult	1306	1702

$$(P(X > 947) \approx 0 \quad X \sim \chi_2^2$$

• So we reject H_0 : gender and choice of major are indeed dependent. Hoを棄却する:性別と主専攻の 選択は独立ではない.

General chi2-test for independence

	A ₁	•••	A_i	•••	A_{n_1}	
B_1	<i>X</i> ₁₁		X_{1i}		X_{1n_1}	$\widehat{q_1}$
	:	·.				
B_{j}	X_{j1}		X_{ji}		X_{jn_1}	$\widehat{q_j}$
	:			·.		
B_{n_2}	X_{n_21}		X_{n_1i}		$X_{n_1n_2}$	$\widehat{q_{n_2}}$
	$\widehat{p_1}$		$\widehat{p_i}$		$X_{n_1n_2}$ $\widehat{p_{n_1}}$	

- Data have two characteristics A and B 二つの分類カテゴリー
 - Characteristic A has n_1 categories: $A_1, ..., A_{n_1}$ with probabilities $p_1, p_2, ..., p_{n_1}$
- All in all, there are $n_1 n_2$ categories.
- H_0 : A_i and B_j are independent for all i and j.

11

第1の分類カ

Chi2 independence: estimate probabilities

- $O_{ij} = X_{ij}$ observations 観測
- Under null hypothesis H_0 : $E_{ij} = np_i q_j$ $P(A_i \cap B_j) = P(A_i)P(B_j)$
- We don't know p_i and q_i

• Estimate them with:
$$\widehat{p_i}$$
 and $\widehat{q_j}$

$$\widehat{p_i} = \frac{1}{n} \sum_{j=1}^{n_2} X_{ji}, \qquad \widehat{q_j} = \frac{1}{n} \sum_{i=1}^{n_1} X_{ji}$$

• χ^2 -statistic:

$$x^{2} = \sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}} \frac{\left(X_{ij} - n\widehat{q}_{j}\widehat{p}_{i}\right)^{2}}{n\widehat{p}_{i}\widehat{q}_{j}}$$

• Degrees of freedom: $df=(n_1-1)(n_2-1)$

Independence: $= p_i q_j$

2019/7/1-8

Example: 血液型

	A	В	AB	0	
Rh +	320	96	40	412	$\widehat{p_1} =$
Rh —	66	23	9	65	$\widehat{p_2} =$
	$\widehat{q_1} =$	$\widehat{q_2} =$	$\widehat{q_3} =$	$\widehat{q_4} =$	

 Are the type and Rh factor independent? Test at 0.05 significance level.

Hint:
$$n=1031$$
, $n_1=4$, $n_2=2$. $\hat{p}_1=0.84$, $\widehat{p}_2=0.16$ $\widehat{q}_1=0.37$, $\widehat{q}_2=0.12$, $\widehat{q}_3=0.05$, $\widehat{q}_4=0.46$ Answer: $x^2=3.54$

Chapter 4: NHST Section 4.9 chi2-test for Homogeneity (同質性の検定) Example

Three treatments for a disease are compared in a clinical trial, yielding the following data:
 臨床試験によって病気の三つの治療が比べられて、以下のデータが出る:

	Treatment 1	Treatment 2	Treatment 3
Cured	50	30	12
Not cured	100	80	18

(2-way table: 6 categories from 2 lines/3 columns)

 Use the chi2-test to compare the cure rate of the treatment.

カイ二乗検定を使って治療の治癒率を比べよ。

- H_0 : all the treatments have the same cure rate
- H_A : the 3 treatments have different cure rates.
- Total cure rates: (total cured)/(total treated) = 92/290 = 0.317
- H_0 : $(p_1, p_2, p_3) = (0.317, 0.317, 0.317)$
- H_A : at least one $p_i \neq 0.317$
- Under H_0 , we add the expected data E_i besides O_i

	Treatment 1	Treatment 2	Treatment 3	
Cured	50, 47.6	30, 34.9	12, 9.5	92
Not cured	100, 102.4	80, 75.1	18, 20.5	198
	150	110	30	290

Example (end)

Test statistic is thus:

$$x^{2} = \frac{(O_{1} - E_{1})^{2}}{E_{1}} + \frac{(O_{2} - E_{2})^{2}}{E_{2}} + \dots + \frac{(O_{6} - E_{6})^{2}}{E_{6}}$$

$$= \frac{2.4^{2}}{47.6} + \frac{2.4^{2}}{102.4} + \frac{4.9^{2}}{35.9} + \frac{4.9^{2}}{75.1} + \frac{2.5^{2}}{9.5} + \frac{2.5^{2}}{9.5} = 2.1477$$

- Degree of freedom:
 - If we fill any two values in the table, all the other cells can be deduced df = 2

もし表の任意の成分の二つを記入したら、ほかの成分に従うため、ここで自由度は2である。

• $P(X>x^2)=P(X>2.1477)>0.1$ $X\sim\chi_2^2$ so we do not reject H_0 (at significance level 有意水準 0.1)

Chapter 4: NHST Section 4.10 One-way ANOVA (F-test) Example

• Like t-test " $\mu_1 = \mu_2$ " to compare the means of two populations but with n groups here. 二つの母集団の平均値を比べるt検定と同じだが、母集団の個数は任意nとする。

Sample Data:

Group 1	<i>x</i> _{1,1}	$x_{1,2}$	•••	$x_{1,m}$
Group 2	$x_{2,1}$	$x_{2,2}$	•••	$x_{2,m}$
	•••	•••	•••	
Group n	$x_{n,1}$	$x_{n,2}$		$x_{n,m}$

2019/7/1-8

One-way ANOVA: preliminaries

Assumption:

- $x_{1,i} \sim Normal(\mu_1, \sigma^2)$
- $x_{2,j} \sim Normal(\mu_2, \sigma^2)$
- ...
- $x_{n,j} \sim Normal(\mu_n, \sigma^2)$
- Variance σ is unknown but the same. 分散の均一性
- Group means μ_i are unknown and maybe different.
- H_0 : all the means are equal $\mu_1 = \mu_2 = \cdots = \mu_n$
- H_A : at least two means are not equal

Test statistic $w = MS_B/MS_W$

- $\overline{x_i} = (x_{i,1} + \dots + x_{i,m}) \cdot 1/m$ = mean of group i
- \bar{x} = grand mean among all data (総平均)
- s_i^2 = sample variance of group i

$$s_i^2 = \left(\frac{1}{m-1}\right) \sum_{j=1}^m \left(x_{i,j} - \overline{x_i}\right)^2$$

Group 1	$x_{1,1}$	$x_{1,2}$	•••	$x_{1,m}$	$\overline{x_1}$	s_1^2
Group 2	$x_{2,1}$	$x_{2,2}$	•••	$x_{2,m}$	$\overline{x_2}$	S_2^2
	• • •	• • •	• • •		•	:
Group n	$x_{n,1}$	$x_{n,2}$		$x_{n,m}$	$\overline{x_n}$	s_n^2
					\bar{x}	

統計量 MS_B と MS_W

- MS_B =between group variance (or Mean square treatment = 平均処理平方) = $m \times$ sample variance of group means = $(m/n-1) \cdot \sum_{i=1}^{n} (\bar{x_i} - \bar{x})^2$
- MS_W =average within group variance (or Mean Square Error = 平均誤差平方) = sample mean of $s_1^2, ..., s_n^2 = \frac{1}{n}(s_1^2 + \cdots s_n^2)$
- Expected value over the sampling distribution
- $E(MS_B) = \sigma^2$, $E(MS_W) = \sigma^2 + \frac{n m}{n-1} \sum_i (\mu_i \mu)^2$ • $\mu = \frac{1}{n} (\mu_1 + \dots + \mu_n)$ mean over all groups

$w = MS_B/MS_W$ and F-distribution

• Theorem: Under H_0 (all means are equal)

$$w = \frac{MS_B}{MS_W} \sim F_{n-1,n(m-1)}$$

Where $F_{n-1,n(m-1)}$ is the F distribution with n-1 and n(m-1) degrees of freedom.

- p-value: P(W > w) where $W \sim F_{n-1,n(m-1)}$
 - Right-sided because $MS_B \ge MS_W$
- Reject H_0 if $p \le \alpha$ at significance level α . 有意水準 α で $p \le \alpha$ ならば H_0 を棄却する。

2019/7/1-8

Example: Level of pain of treatments

The table shows patients' perceived level of pain (on a scale of 1 to 6) after 3 different medical procedures. 表は医療処置によってもたらす痛みの程度(1から6まで)を表す。

T_1	T_2	T_3
2	3	2
4	4	1
1	6	3
5	1	3
3	4	5

- Set up and run a F-test comparing the means of these 3 treatments.
- What can we say about the treatments?

• Hint:
$$\overline{x_1} = 3$$
, $\overline{x_2} = \frac{18}{5}$, $\overline{x_3} = \frac{14}{5}$, $\overline{x} = \frac{47}{15}$

Hint:
$$s_1^2 = \frac{5}{2}$$
, $s_2^2 = 3.3$, $s_3^2 = \frac{11}{5}$

More about ANOVA

- We assumed that all groups have same size \blacksquare Possible to generalize when each group has different size $m_1, m_2, ..., m_n$.
- If H_0 is rejected, (all group means are not equal) then more analysis is often necessary (post-hoc analysis) 帰無仮説を棄却したら、さらなる分析が必要。
 - Tukey's HSD (Honestly Significant Differences) test. チューキーの母平均の対比較検定
 - Experimental Design (実験計画) 、Blocking Design ブロック計画
- There are 2-way anova 二元配置分散分析 and more, called Multivariate ANOVA or MANOVA

2019/7/1-8