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PART II: Statistical inference
6: Simple Linear Regression
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6.1 Introduction p.2
6.2 Estimation for simple linear regression p.13

6.3 Confidence Intervals foraand b p. 19

6.4 Prediction interval p. 23

6.5 Relationship with correlation
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6.5 Relationship with correlation

* Regression: Does one family of data vary with respect to
another family according to a “random” model function ?
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e Can be used for prediction

* Correlation: Measure how much two random variables on
two populations are “linearly” independent.

WMEMEG: o0 FER LoMEELRMOKEIBEED
BEHEWiETFTHEETH S,

e Correlation and linear regression are strongly related.
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A word on (discrete) joint distribution

FlaF (RERR) PEFE 54 O —

* Random variable X on event space Q0 = {wy, ..., wy, }.

* Random variable Y on event spaceI' = {y4, ..., ¥+-}.

* Product even space: () X I' is represented by a table.
The events are all couples (wi,yj) = (w; and Y )

|

0 -

w1 ) Wn
yl (wll yl) ((1.)2, ]/1) (wn; ]/1)
Yr (w1, ¥r) (wn, ¥r)

* Joint distribution of X and Y < assign probabilities to
all events (a)i,yj)
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Joint probability mass function: example

e Roll two dice: X is the number on the first die.
* Y is the number on the second die.
* The joint probability table of X and Y is:

* p(i,j) =1/36foralliandj. IIINTINES!
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Joint probability mass function: example |l

e X is the number on the first die

e T is the total sum of the two dices

xX\1T | 2 3 4 5 | 6 78 o | 10 | 11 | 12
1 |1/36 [1/36 [1/36 |1/36 |1/36 |1/36 | 0 0 | 0 0 | o
2 0 |1/36 1/36 |1/36 1/36 |1/36 |1/36 | 0 | 0 0 | o
3 0 0 |1/36 1/36 |1/36 |1/36 11/36 |1/36 | 0 0 | o
1 0 0 0 |1/36 1/36 [1/36 |1/36 (1/36 |1/36 | 0 | 0
5 0 0 0 0 |1/36 |1/36 |1/36 |1/36 |1/36 |1/36 | 0
6 0 0 0 0 | 0 |[1/36 1/36 1/36 1/36 |1/36 |1/36

* Again Ziij(i»j) =1
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Marginal prob. mass function

e X is the number on the first die

e T is the total sum of the two dices

« Marginal pmf of X: 1T %=

Jo 257 A

sum the rows. py(x)

« Marginal pmfof T: 2| ® 42 sum the columns p7(t)
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X\T | 2 3 | 4 5 | 6 708 9 10 11 | 12
1 |1/36 1/36 |1/36 |1/36 1/36 (1/36 = 0 | 0 | 0 0 0
2 0 1/36 1/36 |1/36 1/36 |1/36 |1/36 | 0 | 0 0 0
3 0 0 1/36 [1/36 |1/36 1/36 |1/36 [1/36 0 0 0
4 0 0 0 |1/36 1/36 [1/36 1/36 |1/36 [1/36 @ 0 0
5 0 0 0 0 |1/36 1/36 [1/36 |1/36 [1/36 [1/36 @ 0
6 0 0 0 0 | 0 [1/36 (1/36 |1/36 |1/36 [1/36 1/36
L, p(t;) 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36

1



Independence

* X and Y are independent ifp(xi,yj) = px(x;) - PY(YJ)

* Question: Are X ant T independent?

X\T | 2 3 | 4 5 | 6 708 9 10 11 | 12
1 |1/36 1/36 |1/36 |1/36 1/36 (1/36 = 0 | 0 | 0 0 0
2 0 1/36 1/36 |1/36 1/36 |1/36 |1/36 | 0 | 0 0 0
3 0 0 1/36 [1/36 |1/36 1/36 |1/36 [1/36 0 0 0
4 0 0 0 |1/36 1/36 [1/36 1/36 |1/36 [1/36 @ 0 0
5 0 0 0 0 |1/36 1/36 [1/36 |1/36 [1/36 [1/36 @ 0
6 0 0 0 0 | 0 [1/36 (1/36 |1/36 |1/36 [1/36 1/36

p(t;) 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36

2019/7/29

Ch. 6.5: Relaton with correlation

1



Covariance =44k

* Measures to which extent two random variables vary
together (example: weight and height).

2ONDMEREERIIRMRICESH T L ELSVE T TI52
Thsb Bl KRELFK)

e X,Y random variables on population (), I" respectively.

cov(X,Y) = E((X —uy) - (Y — My))

where uy is the (population (1) mean of X and uy is the
(population I') mean of Y.

0. uliXo (FH£H0) T3, pyplavyo (&
5HD) FHTH 5,

cov(X, V) = Y (X(w) = ECO)(Y () = E(N)P(w and y)
w Y



Some handy properties of covariance
£ EOE O T WY

The following properties can be verified easily using
the properties of expected value.

féﬂ%gq‘%%{’ v, BAFEE()DMEE 248 > T2 |2k

cov(aX + b,cY +d) =a- c- cov(X,Y)
cov(X; + X,,Y) = cov(Xy,Y) + cov(X,,Y)
cov(X,X) = Var(X)

cov(X,Y) = E(XY) — px - uy

If X and Y are independent then cov(X,Y) =0

11If cov(X,Y) = 0 then X and Y may be
dependent !!

DTN W N KN
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Question

X [0 ()

* Here is a joint probability table. 0 0 [1/2]0 | 1/2
1 |1/4 |0 |1/4 ] 1/2
plzs) 1/4 1/2 1/4 1

* Compute
1. EX),E(Y)
2. E(XY)
3. Deducecov(X,Y) =E(XY)—-EX): -E(Y)

4. Can we say that X and Y are independent?
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Covariance in linear regression

* |In linear regression, data are pairs of
explanatory/response values:

{(xl' yl)» ) (xn' yn)}

 These data define two random variables X and Y and

the sample space () = {1,2,..,n} with the uniform

distribution: P(i) = - by X(i) = x; and Y (i) = y;.

* Note thatif i # J, P(X = x;, Y = y]-) = 0 (because no
point (xl-,yj)

* Therefore P(X =i,Y =1i) = % Finally

+ cov(X,Y) = - SH(X () — EX))(Y — E(Y)) and

* cov(X,Y) = %Z?(xl- — X)(y; —¥) (in regression)



Correlation coefficient

(%) A&

 Covariance does not measure the extent to which 2
random variables are linearly related.

LB 2 E RIMO BT AR Lo 2 T
T61E TUL v,
w For that, we divide by the standard deviations of X and Y .
wZDH, XXYORERETE )5,
cov(X,Y) _ E((X—p)(Y—py))
Ox Oy B Ox Oy

*P = Pxy =

e —1<p<1
e p=1ifandonlyifY = aX + b witha > 0 and
e p=—1lifandonlyifY =aX + b witha < 0.
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Attribute the
correlation coefficient
to the corresponding
images:

o, 1,-08, -09,
04, 06, -1
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Point estimator for the population correlation

BB R A D SR E F © R AR B R

* Remember the quantities Lecture 11 p.16.

* Sux = 2 (X — X)? Sxy = 2x(xx —0) (Y = Y)
c cov(X,Y)D#HEEIL S, /(n—1) <& estimator

s ox DIEE E 13/, /(n—1) & estimator

s oy PI-A ZIL,/S,,/(n—1) & estimator

« it - T, p=cov(X, Y)/a)%- oy DIEE &
Xy

\/Sxx | Syy
is called Sample Correlation coefficient £ A48 P4 142 2%
And is an estimator for the population’s covariance.

T =
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L11.pptx#16. Formula for a ̂ and b ̂

Test if X and Y are not linearly correlated
XYY GRS 5 00 %NS
* Assumption 78 7 :

* Both population are normally distributed.

« AL IZERGAIZH D
* Hy:p =0 J##&AR3%  Null Hypothesis
* Hy: p # 0 X242 € Alternative Hypothesis

‘/(1_7"27;/(11—2) ~t,_-> Student distribution

* Reject H at significance level a if |[T| = ¢ =

tnz (1-3)

* Rmk: Cannot be used to test Hy: p = py for some py #
0 (Cannot be used neither for a confidence interval).

Theorem: T =
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Practice problem

#@ﬁ«%ﬁﬂbﬁbmtoﬁW% 7 T

g EAREAMEL, B2ORI| D& %if 2% X
AWEE A CiRA I PANE K > Sl (W

ﬁzr\ffaf’ﬁ@ii Ir=0424 B XN /-,

X BEDEIEFROMICEBAIGZH S ¥ N2 5,

A survey to determine if the relation between the time spent
for negotiations and the benefit of the transaction is linear,
has been conducted randomly over 27 market transaction’s
data. For each transaction is recorded the time spent until the
sale and the benefit.

E'Ji'/%iffl %"Y’Xﬂfbﬂj’ffﬂﬂz%Jé@Fﬂﬂ Q?ﬁ/@@‘/] »H 5
7

The sample correlation coefficient computed is r = 0.424.

w-Can we say that the relation between the length of the
negotiations and the benefit is linear?
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Correlation does not imply causation
IR REE2S2E L 2 W

e Over time, amount of ice cream consumption is
correlated with number of pool drownings.

CHTC, TAARAIZ ) —LDEBIREZ YRR T—IVT

AN THAFEASIHEAPAZRIZD 5,

* In 90% of bar fights ending in a death the person who
started the fight died.
RAEBIZL 2B COTAL»D L T Ah%ds
DA HAEIGEDFEIZIIOBTH 5,

* |n a 1685 study (and today !) being a student is the
most dangerous profession.
1685 (2T b 1) OBEISL DY, FAITRE
RLEETH 5,

“Covariation is a necessary but not sufficient condition
for causality
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Goodness of fit of the linear regression
EED G TITE )DL

* Aim: Is the regression line y = ax + b found good ?
c K wFEKOBERITY ) ?

* Need a parameter value that measures relatively the
degree of variation around the line
BIFERD I YD TF— Y DEEDELH VR
WYL B X AT E B REVLE,
Definition ( )
square of the sample correlation coefficient

BAMEEED 2 %

@W%%@%

2Fh Yol o5nwaElEigs T —
v %AL’CV\%ﬁ %5‘3‘?5*&2‘(0
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newy y
Estima- 7
ted newy

y-mean y
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Residuals and computation of the 2
PR X RERE DR
* Data: (x{,v1), ..., (X, V)

* Vi — YV =y — ax — bfork =1,..,n =true value —
estimated value by regression are called residuals 7%, % .

PaN —

*y =y = y—y + y—-y
Total deviation= residuals + inferred by regression
éﬁﬁ{/&%% = i&in + @d%ﬁégc:ot % R
D Ge=9? =) (i =T+ ) G~ )’
k=1 k=1 k=1
SST = SSE  + SSR

efihe = HREFTR + @HPI A

Total sum of m = error sum of m + regression sum of m
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Formula for determination coefficient

EERE2TET 5 21205\

_ a2
* SSE =Yp_ 1y — V%) = 71}=%()’k —dad-— bxk)

S
= Syy ~ <
Sxx
« SST = S,,,
2
e SSR = SST — SSE = >
7"2 = —_ SS—E = S)%y
SST ~ S42S,,

2019/7/29 Ch. 6.5: Relaton with correlation

22



More Examples
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Example:

* Hubble’s data (homework for Linear Regression):

» We had S,, = 4348, S,, = 9583, S,, = 3168124

2 818" _ 62
9583x3168124
* Most of the variation (around 60% ) can be explained
by the estimated linear relationship.
YWy Z X, BREHoELS W (121F60%)H E)F 12
L AR INE-BBHAZRIC, ALY W2 5,

* Whence, r



