Chapter 1. Introduction and review of basic mathematics
- Fractions 分数
- Modulus (absolute values 絶対値)
- Inequalities 不等式
- Expansion and factorization 展開と分解Binomial expansion二項定理
- Square root and n-th root 乗根
- Quadratic Equations 2次方程式
- Summation of arithmetic & geometric等差とprogressions等比数列の和 Slides set (pdf)
Chapter 2. Functions and graphs
- Basics (基礎)
- Powers, Polynomials, Rational functions(ベキ乗、多項式、有理関数)
- Exponential & Logarithm functions(指数と対数関数)
- Trigonometric functions(三角関数) Slides set (pdf)
Chapter 3 Infinitely small and large: Limits
- Definitions (定義)
- One-sided limits (片側極限)
- Indeterminate form (不定形の極限)
- Squeeze (Sandwich) theorem and applications:Limit of sin(x)/x at 0. Limit of (exp(h)-1)/h at 0(はさみうちの定理とその実用)
- Continuity (連続性) Slides set (pdf)
Chapter 4. Differentiation
- Definition, Introduction (定義)
- Motion. Chain rule & rates of change (運動。連鎖法律、変化率) Slides set 1 (pdf)
- Mean Value Theorem And Extrema 平均値の定理と極値
- Compared growth of Exp, Ln, ....at ∞ Slides set 2 (pdf)
- Approximating functions by polynomials: Taylor’s expansion 多項式を用いて関数を近似する:テイラー展開
- Approximating zeroes of functions: Newton’s method 関数の零を近似する:ニュートン法 Slides set 3 (pdf)
Chapter 5. Integration
- Area under a curve, definition, examples(グラフと...軸の間の面積、定義、例)。
- Fundamental Theorem of Calculus(微分積分学の基本定理)
- Calculation of Primitives 1(原始関数の計算) Slides set 1 (pdf)
- Computation of primitives 2 (antiderivative) 原始関数をとる(不定積分)
- Methods to compute volumes体積を測定する方法
- Length of curves and area of surfaces of revolution 曲線の長さと回転面の面積 Slides set 2(pdf)
- Example of application 1 : Average and pressure 応用2: 平均化と圧力
- Example of application 2: Center of mass応用2:質量中心 Slides set 3 (pdf)
Chapter 6. (Ordinary) Differential Equations
- Introduction. Direction field. Examples 入門。方向場。例
- A simple case: linear differential equation of order 1 with constant coefficients 定数係数の一階線形常微分方程式
- A mini classification of Differential Equations 微分方程式の簡単な分類
- Method of integrating factor 積分因子法 Slides set 1 (pdf)
- 2nd order linear differential equation 2階線形常微分方程式
- 2nd order linear equation and harmonic oscillator 2階線形常微分方程式と調和振動子
- Solving 2ndorder linear homogeneous equations 斉次な2階線型常微分方程式を解く
- Interpretation of solutions to harmonic oscillators with damping. その解が減衰調和振動子に与える解釈
- Solving non-homogenous 2ndorder linear equation.Harmonic oscillator with forced vibration. 斉次でない2階線形常微分方程式を解く。強制調和振動子。 Slides set 2 (pdf)