Chapter 1. Introduction and review of basic mathematics

  1. Fractions 分数
  2. Modulus (absolute values 絶対値)
  3. Inequalities 不等式
  4. Expansion and factorization 展開と分解Binomial expansion二項定理
  5. Square root and n-th root 乗根
  6. Quadratic Equations 2次方程式
  7. Summation of arithmetic & geometric等差とprogressions等比数列の和
  8. Slides set (pdf)

Chapter 2. Functions and graphs

  1. Basics (基礎)
  2. Powers, Polynomials, Rational functions(ベキ乗、多項式、有理関数)
  3. Exponential & Logarithm functions(指数と対数関数)
  4. Trigonometric functions(三角関数)
  5. Slides set (pdf)

Chapter 3 Infinitely small and large: Limits

  1. Definitions (定義)
  2. One-sided limits (片側極限)
  3. Indeterminate form (不定形の極限)
  4. Squeeze (Sandwich) theorem and applications:Limit of sin(x)/x at 0. Limit of (exp(h)-1)/h at 0(はさみうちの定理とその実用)
  5. Continuity (連続性)
  6. Slides set (pdf)

Chapter 4. Differentiation

  1. Definition, Introduction (定義)
  2. Motion. Chain rule & rates of change (運動。連鎖法律、変化率)
  3. Slides set 1 (pdf)
  4. Mean Value Theorem And Extrema 平均値の定理と極値
  5. Compared growth of Exp, Ln, ....at ∞
  6. Slides set 2 (pdf)
  7. Approximating functions by polynomials: Taylor’s expansion 多項式を用いて関数を近似する:テイラー展開
  8. Approximating zeroes of functions: Newton’s method 関数の零を近似する:ニュートン法
  9. Slides set 3 (pdf)

Chapter 5. Integration

  1. Area under a curve, definition, examples(グラフと...軸の間の面積、定義、例)。
  2. Fundamental Theorem of Calculus(微分積分学の基本定理)
  3. Calculation of Primitives 1(原始関数の計算)
  4. Slides set 1 (pdf)
  5. Computation of primitives 2 (antiderivative) 原始関数をとる(不定積分)
  6. Methods to compute volumes体積を測定する方法
  7. Length of curves and area of surfaces of revolution 曲線の長さと回転面の面積
  8. Slides set 2(pdf)
  9. Example of application 1 : Average and pressure 応用2: 平均化と圧力
  10. Example of application 2: Center of mass応用2:質量中心
  11. Slides set 3 (pdf)

Chapter 6. (Ordinary) Differential Equations

  1. Introduction. Direction field. Examples 入門。方向場。例
  2. A simple case: linear differential equation of order 1 with constant coefficients 定数係数の一階線形常微分方程式
  3. A mini classification of Differential Equations 微分方程式の簡単な分類
  4. Method of integrating factor 積分因子法
  5. Slides set 1 (pdf)
  6. 2nd order linear differential equation 2階線形常微分方程式
  7. 2nd order linear equation and harmonic oscillator 2階線形常微分方程式と調和振動子
  8. Solving 2ndorder linear homogeneous equations 斉次な2階線型常微分方程式を解く
  9. Interpretation of solutions to harmonic oscillators with damping. その解が減衰調和振動子に与える解釈
  10. Solving non-homogenous 2ndorder linear equation.Harmonic oscillator with forced vibration. 斉次でない2階線形常微分方程式を解く。強制調和振動子。
  11. Slides set 2 (pdf)