Essential Mathematics for Global Leaders I

Lecture 3
Infinitely small & large: Limits
2015 April 27th (May 11th)

Xavier DAHAN
Ochanomizu Leading Promotion Center

Office:理学部2号館503

mail: dahan.xavier@ocha.ac.jp

Plan (tentative)

[4/13] L1: introduction. Review of high-school mathematics in English.

[4/20-27] L2-3: Functions and graphs. Plotting with Mathematica I (グラフをプロットする)

[5/7] L4: Infinitely small and large: limits (極限)

[5/11] L5: Continuity and differentiation (連続性と微分法)

[5/18] L6: Differentiation II: extrema, related rates ...(極値と...)

[5/25] L7: Differentiation III: Newton's method, Taylor's expansion (ニュートン法とテイラー展開)

[6/1] L8: Mid-term test. Integration I: definition, fundamental theorem of calculus 積分I.

[6/8] L9: computation of indefinite integrals 不定積分

[6/15] L10 : Application of Integration I : length, volume and surfaces

積分の応用:長さ、面積、体積

[6/22] L11: Application of Integration II: average, center of mass (質量中心), work of a force.

[6/29] L12 : Ordinary Differential equations (one variable) 常微分方程式

[7/6] L13: Linear Differential Equations of order 2: harmonic oscillators (small-angle pendulum, spring). 二階線形微分方程式:調和振動子 (振幅が小さい振り子、ばね)

[7/13] L14: Ordinary Differential Equations with Mathematica. Mathematicaを利用して常微分

Program

- 1. Definitions (定義)
- 2. One-sided limits (片側極限)
- 3. Indeterminate form (不定形の極限)
- 4. Squeeze (Sandwich) theorem and applications: Limit of $\sin\theta/\theta$ at 0 limit of $(e^h-1)/h$ at 0 (はさみうちの定理とその実用)
- 5. Continuity (連続性)

Reactivation of intuition (直感の再生)

What is the domain of definition of $\frac{x^2+1}{x-1}$?

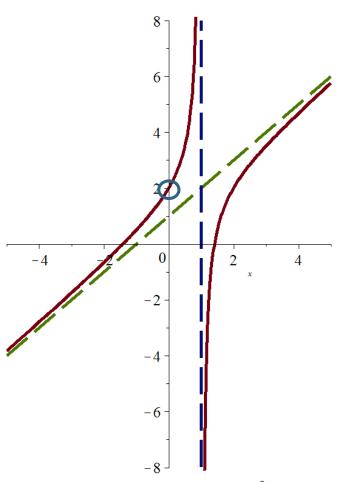
$$1. \quad \lim_{x \to 0} \frac{x^2 - 2}{x - 1} =$$

$$2. \quad \lim_{x \to 1^+} \frac{x^2 - 2}{x - 1} =$$

$$3. \quad \lim_{x \to 1^{-}} \frac{x^2 - 2}{x - 1} =$$

4.
$$\lim_{x \to \infty} \frac{x^2 - 2}{x - 1} =$$

5.
$$\lim_{x \to -\infty} \frac{x^2 - 2}{x - 1} =$$



区間
$$[-5,5]$$
 上の有理関数 $f(x) = \frac{x^2-2}{x-1}$ と (あれば) 漸近線のグラフ。

Limit of a function (I) (関数の極限) Beyond intuition (直感を超える)

1. Finite limit at a finite point c (cにおける有限の極限値)

$$\lim_{x\to c} f(x) = L$$

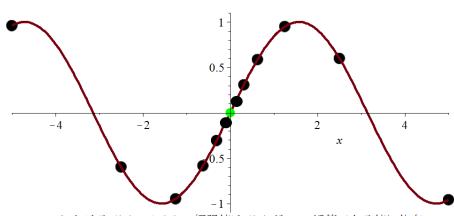
(Reading "the limit of f as x approaches c is L " x を c に近づけたときの $f(x)$ の極限は L である)

means that the quantity |f(x) - L| can be arbitrarily small (as small as we want) if |x - c| is small enough.

|x-c|は十分に小さければ、 $\mathbf{\Xi}|f(x)-L|$ を望む限りいくらでも小さくなることができる。

xの値をcに十分に近づければf(x)の値をLに望む限りいくらでも近づけることができる。

Ex:
$$\lim_{x\to 0} \sin(x) =$$



Limit of a function (II) (関数の極限)

2. Finite limit at the infinity (無限遠点における有限の極限値) $\lim_{x\to\infty} f(x) = L$

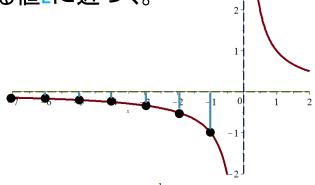
(Reading "the limit of f as x approaches infinity is L") xを無限大に近づくときのf(x)の極限はLである。

"f converges to L when x becomes arbitrarily large" xが限りなく大きくなるときf(x)はLに収束する。

means that the quantity |f(x) - L| can be arbitrarily small if x is large enough.

xが限りなく大きくなると関数f(x)の値がある値Lに近づく。

Ex:
$$\lim_{x \to -\infty} \frac{1}{x} =$$



Limit of a function (III) (関数の極限)

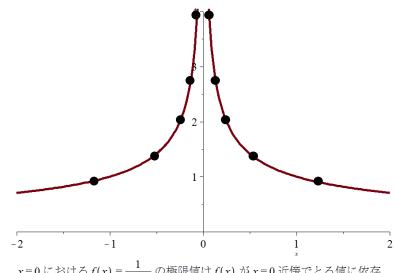
Infinite limit at a finite point c(c)における無限の極限) **3**.

$$\lim_{x \to c} f(x) = \infty$$

(Reading: "The limit of f as x approaches c diverges infinity" xがcに限りなく近づくとき関数f(x)は正の無限大に発散する)

means that f(x) can be arbitrarily large if |x - c| is small enough. x の値を c に十分に近づければ (or |x-c|は十分に小さければ) f(x)の値を無限大に望む限りいくらでも大きくなることができる。

Ex:
$$\lim_{x \to 0} \frac{1}{\sqrt{|x|}} =$$



Limit of a function (IV) (関数の極限)

4. Infinite limit at the infinity (無限遠点における無限の極限) $\lim_{x\to\infty}f(x)=\infty$

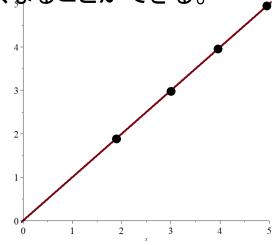
(Reading: "The limit of f as x approaches infinity diverges to infinity" xを無限大に限りなく近づくとき関数f(x)は正の無限大に発散する)

means that f(x) can be arbitrarily large (as large as one wants) if x is large enough.

xを無限大に十分に近づければ(or x)が十分に大きければ(or x)

f(x)の値を無限大に望む限りいくらでも大きくなることができる。

Ex: $\lim_{x \to \infty} x =$

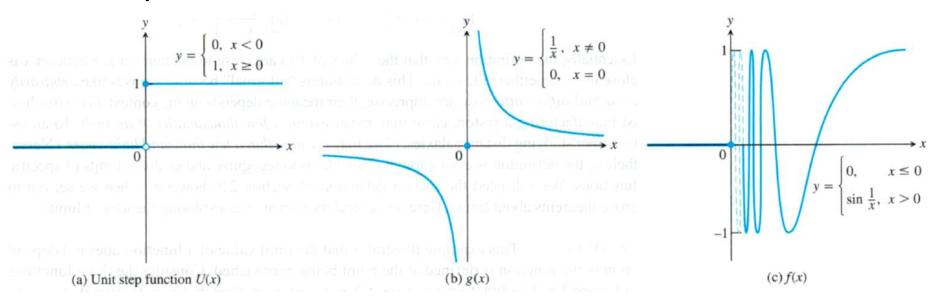


Limit of a function (V) (関数の極限)

5. There is no limit:

(or "the function f has no limit at c (or at $\pm \infty$)")

Examples:



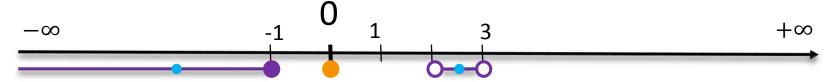
Program

1. Definitions (定義)

- 2. One-sided limits (片側極限)
- 3. Indeterminate form (不定形の極限)
- 4. Squeeze (Sandwich) theorem and applications: Limit of $\sin\theta/\theta$ at 0 limit of $(e^h-1)/h$ at 0 (はさみうちの定理とその実用)
- 5. Continuity (連続性)

One-sided limit (片側極限)

• Endpoints, interior and isolated points (端点、内点 と 孤立点) $f: E \subset \mathbb{R} \to \mathbb{R}$ a function with E its domain of definition:



$$E = (-\infty, -1] \cup \{0\} \cup (2,3)$$

-1,2,3 are endpoints (端点). Other points in E are interior points (内点 they are inside an interval). 0 is an isolated point (孤立点).

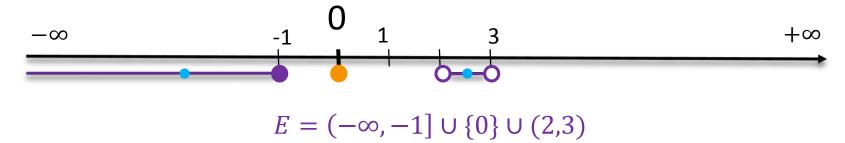
• Case1
$$\rightarrow c$$
 is interior: $\lim_{x \to c^+ or^-} f(x) = L \text{ (or } N)$ "right (or left)-

Reading: "...x approaches c to the right (left)...."

Definition: (in the previous slide, replace "|x-c| is small enough" by "x-c is small enough and x>c", "c-x is small enough and x<c")

 $\lim_{x\to c} f(x)$ exists $\Leftrightarrow \lim_{x\to c^+} f(x)$ and $\lim_{x\to c^-} f(x)$ exist and are equal.

One-sided limit (II) (片側極限)



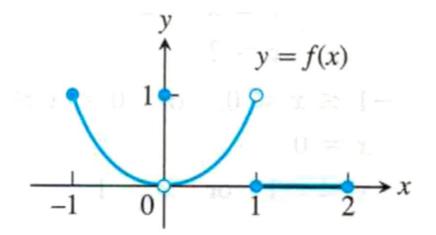
• Case $2 \rightarrow c$ is endpoint (for example, c is a right endpoint like -1,3 above. A left endpoint is 2)

Then we can define a left-hand limit when $x \to c^-$ but we cannot define a right-hand limit $x \to c^+$ (f is not defined at the right of c!)

 $\lim_{x\to c} f(x)$ exists $\Leftrightarrow \lim_{x\to c^-} f(x)$ exists (and then they are both equal)

• Case 3→ c is isolated: no limit, nor right-hand neither left-hand limit. 極限が無い。左も右も片側極限が無い。

True \bigcirc or false \times ?



a)
$$\lim_{x \to -1^+} f(x) = 1$$

$$c) \lim_{x \to 0^-} f(x) = 1$$

- e) $\lim_{x\to 0} f(x)$ exists
- $g) \lim_{x \to 0} f(x) = 1$
- $i) \lim_{x \to 1} f(x) = 0$
- k) $\lim_{x\to 1^-} f(x)$ does not exist

$$b) \lim_{x \to 0^-} f(x) = 0$$

d)
$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x)$$

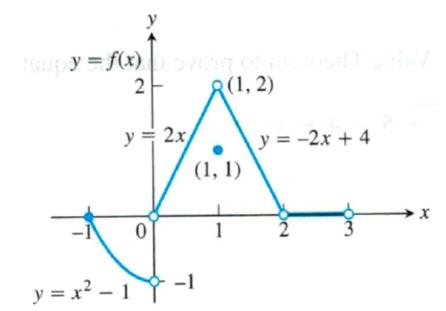
$$f) \lim_{x \to 0} f(x) = 0$$

$$h) \lim_{x \to 1} f(x) = 1$$

$$j)\lim_{x\to 2^-} f(x) = 2$$

$$\lim_{x\to 2^+} f(x) = 0$$

$$f(x) = \begin{cases} x^2 - 1, & if -1 \le x < 0 \\ 2x, & if 0 < x < 1 \\ 1, & if x = 1, \\ -2x + 4, & if 1 < x < 2 \\ 0, & if 2 < x < 3 \end{cases}$$



- 1. For c = -1 and c = 0, answer the questions:
 - a. Does f(c) exists?
 - b. Does $\lim_{x\to c^+} f(x)$ exits?
 - c. What about $\lim_{x \to c^{-}} f(x)$?
- 2. Is f defined at x = 2? What is the value of f(3)?

1. Is there a (right, left) limit at 1 of the function $f: x \mapsto \frac{x^2-1}{x-1}$?

2. Same question for:
$$g: x \mapsto \begin{bmatrix} x^{2}-1 \\ \hline 1 \end{bmatrix}$$
 if $x \neq 1$

3. Same question for: $h: x \mapsto \frac{x^2 + x - 2}{x^2 - x}$

Program

- 1. Definitions (定義)
- 2. One-sided limits (片側極限)
- 3. Indeterminate form (不定形の極限)
- 4. Squeeze (Sandwich) theorem and applications: Limit of $\sin\theta/\theta$ at 0 limit of $(e^h-1)/h$ at 0 (はさみうちの定理とその実用)
- 5. Continuity (連続性)

Operations on limits and indeterminate forms (極限の演算と不定形)

 $f: E \subset \mathbb{R} \to \mathbb{R}, \ g: F \subset \mathbb{R} \to \mathbb{R}$ be two functions and let $c \in E \cap F$

$$\lim_{x \to c} f(x) = L \qquad \lim_{x \to c} g(x) = M$$

f+g	$\int f - g$	$f \cdot g$	f/g	f^n , $n\in\mathbb{Z}_{>0}$	$\sqrt[n]{f}=f^{rac{1}{n}}$, $n\in\mathbb{Z}_{>0}$	$f^{\frac{n}{m}}$
L + M	L-M	$L \cdot M$	L/M , $M \neq 0$	L^n	$\sqrt[n]{L}$	$L\frac{n}{m}$

Value of a limit at a point c or at ∞

f	g	f/g	$f \times g$	f-g
0	0	?	0	0
∞	<u>±</u> 0	±∞	?	∞
<u>±</u> 0	∞	0	?	$-\infty$
∞	∞	?	∞	?

1. What is the domain of definition (定義域) of the

functions:
a.
$$f(x) = \frac{1+x+\sin(x)}{3\cos(x)}$$

b. $g(x) = \frac{x^4+x^2-1}{x^2+5}$
c. $h(x) = \sqrt{4x^2-3}$

- 2. For each endpoints c of the domains, find: $\lim_{x \to c} f(x)$ and $\lim_{x \to c} g(x)$
- 3. Tell if the limits below exist, and if so compute it.

$$\lim_{x \to \frac{\sqrt{3}}{2}} h(x) = , \qquad \lim_{x \to \frac{\sqrt{3}}{2}^{+}} h(x) = , \qquad \lim_{x \to \frac{\sqrt{3}}{2}} h(x) =$$

Simplification (単純化)

Simplify (単純化) the following expressions (数式) to find the limits.

- 1. $f(x) = \frac{\sqrt{x^2 + 100} 10}{x^2}$. Limit at 0 is an indeterminate form of type $\frac{0}{0}$.
- 2. $\lim_{x \to -1} \frac{\sqrt{x^2 + 8} 3}{x + 1}$

3.
$$\lim_{x \to \infty} (\sqrt{x+9} - \sqrt{x+4})$$

Behavior at ∞ of rational functions (有理関数の無限遠での振る舞い)

- Ex: $\lim_{x\to\infty} \frac{x^{10}+x+1}{x^9-1}$ is an indeterminate form of type: $\frac{\infty}{x}$.
- (Lesson 2 page 16) Rational function:

$$f(x) = \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0}{b_m x^m + \dots + b_1 x + b_0} = \frac{A(x)}{B(x)}, \ a_n \neq 0, b_m \neq 0$$

• Theorem:
$$\lim_{x \to \pm \infty} \frac{A(x)}{B(x)} = \lim_{x \to \pm \infty} \frac{a_n x^n}{b_m x^m}$$
 $\int = \frac{a_n}{b_m}$ if $n = m$ 0 if $n < m$

It behaves like $\frac{a_n x^n}{b_m x^m}$ at ∞ 。 (無限遠で $\frac{a_n x^n}{b_m x^m}$ のように振る舞う)

$$= \frac{b_m}{b_m} \text{ if } n = m$$

$$0 \text{ if } n < m$$

$$\pm \infty$$
 if $n > m$

(+ or – depends on the signs of a_n and b_m) ($a_n \succeq$ b_mの符号に依存する

Proof (証明)

•
$$A(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = a_n x^n \left(1 + \frac{a_{n-1}}{a_n} \frac{1}{x} + \dots + \frac{a_1}{a_n} \frac{1}{x^{n-1}} + \frac{a_0}{a_n} \frac{1}{x^n} \right)$$

•
$$B(x) = b_m x^m + \dots + b_1 x + b_0 = b_m x^m \left(1 + \frac{b_{m-1}}{b_m} \frac{1}{x} + \dots + \frac{b_1}{b_m} \frac{1}{x^{m-1}} + \frac{b_0}{b_m} \frac{1}{x^m} \right)$$

$$\lim_{x \to \pm \infty} \frac{1}{x^i} = 0 \text{ for } i > 0 \Rightarrow \text{terms in blue go to } 0 \text{ when } x \to \infty$$

Therefore

Therefore
$$\lim_{x\to\pm\infty}A(x)=\lim_{\substack{x\to\pm\infty\\\text{and}}}a_nx^n\,(1+0)\\\lim_{x\to\pm\infty}B(x)=\lim_{x\to\pm\infty}b_mx^m\,(1+0)$$

• Thus,
$$\lim_{x \to \pm \infty} \frac{A(x)}{B(x)} = \lim_{x \to \pm \infty} \frac{a_n \overline{x^n}}{b_m x^m}$$

Use the theorem to compute the following limits of rational functions.

1.
$$\lim_{x \to \infty} \frac{-x^2 + 1}{3x^3 + 2x^2 + 1}$$

2.
$$\lim_{x \to \infty} \frac{-x^3 + 1}{3x^3 + 2x^2 + 1}$$

3.
$$\lim_{x \to 1} \frac{\frac{3}{(x-1)^2} + \frac{1}{(x-1)} - 1}{\frac{1}{(x-1)^2} + 1}$$

(think of changing of variable 変数の変換)

4. Use the same trick as in the proof to compute:
$$\lim_{x \to \infty} \frac{x + \sin(x) + \sqrt{x}}{x + \sin(x)}$$

Program

- 1. Definitions (定義)
- 2. One-sided limits (片側極限)
- 3. Indeterminate form (不定形の極限)
- 4. Squeeze (Sandwich) theorem and applications: Limit of $\sin \theta/\theta$ at 0 limit of $(e^h-1)/h$ at 0 (はさみうちの定理とその実用)
- 5. Continuity (連続性)

The sandwich (or squeeze or pinching) theorem (はさみうちの定理)

- Ex: $\lim_{x \to \infty} x + \sin(x^2) =$
- $\lim_{x\to 0} x \cdot \sin(1/x) =$

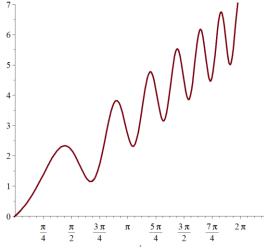
Theorem: Let f, g, h be 3 real functions such that

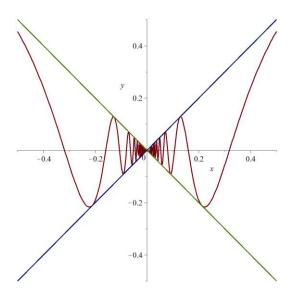
$$f(x) \le g(x) \le h(x)$$

for all points x in an interval [a, b], except maybe at $c \in (a, b)$. If

$$\lim_{x \to c} f(x) = \lim_{x \to c} h(x) = L$$

Then
$$\lim_{x \to c} g(x) = L$$



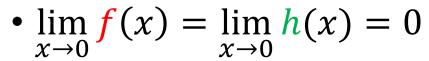


Application of the sandwich theorem

•
$$\lim_{x\to 0} x \cdot \sin(1/x) =$$

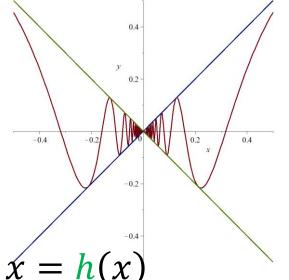
- $-1 \le \sin(1/x) \le 1$, $x \ne 0$
- Therefore,

$$f(x) = -x \le x \cdot \sin(1/x) \le x = h(x)$$



• By the sandwich theorem, wo obtain:

$$\lim_{x\to 0} x \cdot \sin(1/x) = 0$$



The sandwich theorem at infinity

- Theorem: If $f(x) \le g(x)$ for all x in some interval I = [a, b] (or $I = [a, \infty)$) except maybe at a point $c \in [a, b]$
- and if: $\lim_{x\to c} \int_{c} f(x)$ and $\lim_{x\to c} \int_{c} g(x)$ both exist, then

$$\lim_{x \to c} f(x) \le \lim_{x \to c} g(x) \quad \text{(or } \lim_{x \to \infty} f(x) \le \lim_{x \to \infty} g(x) \text{)}$$

Corollary (系, = consequence): With the same f and g as above, if:

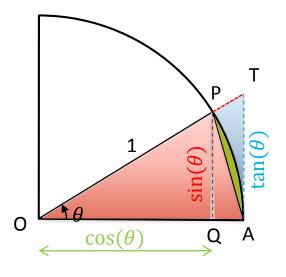
$$\lim_{x\to c} f(x) = \infty \text{ (or } \lim_{x\to\infty} f(x) = \infty) \qquad \text{then}$$

$$\lim_{x\to c} g(x) = \infty \text{ (or } \lim_{x\to\infty} g(x) = \infty)$$

- Application(実用) $\lim_{x \to \infty} x + \sin(x^2) = ??$
- $f(x) = x 1 \le x + \sin(x^2)$, $\lim_{x \to \infty} f(x) = \infty$, by the sandwich theorem at infinity, $\lim_{x \to \infty} x + \sin(x^2) = \infty$.

Limit of $\sin \theta / \theta$ at 0

• $\lim_{\theta \to 0} \frac{\sin \theta}{\theta}$ is an indeterminate form of type $\frac{?=}{?=}$



- Area (面積) of triangle (三角形) OPA:
 △OPA
- Area of sector (扇形) OAP: Σ_{OAP}
- Area of triangle OAT: Δ_{OAT}
- $\Delta_{OAP} \leq \Sigma_{OAP} \leq \Delta_{OAT}$
- $\frac{1}{2}\sin(\theta) \le \pi r^2 \times \left(\frac{\theta}{2\pi}\right) \le \frac{1}{2}\tan(\theta)$

•
$$1 \le \frac{\theta}{\sin(\theta)} \le \cos(\theta) \implies \frac{1}{\cos(\theta)} \le \frac{\sin(\theta)}{\theta} \le 1$$

• Since $\lim_{\theta \to 0^+} \cos(\theta) = 1$, by the sandwich theorem:

$$\lim_{x \to 0^+} \frac{\sin(\theta)}{\theta} = 1$$

- 1. Compute $\lim_{x\to 0} \frac{\sin(2x)}{5x}$
- 2. Compute $\lim_{h\to 0} \frac{\cos(h)-1}{h}$
- 3. Let $x \in \mathbb{R}$, fixed (変数でない). Show that $\lim_{h\to 0} \frac{\sin(x+h)-\sin(x)}{h} = \cos(x)$
- 4. $\lim_{x \to 0} \frac{\sin(\sin(x))}{x}$
- $5. \lim_{x \to 0} \frac{\sin(x)}{\sin(\sqrt{x})}$

Limit of $(e^h - 1)/h$ at 0

- $\lim_{h \to 0} \frac{e^{n-1}}{h}$ is an undetermined form of type $\frac{0}{2}$.
- - To compute the limit, we need to know what is $e \simeq 2.76$...

Proof next slide (次に証明)

Definition:
$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$$
 $(= \lim_{n \to \infty} \sum_{k=0}^n C_n^k \frac{1}{n^k})$

Definition:
$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = \lim_{n \to \infty} \sum_{k=0}^n C_n^k \frac{1}{n^k}$$
We have: $\lim_{n \to \infty} n \left(e^{\frac{1}{n}} - \left(1 + \frac{1}{n}\right)\right) = \lim_{n \to \infty} n \left(e^{\frac{1}{n}} - 1\right) - 1 = 0$

Thus,
$$\lim_{n \to \infty} n \left(e^{\frac{1}{n}} - 1 \right) = 1$$
. Let $h = 1/n$. Then $\lim_{n \to \infty} \frac{e^{\frac{1}{n}} - 1}{\frac{1}{n}} = \lim_{h \to 0} \frac{e^{h} - 1}{h} = 1$

Proof that
$$\lim_{n\to\infty} n\left(e^{1/n}-(1+1/n)\right)=0$$

$$e - (1 + \frac{1}{n})^{n}$$

$$= (e^{\frac{1}{n}} - (1 + \frac{1}{n}))(e^{\frac{n-1}{n}}(1 + \frac{1}{n}) + e^{\frac{n-2}{n}}(1 + \frac{1}{n})^{2} + \cdots + e^{\frac{2}{n}}(1 + \frac{1}{n})^{n-1})$$

$$= (e^{\frac{1}{n}} - (1 + \frac{1}{n}))B_{n}$$

Each term $e^{k/n}(1+1/n)^{n-k} > 1$. Therefore, $B_n > n-1$. By assumption,

$$\lim_{n\to\infty} \left(e^{1/n} - \left(1 + 1/n \right) \right) B_n = \lim_{n\to\infty} e - \left(1 + 1/n \right)^n = 0$$

Therefore, since $B_n > n - 1$.

$$\lim_{n\to\infty} n\left(e^{1/n} - \left(1 + 1/n\right)\right) = 0.$$

Program

- 1. Definitions (定義)
- 2. One-sided limits (片側極限)
- 3. Indeterminate form (不定形の極限)
- 4. Squeeze (Sandwich) theorem and applications: Limit of $\sin\theta/\theta$ at 0 limit of $(e^h-1)/h$ at 0 (はさみうちの定理とその実用)
- 5. Continuity (連続性)

Continuity at a point and on an interval 点と区間で連続性

Definition: $f: E \subset \mathbb{R} \to \mathbb{R}$ is continuous at $\mathbf{c} \in \mathbf{E}$ if:

<u>Case1</u>: *c* is an interior point of *E*

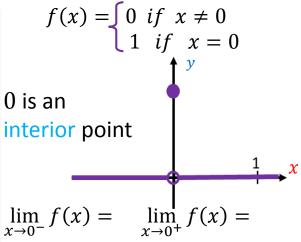
- 1) $\lim_{x \to c} f(x)$ exists and is not $\pm \infty$
- 2) $\lim_{x \to c} f(x) = f(c)$

Case 2: c is an endpoint and $c \in E$ (say here a left endpoint)

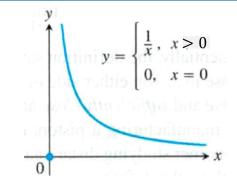
- 1) $\lim_{x \to c^+} f(x)$ exists
- 2) $\lim_{x \to c^+} f(x) = f(c)$

Definition: f is continuous <u>on an interval</u> I if it continuous at every point of I.

Intuitive meaning: it is possible to draw the graph of f on I without lifting a pen.



Function defined over \mathbb{R} , continuous on \mathbb{R}^*



0 is and left endpoint

$$\lim_{x \to 0^+} f(x) =$$

Function defined over

 $\mathbb{R}_{\geq 0}$, continuous on $\mathbb{R}_{\geq 0}$

Which functions are continuous?

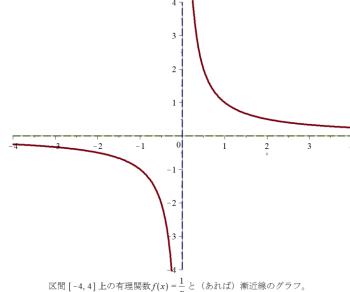
We have use this property all the time to compute limits! 極限を計算した時に、連続性を頻繁に使った。

(No worry ②) Theorem 1: All the functions studied in lesson 2 (polynomials, n-th root, rational function, exp, log, sin, cos, tan) are continuous on their domain of definition

• Remark: $f: \mathbb{R}^* \to \mathbb{R}$, $x \mapsto \frac{1}{x}$ continuous on its domain of definition \mathbb{R}^* . But not continuous at 0)

Theorem 2 (composition 合成): If f is continuous at a point c and gcontinuous at f(c), then $g \circ f$ is continuous at c:

$$\lim_{x \to c} g \circ f(x) = g(\lim_{x \to c} f(x)) = g(f(c))$$



Continuity of the inverse

Theorem (Inverse 逆関数): (lesson 2, page 19) The inverse f^{-1} of a continuous function f, is continuous on its domain of definition.

• Example: ln is the inverse function of $x \to e^x$ which is continuous (by definition). Therefore, ln is continuous on $\mathbb{R}_{>0}$.

• Ex:
$$\lim_{h\to 0} \frac{\ln(1+h)-\ln(1)}{h} = \lim_{h\to 0} \ln(1+h)^{\frac{1}{h}}$$

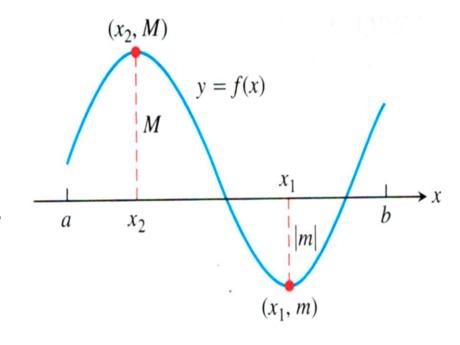
Since $x\to \ln(x)$ in continuous at 1, this is equal to:
$$\ln\left(\lim_{h\to 0} (1+h)^{\frac{1}{h}}\right) = \ln(e) = 1.$$

Intermediate & extreme value theorems (中間値の定理、最大値最小値定理)

Theorem: Let $f: [a,b] \to \mathbb{R}$ be a continuous function. Let $m \coloneqq \min_{a \le x \le b} f(x)$ and $M \coloneqq \max_{a \le x \le b} f(x)$. For any $c \in [m,M]$, there exists $x_c \in [a,b]$ such that: $f(x_c) = c$.

Remark:

- This is equivalent to f([a,b]) = [m,M]
- Close interval 閉区間 [a,b] is important. This is not true in general if $f:(a,b) \to \mathbb{R}$
- Very intuitive theorem, but the proof is not.(直観的な定理であるが、その証明は直観ではない)。



Homework (Hand in on May 7th pliz)

1.
$$\lim \frac{x^2 - 4x + 4}{x^3 + 5x^2 - 14x}$$
 as $x \to 0^+$ and as $x \to 2^+$

$$2. \lim_{x \to 1} \frac{1 - \sqrt{x}}{1 - x}$$

3.
$$\lim_{x \to 1} \frac{\frac{1}{2+x} - \frac{1}{2}}{x}$$

$$4. \lim_{x \to \pi} \sin\left(\frac{x}{2} + \sin(x)\right)$$

5.
$$\lim_{x \to -\infty} \frac{2x^2 + 3}{5x^2 + 7}$$

6.
$$\lim_{x \to -\infty} \frac{x^4 + x^3}{12x^3 + 128}$$

Homework (II)

7.
$$\lim_{x \to -\infty} \left(\frac{x^2 + x - 1}{8x^3 - 3} \right)^{1/3}$$

8. (a) Show that:
$$\lim_{x \to 0} \frac{\sqrt{1+x}-1}{x} = \frac{1}{2}$$
.

(b) Deduce that:
$$\lim_{x \to \infty} \sqrt{x^2 + x} - x = \frac{1}{2}$$

(c) compute
$$\lim_{x \to \infty} (2x - \sqrt{4x^2 + 3x - 2})$$
 (*)

9.
$$\lim_{\theta \to \infty} \frac{\cos(\theta) - 1}{\theta}$$

10. Let $x_o \in \mathbb{R}_{>0}$ fixed. Show that:

$$\lim_{h \to 0} \frac{\ln(x_0 + h) - \ln(x_0)}{h} = \frac{1}{x_0}$$