Essential Mathematics for Global Leaders I

Lecture 4-2

Differentiation II

2015 May 18th

Xavier DAHAN
Ochanomizu Leading Promotion Center

Office:理学部2号館503

mail: dahan.xavier@ocha.ac.jp

Plan (tentative)

[4/13] L1: introduction. Review of high-school mathematics in English.

[4/20-27] L2-3: Functions and graphs. Plotting with Mathematica I (グラフをプロットする)

[5/7] L4: Infinitely small and large: limits (極限)

「[5/11] L5 : Differentiation (連続性 と微分法)

[5/18] L6: Differentiation II: extrema, related rates ...(極値と...)

[5/25] L7: Differentiation III: Newton's method, Taylor's expansion (ニュートン法とテイラー展開)

[6/1] L8: Mid-term test. Integration I: definition, fundamental theorem of calculus 積分I.

[6/8] L9: computation of indefinite integrals 不定積分

[6/15] L10 : Application of Integration I : length, volume and surfaces

積分の応用:長さ、面積、体積

[6/22] L11: Application of Integration II: average, center of mass (質量中心), work of a force.

[6/29] L12 : Ordinary Differential equations (one variable) 常微分方程式

[7/6] L13: Linear Differential Equations of order 2: harmonic oscillators (small-angle pendulum, spring). 二階線形微分方程式:調和振動子 (振幅が小さい振り子、ばね)

[7/13] L14: Ordinary Differential Equations with Mathematica. Mathematicaを利用して常微分

Program L4-2

1. Mean Value Theorem And Extrema 平均値の定理と極値

2. Compared growth of Exp, Ln, x^n at ∞

Extrema (極値)

• Local – Global maximum(局所・大域の極小・極大) $f: E \subset \mathbb{R} \to \mathbb{R}$ If $f(x) \leq f(c)$ for all $x \in E$ then f(c) is a global maximum. If there exists $\alpha, \beta \in E$, $\alpha < c < \beta$, such that: $f(x) \leq f(c)$ for all $x \in (\alpha, \beta)$ then f(c) is a local maximum.

Finding Extrema (I) First derivative test (極値をとる: 一階導関数の判定)

Theorem: If $f: E \subset \mathbb{R} \to \mathbb{R}$ has a local maximum or minimum at an interior point $c \in E$, and if f is differentiable at c then: もしfは内点cにおいて局所の極大or極小があれば、かつcにおいて微分可能ならば、 f'(c) = 0

注意点

- If c is an endpoint this is not true (\rightarrow point b in the graph page ??: local minimum but $f'(b) \neq 0$) もしもcは端点ならば、f'(c) = 0が成り立つとはかぎらない。
- If f is not differentiable at c, then f(c) may be a maximum or minimum anyway (point d in the graph page ??)
 もしfは点cにおいて微分可能でないと言っても、f(c)は極小or極大であるかもしれない。
- The proof is easy (証明も簡単)

Mean Value Theorem (平均値の定理)

Theorem (MVT): Let $f: [a,b] \to \mathbb{R}$ be a continuous function, differentiable on (a,b). There exists at least one point c such that:

$$\frac{f(b) - f(a)}{b - a} = f'(c)$$

• Exercise: Let $f: [-1,1] \to \mathbb{R}$, $x \mapsto \sqrt{1-x^2}$. Find a point c such that: f'(c) = f(1) - f(-1)/1 - (-1)

We have c = 0, indeed:

$$\frac{f(b) - f(a)}{b - a} = \frac{f(1) - f(-1)}{1 + 1} = 0 = f'(0) = f'(c)$$

Corollary1: Constant function 系1(=直接の結果): 定値写像

Corollary 1(系): If f'(x) = 0 for all $x \in (a, b)$, then $f(x) = C \in \mathbb{R}$ on (a, b).

• Proof (証明): Let $x_1 < x_2$ in the interval (a,b). By MVT, there is a $c \in (x_1,x_2)$ such that $\frac{f(x_2)-f(x_1)}{x_2-x_1} = f'(c).$

Therefore
$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = 0 \Rightarrow f(x_1) = f(x_2)$$

Corollary: If f'(x) = g'(x) on an interval (a, b) then f(x) = g(x) + C for a constant $(定数)C \in \mathbb{R}$.

Test for increasing and decreasing function

```
Corollary2: f:[a,b] \to \mathbb{R} continuous, and differentiable on (a,b). If f'(x) > 0 on (a,b) then f is increasing (增加) on [a,b]. If f'(x) < 0 on (a,b) then f is decreasing (減少) on [a,b].
```

• **Proof** (証明): Let $x_1 < x_2$ in [a,b]. By the MVT, there is a $c \in (x_1,x_2)$ such that $f(x_2) - f(x_1) = f'(c)(x_2 - x_1)$. If f'(c) > 0 then $f(x_2) > f(x_1)$, and thus f is increasing.

まとめ: Derivative tests for local extrema

一階、二階の導関数による極値点の判定

- $f: E \to \mathbb{R}$ differentiable twice (導関数も微分可能).
- 1st derivative test: find the set of critical points (臨界点) $C \coloneqq \{x \in E : f'(x) = 0\}$
- For $c \in C$: Maybe it is a

local minimum local maximum

• 2nd derivative test:

$$f''(c) > 0 \rightarrow \text{local minimum (局所の極小)}$$
 $f''(c) < 0 \rightarrow \text{local maximum (局所の極大)}$ $f''(c) = 0 \rightarrow ???$

Exercise: finding extrema (極値の探求)

- Tell where the following functions are increasing and decreasing.
- 2. Find the local & global extrema
 - a. $g(t) = -t^2 3t + 3$ g'(t) = -2t - 3. g' is >0 on $(-\infty; -\frac{3}{2})$ and <0 on $\left(-\frac{3}{2}; +\infty\right)$ therefore g is $\nearrow (-\infty; -\frac{3}{2})$ and \searrow on $\left(-\frac{3}{2}; +\infty\right)$ Global maximum at $t = -\frac{3}{2}$.
 - b. $f(r) = r^3 + 16r$ $f'(r) = 3r^2 + 16 > 0$ for any $r \in \mathbb{R}$ therefore f is \nearrow and there is no max nor min.
 - c. $f(x) = \frac{x^2 3}{x 2}$, $x \neq 2$ $f'(x) = \frac{2x(x 2) (x^2 3)}{(x 2)^2} = \frac{x^2 4x + 3}{(x 2)^2}$ $\Delta = 16 - 4 \times 3 = 4$ so $x^2 - 4x + 3 = (x - 1)(x - 3)$. Thus f'(x) < 0 for 1 < x < 3 and f'(x) > 0 elsewhere. f'(x) = 0 iff x = 1 or 3. Both are local maximum. Since f(1) = 2 and f(3) = 6 it follows that 3 is the global maximum

Application: optimization (適用:制約付き最適化)

• Kind of "problem with constraint" (制約付き問題) $\min_{g(x)=0} f(x)$

Find the minimum of a function f that must satisfy also the constraint (制約) g(x) = 0.

• Example:

Given a can (缶, = a cylinder 円筒)

Constraint: Volume= $h\pi r^2$ =1000cm³

Find h and r that minimizes the surface (面積= S(r,h)) of the can:

$$\min_{h\pi r^2=1000} S(r,h)$$

Answer:
$$r = \sqrt[3]{\frac{500}{\pi}} \approx 5.42cm$$
 $h = 2r \approx 10.84cm$

Program L4-2

1. Mean Value Theorem And Extrema 平均値の定理と極値

2. Compared growth of Exp, Ln, x^n at ∞

Asymptotic and growth (I)

We want to compute:

$$\lim_{x \to \infty} \frac{e^x}{x^n} \text{ (ex: } \lim_{x \to \infty} \frac{e^x}{x^{100}} = ? \text{)}$$

$$\lim_{x\to\infty} \frac{(\ln(x))^n}{x} \left(\text{ex: } \lim_{x\to\infty} \frac{(\ln(x))^{100}}{x} = ? \right)$$

(indeterminate form of type ∞/∞).

- From the graphs, it seems that $\lim_{x\to\infty}\frac{e^x}{x^n}=+\infty$ whatever is n>0.
- What about $\lim_{x \to \infty} \frac{\ln(x)}{x^{1/n}} = \lim_{x \to \infty} x^n \ln(x)$ when n > 0 ?

Asymptotic and growth (III)

From the graphs, it seems that $\lim_{x\to\infty}\frac{\ln(x)}{x^{1/n}}=0$ whatever is n>0. 直観を超える: 証明 Prove that $\lim_{x\to\infty}\frac{e^x}{x^n}=\infty$ for n>0.

1. Show that $e^x \ge (n+1)x$ for $x \in (n,\infty)$ (Hint: Let $f(x) = e^x - (n+1)x$. Is fincreasing?)

Answer: $f'(x) = e^x - (n+1)$. f'(x) > 0 (sure if x > n because $e \approx 2.78$)

Therefore f is \nearrow on (n,∞) .

Next, we have f(n) > 0 (If n = 1 then f(1) = e - 2 > 0 and clear if $n \ge 2$)

Therefore $e^x > (n+1)x$ for $x \in (n,\infty)$.

2. Deduce that $e^x \ge x^{n+1}$ for x > n(n+1). Answer: Let y = x/n + 1, and $y > n (\Rightarrow x > n(n+1))$. By 1), $e^y > (n+1)y$, equivalently $e^{\frac{x}{n+1}} > x$. Thus $\left(e^{\frac{x}{n+1}}\right)^{n+1} > x^{n+1}$ $\Rightarrow e^x > x^{n+1}$ for x > n(n+1)

3. Use the sandwich theorem to compute the limit.

Answer: By 2), $\frac{e^x}{x^n} > x$ for x > n(n+1). Since $\lim_{x \to \infty} x = \infty$ the sandwich theorem (Lect. 3 page 22) implies that $\lim_{x \to \infty} \frac{e^x}{x^n} = \infty$.

Asymptotic and growth (IV)

- Deduce the following limit for $n, m \in \mathbb{Z}_{>0}$ (<u>Hint</u>: Use the limit of the previous page and consider a change of variable. 前のページの極限を利用して変数の変換を考えなさい)
- 1. $\lim_{x \to \infty} \frac{(\ln(x))^n}{x}$ Hint: $y = \ln(x)$. Answer is 0
- 2. $\lim_{x\to 0^+} x |\ln(x)|^n$ Hint: $y = \ln\left(\frac{1}{x}\right)$. Answer is 0
- 3. $\lim_{x \to -\infty} |x|^n e^{mx}$ Hint: $y = e^{-mx}$. Answer depnds.

Homework (II)

A rectangle is inscribed in a semicircle of radius 2.半径2の半円に内設させる長方形がある。 What is the largest area the rectangle can have, and

what are its dimension?

最も広い面積を持つ長方形が何か。

