Essential Mathematics for Global Leaders I

Lecture 4-3

Differentiation III

2015 May 25th

Xavier DAHAN
Ochanomizu Leading Promotion Center

Office:理学部2号館503

mail: dahan.xavier@ocha.ac.jp

Solution to exercise Lecture 4-2 page 11

Given a can (缶, = a cylinder 円筒)

Constraint: Volume= $h\pi r^2$ =1000cm³

Find h and r that minimizes the surface (面積=S(r,h)) of the can:

$$\min_{h\pi r^2=1000} S(r,h)$$

Answer:
$$r = \sqrt[3]{\frac{500}{\pi}} \approx 5.42cm$$
 $h = 2r \approx 10.84cm$

$$S(r, h) = 2\pi r^2 + 2\pi r h$$

 $h\pi r^2 = 1000 \Rightarrow h = 1000/\pi r^2$
 $S(r, h) = 2\pi r^2 + 2000/r = T(r)$

Find the minimal value of T (関数Tの最低値をとろう): page 27. Find r_0 such that $T'(r_0) = 0$ (r_0 is a critical point, 臨界点):

$$T'(r) = 4\pi r - 2000/r^2$$
 therefore $T'(r) = 0$ is equivalent to $4\pi r_0 = \frac{2000}{r_0^2}$.

Solution to exercise Lecture 4-2 page 11

We find
$$r_0^3=500/\pi$$
 and thus $r_0=\sqrt[3]{500/\pi}$ and $\frac{h}{\pi}=\frac{1000}{\pi(500/\pi)^{2/3}}$ $\frac{h}{\pi}=2\cdot(500)^{1/3}/\pi^{1/3}=2\sqrt[3]{500/\pi}=2r_0$

注意: $T'(r_0) = 0$ means that maybe r_0 is a

maximum, minimum, or neither of them.

To decide, let us compute the 2nd derivative:

$$T''(r) = 4\pi + 1000/r^3 > 0$$
 on \mathbb{R}_+ .

Thus, T' is increasing and the critical point r_0 is a local minimum

Plan (tentative)

[4/13] L1: introduction. Review of high-school mathematics in English.

[4/20-27] L2-3: Functions and graphs. Plotting with Mathematica I (グラフをプロットする)

[5/7] L4: Infinitely small and large: limits (極限)

[5/11] L5 : Differentiation (連続性と微分法)

[5/18] L6: Differentiation II: extrema, related rates ...(極値と...)

[5/25] L7: Differentiation III: Newton's method, Taylor's expansion (ニュートン法とテイラー展開)

[6/1] L8: Mid-term test. Integration I: definition, fundamental theorem of calculus 積分I.

[6/8] L9: computation of indefinite integrals 不定積分

[6/15] L10 : Application of Integration I : length, volume and surfaces

積分の応用:長さ、面積、体積

[6/22] L11: Application of Integration II: average, center of mass (質量中心), work of a force.

[6/29] L12: Ordinary Differential equations (one variable) 常微分方程式

[7/6] L13: Linear Differential Equations of order 2: harmonic oscillators (small-angle pendulum, spring). 二階線形微分方程式:調和振動子 (振幅が小さい振り子、ばね)

[7/13] L14: Ordinary Differential Equations with Mathematica. Mathematicaを利用して常微分

Program L4-3

1. Approximating functions by polynomials: Taylor's expansion 多項式を用いて関数を近似する: ティラー展開

2. Approximating zeroes of functions:

Newton's method

関数の零を近似する:ニュートン法

1st order (or linear) approximation

一次近似 or 線型近似

• Idea (概念): If I know $f(x_0)$ and $f'(x_0)$.
I can approximate f(x) when x is near to x_0 by: $f(x) \approx f(x_0) + (x - x_0)f'(x_0)$

• How good/bad is it? Given x_0 , x fixed, let $c \in \mathbb{R}$ such that

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + c(x - x_0)^2$$

c depends on x and x_0 (cは変数xも x_0 に依存する)

Problem: what is c?

Estimation of the error (誤差の推定)

•
$$f(x) = f(x_0) + f'(x)(x - x_0) + c(x - x_0)^2$$
 $c \in (x_0, x)$

To estimate c let us fix x and replace x_0 by a variable y. (cを推定するために、xを不動とし、 x_0 を変数yに換える)

$$R_{x}(y) \coloneqq f(x) - (f(y) + (x - y)f'(y) + c(x - y)^{2})$$

$$R_{x}(x) = 0 = R_{x}(x_{0})$$

$$R'_{x}(y) = -f''(y)(x - y) + 2c(x - y)$$

• By the mean value theorem (Lect. 4-2 page 6) there exists $d \in (x_0, x)$ such that: $R_x(x) - R_x(x_0) = 0 = R_x'(d)(x - x_0)$ $\Rightarrow R_x'(d) = 0 = -f''(d)(x - d) + 2c(x - d)$

•
$$\Rightarrow \left[c = \frac{f''(d)}{2} \right], d \in (x_0, x)$$

• The error of approximation $\frac{f''(d)}{2}(x_0-x)^2$ verifies: $\lim_{x\to x_0}\frac{R_x(x_0)}{x-x_0}=0$

Second order approximation 二次近似

• For x close to x_0 :

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2}(x - x_0)^2$$

1st order approximation
(一次近似)

2nd order approximation
(二次近似)

 $(x_0, f(x_0))$
 $(x, f(x))$

Error of approximation:

$$R_{x}(y) := f(x) - f(y) - f'(y)(x - y) + f''(y)(x - y)^{2} - c(x - y)^{3}$$

c is chosen so that $R_{\chi}(x_0) = 0$.

Same computations as in the previous page give:

$$c = \frac{1}{6}f^{\prime\prime\prime}(d), \qquad d \in (x_0, x)$$

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2}(x - x_0)^2 + \frac{f'''(d)}{6}(x - x_0)^3$$

Higher order approximation: Taylor's expansion (Taylor展開)

• **Definition**: Taylor expansion of f at order n around x_0 f(x)

$$= f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2}(x - x_0) + \dots + \frac{1}{(n+1)!}f^{(n+1)}(d)(x - x_0)^{n+1}$$

• Definition: $P_n(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2}(x - x_0) + \dots + \frac{(x - x_0)^n}{n!} f^{(n)}(x_0)$

is polynomial of degree n called Taylor polynomial.

$$\epsilon_n(x) = \frac{1}{(n+1)!} f^{(n+1)}(d) (x - x_0)^{n+1}$$
 is called the Taylor-

Lagrange remainder (剰余)。

Cosine and its Taylor expansions at order 1 to 15 at x = 0.

Some usual Taylor expansions

function	Taylor expansion at $x = 0$	Neighbor of $x = 0$
e^x	$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$	$x \in \mathbb{R}$
$\sin(x)$	$\sin(x) = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots + (-1)^n \frac{x^{2n+1}}{2n+1} + \dots$	$x \in \mathbb{R}$
$\cos(x)$	$1 - \frac{x^2}{2} + \frac{x^4}{4} + \dots + \frac{(-1)^n x^{2n}}{(2n)!} + \dots$	$x \in \mathbb{R}$
ln(1+x)	$x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + \frac{(-1)^{n-1}x^n}{n} + \dots$	$-1 < x \le 1$
$\sqrt{1+x}$	$\sum_{k=0}^{\infty} \frac{(-1)^n (2n)!}{(1-2n)(n!)^2 (4^n)} x^n$ $= 1 + \frac{x}{2} - \frac{x^2}{8} + \frac{x^3}{16} - \frac{5x^4}{128} + \cdots$	-1 < <i>x</i> < 1

Comments

1) Be careful about "neighborhood" in table page 11.

This is related to convergence of "power series"(ベキ級数)

ln(1+x) is valid for |x| < 1. If |x| > 1 the Taylor polynomials are NG

2) In practice: We must be able to compute $f(x_0)$, $f'(x_0)$, $f''(x_0)$, ... Example: $\cos\left(\frac{7}{5}\right)$ cannot be computed easily...

 \rightarrow ...Choose a point x_0 close to $x = \frac{7}{5}$ so that $\cos(x_0)$ is known.

$$x_0 = \frac{\pi}{3}$$
 is good because: $\cos\left(\frac{\pi}{3}\right) = \frac{1}{2}$ and $\sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}$

Computing limits with Taylor's expansions (テイラー展開で極限をとる)

• Example: $\lim_{x \to 1} \frac{\ln(x)}{x-1}$

Indeterminate form of type "0/0".

• Solution:
$$\ln(x) = (x-1) - \frac{1}{2}(x-1)^2 + \epsilon_2 (x-1)$$
 if $|x| < 1$
Thus $\frac{\ln(x)}{x-1} = 1 - \frac{1}{2}(x-1) + \frac{\epsilon_2(x-1)}{x-1}$ if $|x| < 1$.
Therefore $\lim_{x \to 1} \frac{\ln(x)}{x-1} = 1$.

Exercise

Compute the following limits:

1.
$$\lim_{x \to 0} \frac{e^x - (1+x)}{x^2} =$$

2.
$$\lim_{x \to 0} \frac{\ln(1+x^2)}{1-\cos(x)} =$$

Program L4-3

1. Approximating functions by polynomials:

Taylor's expansion

多項式を用いて関数を近似する:テイラー展開

2. Approximating zeroes of functions:

Newton's method

関数の零を近似する:ニュートン法

Newton's method 1: principle ニュートン法:原理

• Example: Find the zero of $f: x \mapsto x^3 - 7$ (approximate $\sqrt[3]{7}$)

Follow the tangent y = T(x) of f at x_0 and find the intersection with y = 0. x_0 における f の接線 y = T(x) に沿って、 x_0 線y = 0との交点 x_1 を計算する。

 $\sqrt[3]{7} \approx 1.912931183$ Choose an initial value x_0 (初期値) Here we choose $x_0 = 5$

Newton's method 2: 2nd to 4th iterations(反復)

$\boldsymbol{\mathcal{Y}}$	
ŀ	/
ŀ	/
200	
ŀ	
150	
ļ	
ļ	
100	
ŀ	
50	$x_4 = 1.91998$
F	$x_4 = 1.71770$
Ŧ	
-	1 2 3 4 5 6
	2015/05/25

Iteration k(反復)	Error (誤差) $ \sqrt[3]{7} - x_k $
0	3.87
1	1.514
2	0.57
3	0.12
4	0.007

Formula for Newton's method ニュートン法における数式

• The function must be increasing or decreasing around the zero z, $f'(z) \neq 0$.

initial value x_0

An initial point x_0 must be selected (possibly near to the zero z).

To compute
$$x_1$$
: The equation of the tangent is $y = f'(x_0)x + f(x_0) - f'(x_0)x_0$ If $y = 0$, we find that $f'(x_0)x + f(x_0) - f'(x_0)x_0 = 0$, And $x_1 = \frac{f'(x_0)x_0 - f(x_0)}{f'(x_0)} = x_1$. 注意: $f'(x_0) \neq 0$. If $f'(x_0) = 0$ choose another

Formula for Newton's method

ニュートン法における数式

To compute x_2 : The equation of the tangent is

$$y = f'(x_1)x + f(x_1) - f'(x_1)x_1$$

If
$$y = 0$$
, we find that $f'(x_1)x + f(x_1) - f'(x_1)x_1 = 0$,

And
$$x_2 = \frac{f'(x_1)x_1 - f(x_1)}{f'(x_1)} = x_1 - \frac{f(x_1)}{f'(x_1)} = x_2.$$

Example: $f(x) = x^3 - 7$ Tangent at x_1 : y = 35.22x - 87.4667 $x_2 = 2.48316$

注意: $f'(x_1) \neq 0$. If $f'(x_1) = 0$ choose another initial point x_0 and start over.

Generally:

If $(x_0, x_1, ..., x_k)$ have been computed. The formula to compute x_{k+1} is:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$
 (assuming that $f'(x_k) \neq 0$)

Comments on Newton's method ニュートン法に関するコメント

- The construction of the sequence of approximate numbers $(x_0, ..., x_n, ...)$ is iterative (反復法)
 The whole sequence depends on x_0 . $(すべての例数は、初期値x_0)$ にだけ依存する)
- Choosing a good x_0 is very important: bad choice of x_0 means that the method:
 - 1. fails: we have $f'(x_i) = 0$ for some i
 - 2. is very slow $(f'(x_i) \approx 0)$ for some i
 - 3. finds another zero z' that the zero that we were looking for.

• If x_0 is well-chosen the method is very efficient: usually n=5 or 6 iterations give a very good approximation.

Bad choice of initial value x_0

Here the method repeats infinitely:

$$x_0 = x_2 = x_4 = \cdots$$
 $x_1 = x_3 = x_5 \cdots$

This almost never happens!(ほとんどあまり起こらない)

Bad choice of initial value x_0 (II)

The method finds a solution but not the one expected! 解法は解を見つけているが、期待された解がではない。

-1.0

Bad choice of initial value x_0 (III)

The method falls on a point x_i where $f'(x_i) = 0$. That doesn't work!

This problem almost never occurs.

この問題はほとんどあまり起こらない。

Convergence to a zero of f 関数fの零に収束

Theorem:

Let $f: E \subset \mathbb{R} \to \mathbb{R}$, and $z \in E$, such that f(z) = 0.

Assume that on an interval $(a, b) \subset E$, $z \in (a, b)$, f is differentiable (微分可能).

Let $x_0 \in (a, b)$ be "near enough" to z.

The sequence $(x_0, x_1, x_2, ..., x_k, ...)$ converges (収束する) to z, where $x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$. $\lim_{k \to \infty} |x_k - z| = 0$

• How fast does it converge ?どのくらい速さで収束するか?

Rate of convergence (収束率)

• Let the error (誤差) be $\epsilon_k = |z - x_k|$ after the k-th iteration (第k反復で得られた 値 x_k). Assume that $f'(x_k)$ is not close to 0:

$$\epsilon_{k+1} = |z - x_{k+1}| \le M|\epsilon_k|^2$$

Rate of convergence is quadratic (or quadratic convergence). (二次収束)

• **Proof**: By Taylor's 1st order approximation (page 6): There is d close to x_k such that

$$f(z) = f(x_k) + f'(x_k)(z - x_k) + \frac{1}{2}f''(d)(z - x_k)^2$$
$$\frac{f(x_k)}{f'(x_k)} + (z - x_k) = \frac{-f''(d)}{2f'(x_k)}(z - x_k)^2$$

- By definition of Newton's iteration: $z x_{k+1} = \frac{-f''(d)}{2f'(x_k)} (z x_k)^2$
- $\epsilon_{k+1} = \left| \frac{-f''(d)}{2f'(x_k)} \right| \epsilon_k^2$. The term $\left| \frac{-f''(d)}{2f'(x_k)} \right| \le M \Rightarrow |\epsilon_{k+1}| \le M |\epsilon_k|^2$