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Solution to exercise Lecture 4-2 page 11

Given a can (i, = a cylinder FHf&)
Constraint: Volume=hmr2=1000cm?3

h Find h and r that minimizes the surface (E%&=
S(7, h))of the can:
hnrrZIl:l?ooos(r' h)
3 (500
Answer:r = |—~542cm  h=2r =~ 10.84cm

S(r,h) = 2nr? + 2nrh
hrr? = 1000 = h = 1000/m7r?
S(r,h) = 2nr? +2000/r =T (1)

Find the minimal value of T (BA#ITD&IE{EZ &AD): page 27. Find 1y such
that T'(ry) = 0 ( 1y is a critical point, &5 /1)

2000

2 L ]
LA

T'(r) = 4mr — 2000/72 therefore T'(r) = 0 is equivalent to 4mr, =
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Solution to exercise Lecture 4-2 page 11

2000 4

P—
—

2nr? + 2000/ = T(r)

500 - .

(0] T T 1
0 5 TO 10 15
r

We find 3 = 500/ and thus 7, = 3/500/7 a

7’ 1000 | E j

1000
7(500/m)°/3

nd h =

h=2-(500)73/x'/3 = 23/500/1 = 21,

FE:T' (1)) =0 meansthatmaybergisa —

maximum,
minimum, or

To decide, let us compute the 2" derivative:
T"(r) = 4w + 1000/r3 > 0on R, .

neither of them.

—

Thus, T’ is increasing and the critical point 7 is a local minimum
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Plan (tentative)

[4/13] L1 : introduction. Review of
high-school mathematics in English.

[4/20-27] L2-3 : Functions and
graphs. Plotting with Mathematica |

(F52%7T0yh33)
[5/7] L4 : Infinitely small and large :
limits (1B[E)

[5/11] L5 : Differentiation (ZE$ET4E
E D IR)

[5/18] L6 : Differentiation Il :
extrema, related rates ... (}B{EL...)

[5/25] L7 : Differentiation Ill :
Newton’s method, Taylor’s
expansion

(Za—kriiETA5—ERH)

[6/1] L8 : Mid-term test. Integration
| : definition, fundamental theorem
of calculus F&5I.

[6/8] L9 : computation of indefinite
integrals F~EED

[6/15] L10 : Application of
Integration | : length, volume and
surfaces

W\ R: &k, mia. 515

[6/22] L11 : Application of
Integration Il : average, center of
mass (E=H[»), work of a force.

[6/29] L12 : Ordinary Differential
equations (one variable) &M% A
FE

[7/6] L13 : Linear Differential
Equations of order 2 : harmonic
oscillators (small-angle pendulum,
spring). —Ps#RME M A2 BRANIR
¥ (RIEA/NDSUDIRYF. (X4)
[7/13] L14 : Ordinary Differential

Equations with Mathematica.
MathematicazFI|FHL TE M7



Program L4-3

1. Approximating functions by polynomials:
Taylor’s expansion

ZIENZE]

IWTRERZ AL TS TA5

2. Approximating zeroes of functions:
Newton’s method

FBDFZEELT S —a— ik
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15t order (or linear) approximation

— L or #RELAL

* Idea (BEZ): If l know f(xp) and f'(xg).
| can approximate f(x) when x is near to x, by:

f(x) = f(xo) + (x — x0)f (x0)

Approximated

value (M {LLE) e How good/bad is it?
Given X, x fixed, let ¢ € R such
_ that
RE)
f(x)
(x, f () = f(x0) + £ (o) (x — x0)
(o, f () + c(x — x9)?

c depends on x and x, (clEZE #xtx,

[2IRkFT D)

Problem: whatis c ?




Estimation of the error (B2Z D #5E)

* f(x) = fxo) + f(x)(x — x0) + c(x — x)* c € (xg,%)
! Error term

To estimate c let us fix x and replace x, by a variable y .

(cZHET D=2 xEFTENEL., x T ZHy[TH#LZ2 D)

Re() =fx)—(f) + (x —=)f' () + c(x —y)*)
Rx(x) = 0= Rx(xo)
Ry(y) = —f")(x—y) +2c(x—y)

e By the mean value theorem (Lect. 4-2 page 6) there exists d €
(xg,x) such that: R,.(x) — R, (xg) = 0 = R, (d)(x — x¢)

= Ry (d) =0=—f"(d)(x —d) +2c(x — d)

. :>[c — f ;d)] d € (xg,x)

* The error of apprOX|mat|onf @ (xq — x)? verifies: lim Rx(xo) _
X—-Xg X—Xo
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Second order approximation
i/ $1ig >\

* For x close to xg:

/ [ (xo)
f(x) = f(xo) + f(x0)(x — x0) + 5 (x — xp)?
1*t order approximation
(—RE ) . Error (322)
approximation
(=Bl (o0, f (x0))

(%, f())
* Error of approximation:

Re)=f)=fO) - Ox=y»)+f" Mk —-y)?*—clx—-y)>

c is chosen so that R,.(x,) = 0.
Same computations as in the previous page give:

1
c = gf”’(d), d € (xq,x)

f"(x0)
2

£ (@)
6

(x —x0)% +

[ fx) = fxe) + f'(xe)(x —xp) +

(x — xo)3 J

2015/05/25
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Higher order approximation: Taylor’s
expansion (TaylorFERf)

'+ Definition: Taylor expansion of f at order n around x, A
f )
= f(xo) + [ (xo) (x — xp) + [” ) (x —xp) + -+ fEnH) (d)(x — xp)™ "
2 (n+1)!
. J

4 Definition:P, (x) = f(xo) + f*(x0) (x — x0) + 22 (x N
xo) + oo+ EEE £ ()

n

is polynomial of degree n called Taylor polynomial.
€,(x) = ﬁf(”“)(d)(x — x)™ "1 is called the Taylor-

Egrange remainder (El5R) . /
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Cosine and its Taylor expansions at
order1to15atx = 0.

—
o=
2
_'1_£+£
2 24
qoxt ozt A8
2z 24 T2D
gzt ozt LB «P
2 24 T2 40320
PR S AN LN LN
2 24 T2 40330 3628E0D
_.1_£+£_X_E'+ o5 _ 10 <12
2 24 T2 40320 3I62BB0D  4T90018D0
.1_£+£_.:1'_E'+x'5_ 10 N 512 _ <14
2 24  TAD 40330 31628800 4TS0D1EDD BT 1TE 291200
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Some usual Taylor expansions

m Taylor expansion at x = Neighbor of x =

_1 x€ER
+ F+§+§+
sin(x) sin(x) ,3 5 x2n+1 x €ER
= —_ —_— —_ — e _1 n
R T
cos(x x% x4 —1)"x?" x €ER
() 1— __|___|_..._|_( )
2 4 (2n)!
] x? x3 —1) 1y — <
n(l + x) x——+——---+( ) P 1<x<1
2 3 n
1+ x (—1D)"(2n)! —-1<x<1

n

L (= 2m)(m)? (@)

_1+x x2+x3 5x4+
B 2 8 16 128
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Comments

1) Be careful about “neighborhood” in table page 11.
This is related to convergence of “power series” (R3F#k%k)

Good approximation

GEBLASLILY)
4 P In(1 + x) is valid for |x| < 1.
f o — P If |x| > 1 the Taylor
. J ' i polynomials are NG
— P16
- — Ln{1+x)

GEREIASIE LLAELY)

Poor‘Epproximation

2) In practice: We must be able to compute f(xy), f'(xg), f' (xg), ...
Example: cos (g) cannot be computed easily...

: 7 .
—...Choose a point x close to x = = so that cos(xy) is known.

5
T, i 1 . (T V3
Xo = —is good because: cos|(=) == andsin|—) = —
07 3 3 2 3
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Computing limits with Taylor’s expansions

(TAS—EHTERZED)

In(x
 Example: lim ()
x—1 x—1

Indeterminate form of type "0/0".

e Solution: In(x) = (x — 1) —%(x —1)2 4
€, (x —1) if |x| <1

Thus ln(xl) =1 ——(x —1) +

Therefore lim ln(x) = 1.
x—1 x—1

Ez(x 1)

if |x| < 1.

2015/05/25 13



Exercise

* Compute the following limits:

. ef—(1+x)
7. lim - =
x—0 X

2
2 Tim In(1+x?) _
x—0 1—cos(x)




Program L4-3

1. Approximating functions by polynomials:
Taylor’s expansion

ZIENZE]

IWTRERZEL TS TA5

2. Approximating zeroes of functions:
Newton’s method

B DFZZ LT SH: —a—riEk

2015/05/25
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Newton’s method 1: principle
—a—bhrik R

e Example: Find the zero of f: x —» x> — 7 (approximate V7)

v, 1 —_ 1
Zilx=o = {3}

V7 ~ 1.912931183
Choose an initial value x, (¥)#3{&)
Here we choose x5 = 5

{xx}heo = {5., 3.42667)

Follow the tangent y = T'(x) of f at x
and find the intersection with y = 0.

X IZBITHf DE#RyY = T(x) 1282 T.
By =0&EDXRmx ZETET S,

2015/05/25 16



Newton’s method 2: 2" to 4t iterations(&k 18)

150 |

100

{Xe)iep = [5., 3.42667, 2.48316}

x, = 2.48316

{xx)im0 = {5.. 3.42667, 2.48316, 2.03385, 1.91998}

2015/05/25

50k

[x:)ip = {5.. 3.42667, 2.48316, 2.03385}

x5 = 2.03385

Error (RZE)
V7 — x|
0 3.87
1 1.514
2 0.57
3 0.12
4 0.007



Formula for Newton’s method

Za—bUEIZBITAEK

* The function must be increasing or decreasing around the zero z,

f'(z) # 0.
_. , )
f(0) <0 okfor S (0)=0NGfor -
~_ Newton’s method Newton’s m(?thpd .

An initial point x; must be selected (possibly near to the zero z).

To compute x;: The equation of the tangent is

Example: f(x) = x3 -7
y = f'(xo)x + f(x0) — f'(x0)x0 Tangent at x,: /

y = 75x — 257

If y = 0, we find that
f (xo)x + f(xo) — f'(x0)x0 = 0,

f'(x0)xo—f(x0) f(xo)
And X1 = = — — .
L £7(x0) 0T Py T M
FE f'(xg) # 0.1f f'(xg) = 0 choose another o 257 Xo _ 5
1775
18

initial value x,
2015/05/25



Formula for Newton’s method
—a—bkREIZBITARK )
Example: f(x) = x3 -7

To compute x,: The equation of the tangent is /
Tangent at x4:

y = f1)x+ flx) = f1G)x y = 35.22x — 87.4667

If y = 0, we find that
floe)x + f(x) — f'(x)x, =0,

_ f’(x1)x1—f(x1) . . f(x1) _
AndX; ==y T e Y2

SEE f(x) # 0.1f f'(x;1) = 0 choose another
initial point x, and start over.

Generally:
If (xg, X1, ..., Xx) have been computed. The formula to compute x4 is:

X4l = X — ]{’((Q;l;)) (assuming that f'(x;) # 0)




Comments on Newton’s method
Za—bhEIZEHT AaAE

* The construction of the sequence of approximate numbers
(X0, v ) Xy, .. ) IS iterative (R1E:%)
The whole sequence depends on x,,.
(TRTOHIEIE. FERE X, ITEITRFT D)

* Choosing a good x is very important:
bad choice of x; means that the method:

1. fails: we have f'(x;) = 0 forsome i
2. isveryslow (f'(x;) = 0) forsomei
3. finds another zero z’ that the zero that we were looking for.

* If xy is well-chosen the method is very efficient:
usually n = 5 or 6 iterations give a very good approximation.



Bad choice of initial value x,

Here the method repeats infinitely:
Xo = X2 = X4 == X1 = X3 = X5
This almost never happens ! (IZEAEHEYRISELY)

2015/05/25
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Bad choice of initial value xq (I1)

M fewn = 13,52, 60333, 208417, 153037, 1.57084. 1.570%)

The method finds a solution but not the one expected !
FRIEISEEZ R DT TLSA, BifFSN @A TIEHELY,

2015/05/25
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Bad choice of initial value xq (I1)

xe )}y = {3.5358. 5.03075, 3.14337, 566.453, 567.144, 567.057)

/

The method falls on a point x; where f'(x;) = 0. That
doesn’t work!

This problem almost never occurs.

CORBBIXIFEAEHFTYREILIELY,
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Convergence to a zero of f

BEELf DFJIZYER

Theorem:
let f:E c R - R, and z € E, such that f(z) = 0.

Assume that on aninterval (a,b) Cc E, z € (a,b), f is
differentiable (##45> AI&E).

Let x, € (a,b) be “near enough” to z.

The sequence (xg, X1, X3, .., Xi, ... ) cOnverges (UK

_ o Sxk)
5)to z, where xj,.{ = X Iem

lim|x, —z| =0
k—oo

* How fast does it converge ?EDKSULVMESTINER S HM 72



Rate of convergence (IR )

* Letthe error (3282) be ¢, = |z — x| after the k-th iteration (FkRETELNI=
fix, ). Assume that f'(x;) is not close to O ;
€x+1 = 12 — Xpy1| < Mleg|?

Rate of convergence is quadratic (or quadratic convergence). (ZRIXZR)

* Proof: By Taylor’s 15t order approximation (page 6):
There is d close to xj, such that

1
f(2) = f(xp) + [ (xp)(z — xp) +§f”(d)(Z — xp)*

f (xx) —f"(d)
N T2 "
. , . e i ) 2
* By definition of Newton’s iteration: z — x; ., = ———=(z — x})
2f" (xg) \/_/
€k
_ =@ 2 —f"(@) 2
* €kt = [Fo0| Cke The term e <M = |1 < Mg |
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