Essential Mathematics for Global Leaders I

Lecture 5-2

Integration II

2015 June 22nd - 29th

Xavier DAHAN
Ochanomizu Leading Promotion Center

Office:理学部2号館503

mail: dahan.xavier@ocha.ac.jp

Plan (tentative)

[4/13] L1: introduction. Review of high-school mathematics in English.

[4/20-27] L2-3: Functions and graphs. Plotting with Mathematica I (グラフをプロットする)

[5/7] L4: Infinitely small and large: limits (極限)

[5/11] L5 : Differentiation (連続性と微分法)

[5/18] L6: Differentiation II: extrema, related rates ...(極値と...)

[5/25] L7: Differentiation III: Newton's method, Taylor's expansion (ニュートン法とテイラー展開)

[6/1] L8: Mid-term test. Integration I: definition, fundamental theorem of calculus 積分I.

[6/8] L9: computation of indefinite integrals 不定積分

[6/15] L10 : Application of Integration I : length, volume and surfaces

積分の応用:長さ、面積、体積

[6/22] L11: Application of Integration II: average, center of mass (質量中心), work of a force.

[6/29] L12 : Ordinary Differential equations (one variable) 常微分方程式

[7/6] L13: Linear Differential Equations of order 2: harmonic oscillators (small-angle pendulum, spring). 二階線形微分方程式:調和振動子 (振幅が小さい振り子、ばね)

[7/13] L14: Ordinary Differential Equations with Mathematica. Mathematicaを利用して常微分

Integration II: content

1. Computation of primitives 2 (antiderivative) 原始関数をとる(不定積分)

2. Methods to compute volumes 体積を測定する方法

3. Length of curves and area of surfaces of revolution 曲線の長さと回転面の面積

Computation of indefinite integral (= antiderivatives)

- General techniques (一般な方法)
 - Substitution rule (chain rule backward) (置換律)
 - Integration by parts (部分積分)

Previous lesson L5-1

- Specialized techniques (特殊な問題向けの方法)
 - Introduce new function: inverse trigonometric functions 新しい関数を導入する: 逆三角形関数
 - Rational Functions: (有理関数)
 - Rational Functions of trigonometric functions (三角形関数の有理関数)
 -
- Automatic procedure (algorithm) (自動積分法)
 - Liouville (1860), Risch (1960).

Not studied 紹介さ れてい ない

Specialized technique of antiderivation (I) Inverse trigonometric functions (逆三角形関数)

• Example 1:

$$\int \frac{dx}{x^2 + 1} = Arctan(x) + C$$

• Example 2:

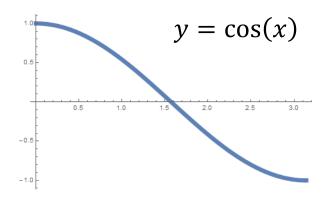
$$\int \frac{dx}{\sqrt{1-x^2}} = Arcsin(x) + C$$

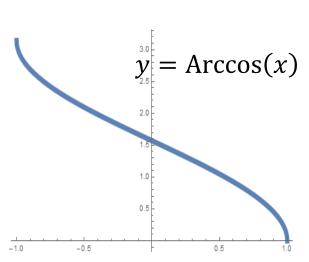
• Example 3: (looks like Example 2 but is very different)

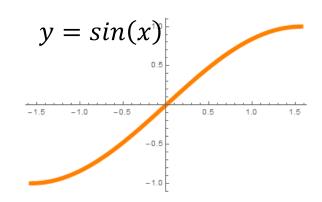
$$\int \frac{dx}{\sqrt{x^2 - 1}} = Log\left(x + \sqrt{x^2 - 1}\right) + C$$

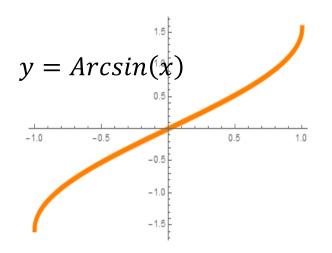
Inverse trigonometric functions (II) (逆三角形関数)

• Graphs of *Arccos* and *Arcsin*



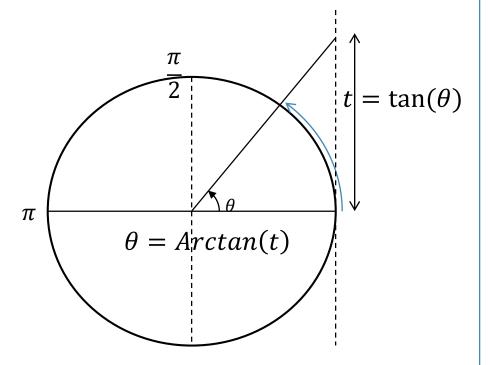


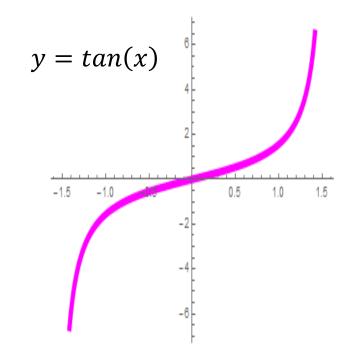


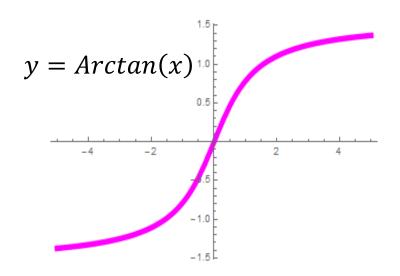


Arc Tangent

• $Arctan: \mathbb{R} \to \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$







Derivative of inverse trigonometric functions

General property of inverse functions:

$$f \circ f^{-1}(x) = x$$

• Let $g(x) = f^{-1}(x)$.

• Exercise:

- 1. Differentiate the relation: $f \circ g(x) = x$
- 2. Deduce the derivative $g' = (f^{-1})'$
- 3. Deduce (Arccos)'
 (Arcsin)'
 (Arctan)'

Specialized techniques II:

Rational functions:

$$f(x) = \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0}{b_m x^m + \dots + b_1 x + b_0} = \frac{A(x)}{B(x)}$$

- Trigonometric polynomials and rational functions: $f(x) = \cos(x)^3 \sin(x)^2 3\cos(x)\sin(x)^2$
- Others like integration tables ...
- → always can be integrated

...Not very funny!

Automatic procedure to compute indefinite integrals (不定義積分をとるための基本手順)

- Elementary functions: (初等関数) Ln, Exp, Cos, Tan, Sin and their inverses: Arccos, Arcsin, Arctan etc...
- Liouville's Problem (in differential algebra 微分代数において):
 Identify functions whose antiderative can be written as an elementary functions?
 (初等関数によってとれる不定積分を持つ関数を識別すること)

• **Risch algorithm** (1968): solves the Liouville's problem. Difficult and long algorithm Implemented (実装された) in some maths software.

Automatic computation of antiderivative

- From Liouville's theorem (1840-50).

 Non-integrable functions: e^{-x^2} , $\frac{\sin(x)}{x}$, $e^{x\ln(x)} = x^x$, $\frac{1}{\ln(x)}$ have no antiderivatives in terms of elementary functions (初等関数によって表現できない不定積分を持つ関数)
- Create new functions! (それでは、新たな関数を定義 しよう)

$$Si(z) = \int_0^z \frac{\sin(t)}{t} dt, \qquad \operatorname{erf}(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^z e^{-t^2} dt$$

Integration II: content

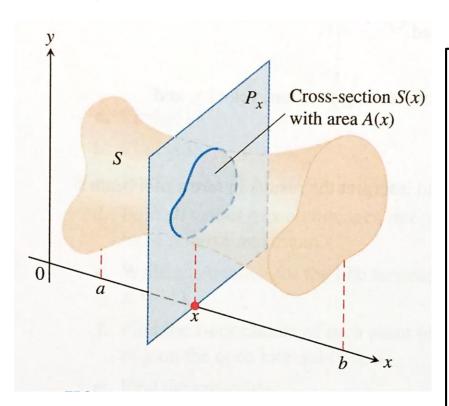
1. Computation of primitives 2 (antiderivative) 原始関数をとる(不定積分)

2. Methods to compute volumes 体積を測定する方法

3. Length of curves and area of surfaces of revolution 曲線の長さと回転面の面積

Computing volume using cross-sections 切断を用いて体積を測る

• Slicing by parallel planes (平行平面によりスライスをとる)

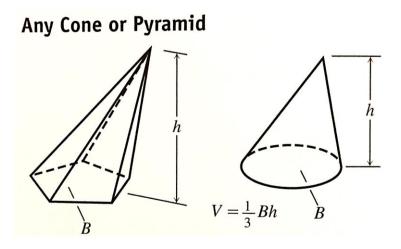


The volume of a solid of cross-section area A(x) from x = a to x = b is:

$$\int_{a}^{b} A(x) \, dx = V$$

Parallel planes slicing: example I, cone

• Volume of cone of base B: (底面Bの錐の体積):



$$A(x) = Area \ of \ slice \ at \ x$$

 $A(x) = \pi \cdot x^2$, (case of cylinder 円筒面)
 $A(x) = 1/2 \cdot x^2 \cdot n \cdot \sin(2\pi/n)$ (case of n-正多角形)

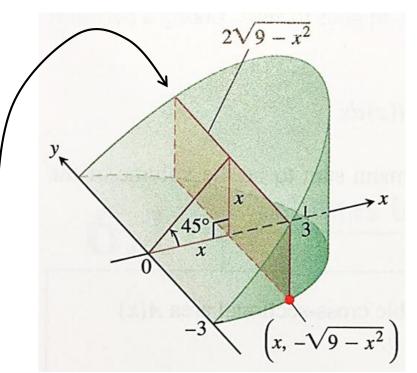
Exercise:
$$Volume = V = \int dx =$$

Parallel planes slicing: example 2

 We consider the part of cylinder (円筒) described in the image on the right:

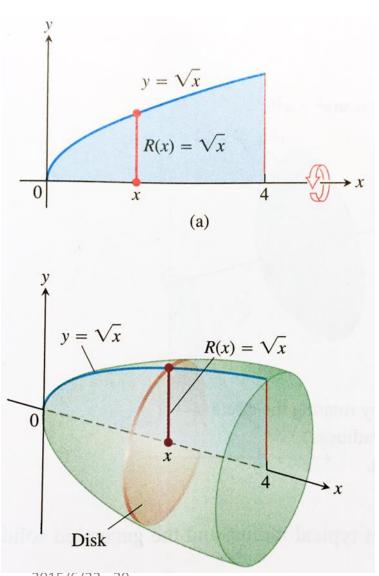
• Slices are rectangles (長方 形)

 What is the length and the width of the rectangle?



- Length L(x) =
- Width (幅) W(x) =
- Volume= $\int L(x) \cdot W(x) dx$

Computing volume using crosssections(II) 切断を用いて体積を計算する(II)



 Solids of revolution: the disk method (回転体: 円板法)

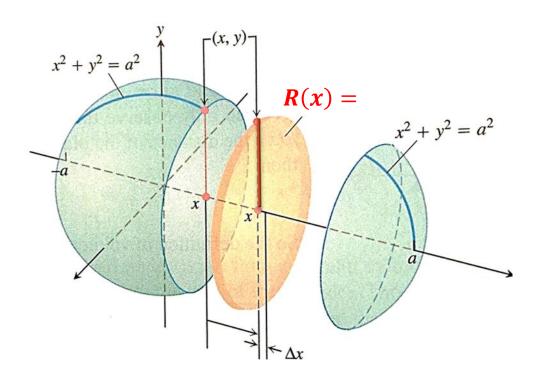
• The volume of a solid of revolution (回転体) between x = a and x = b, whose disk at x has a radius (半径) of R(x) is:

$$\int_{a}^{b} \pi R(x)^{2} dx$$

• Example (left image):

$$\int_{0}^{4} \pi R(x)^{2} dx = \int_{0}^{4} \pi x dx = \left[\frac{\pi x^{2}}{2}\right]_{0}^{4}$$
$$= 8\pi.$$

Solid of revolution: volume of the sphere



 What is the radius R(x) of the disk in red of the sphere in the left?

$$R(x) =$$

 Deduce the volume using the formula for solids of revolution:

$$\int_{-a}^{a} \pi \, R(x)^2 \, dx =$$

Integration II: content

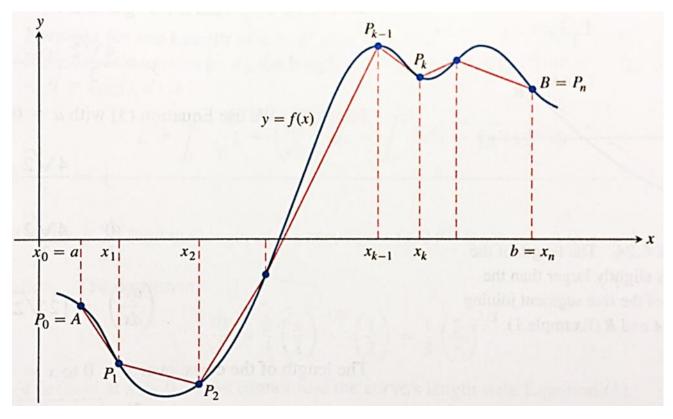
1. Computation of primitives 2 (antiderivative) 原始関数をとる(不定積分)

2. Methods to compute volumes 体積を測定する方法

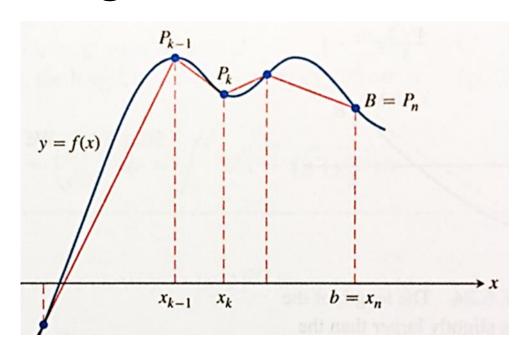
3. Length of curves and area of surfaces of revolution 曲線の長さと回転面の面積

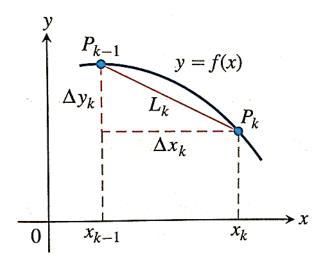
Application of integral: length of curves 積分の応用:曲線の長さ

- How to compute the length of a curve y = f(x) between two points x = a and x = b.
- <u>Assumption (仮定):</u> *f* is differentiable (微分可能)



Length of curve





•
$$L_k = \sqrt{\Delta y_k^2 + \Delta x_k^2}$$

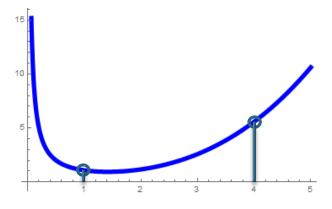
- Length $\approx \sum_{k=1}^{n} L_k$
- $\Delta y_k = f(x_{k-1}) f(x_k)$. Since f is differentiable, by the MVT (Mean Value Theorem, L4-2 page 6) there exists $x_{k-1} < c_k < x_k$ such that $\Delta y_k = f'(c_k) \Delta x_k$.
- $L_k = \Delta x_k \sqrt{f'(c_k)^2 + 1}$. And when $n \to \infty$, $\Delta x_k \to 0$:

• Length =
$$\lim_{n \to \infty} \sum_{k=1}^{n} \Delta x_k \sqrt{f'(c_k)^2 + 1} = \int_a^b \sqrt{f'(x)^2 + 1} dx$$

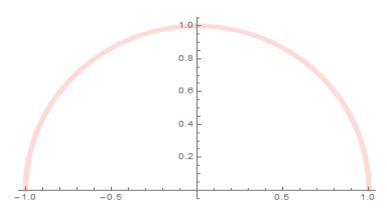
Length of a curve: Exercise

• Compute the length of the curve between x=1

and 4.
$$y = \frac{x^3}{12} + \frac{1}{x}$$



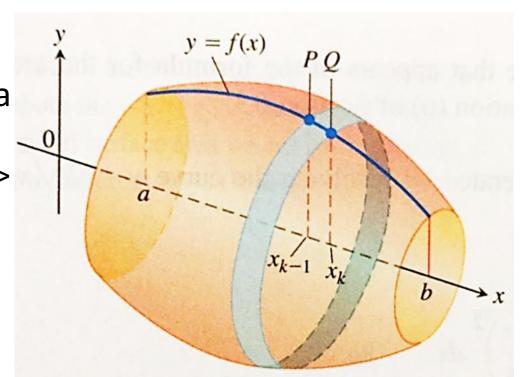
• Find the length of a half-circle: $y = \sqrt{1 - x^2}$.



Areas of surface of revolution

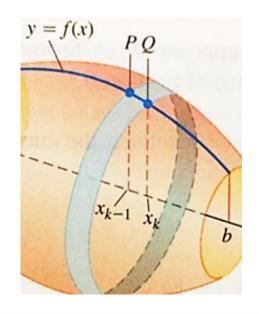
回転面の面積

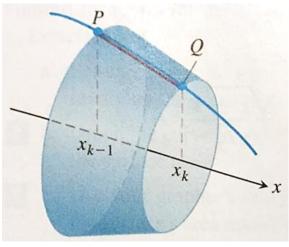
Compute the area defined by the curve y = f(x) > 0 between x = a and x = b, and revolved about the x -axis.



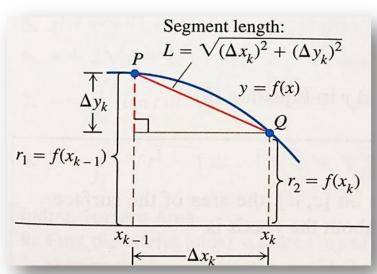
 $(x = a \ge x = b$ の間の曲線y = f(x)は、x軸を回転するからなる面積を測る)

Areas of surfaces of revolution





• Area S_k of the frustum in blue frustum in blue frustum
青い円錐台の面積) is equal to:



$$S_k = 2\pi \left(\frac{f(x_{k-1}) + f(x_k)}{2}\right) \sqrt{\Delta y_k^2 + \Delta x_k^2}$$

Making $n \to \infty$ gives

$$\lim_{n \to \infty} \sum_{k=1}^{n} S_k = \int_{a}^{b} 2\pi f(x) \sqrt{1 + f'(x)^2} \, dx$$

Area of a surface of revolution: Exercise

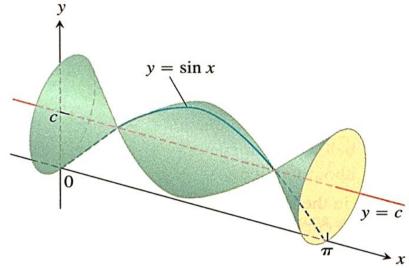
• Compute the area of a sphere of radius r.

Homework: Hand in on June ??

1. Volume of revolution (回転体)

The arch $y = \sin(x)$ is revolved about the line y = c (for $0 \le c \le 1$) to form a solid as shown in the figure (曲線 $y = \sin(x)$ の弧は $y = c(0 \le c \le 1)$ の軸を回転することによって得られる回転体)

- a. Find the value of c that minimizes the volume. What is the minimum volume?
- b. What value of $c \in [0,1]$ maximizes the volume ?



Homework: Hand in on June ??

2. The shaded band shown here is cut from a sphere of radius R by parallel planes h units distant apart.

以下の陰のついた輪がhユニット離れている平行な平面に半径R球面から切れる。 Show that the surface area of the band is $2\pi Rh$ 輪の面積が $2\pi Rh$ であることを示せ。

