▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

On lexicograhical Gröbner bases with special primary ideals

Dahan Xavier

Ochanomizu Univeristy, Faculty of General Educational Research

2018, Tuesday December 18th RIMS Computer Algebra 2018 — Theorey and Applictions

introduction 0000000 Results 00000000 Idea of the methods

Conclusion 000

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

My gratefullness for 12 years of support

Happy celebration Yokoyama-sensei!

introduction	Results	ldea of the methods	Conclusion
0000000	0000000	00000000	000
Outline			

introduction	Results	Idea of the methods	Conclusion
••••••	0000000		000
Outline			

introduction 000000	Results 00000000	ldea of the methods 00000000	Conclusion 000
Trivialities			

Input Pairwise coprime primary (= power of an irreducible) polynomials: $\{a_i(x)\}_{i=1,...,m}$.

Questions What is a generator of the ideal $I = \prod_{i=1}^{r} \langle a_i \rangle$? What is the monomial basis SM(I) of $\mathbb{Q}[x]/I$?

Answer Easy:
$$g = \prod_i a_i(x)$$
, $\langle g \rangle = I$
 $SM(I) = \{1, x, x^2, \dots, x^{d-1}\}$, $\deg(g) = \sum_{i=1}^m \deg(a_i) := d$.

Purpose How to generalize this to polynomials of several variables ?

Context of Lexicographic Gröbner bases Result Complete answer when the primary ideals are triangular and

verify Assumotion (**H**)(page 12)

 introduction
 Results
 Idea of the methods
 Conclusion

 0000000
 0000000
 000
 000

Two variables — CRT in one variable

Input: three pariwise coprime primary triangular lexGbs:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

 introduction
 Results
 Idea of the methods
 Conclusion

 0000000
 00000000
 00000000
 000

Two variables — CRT in one variable

Input: three pariwise coprime primary triangular lexGbs:



 introduction
 Results
 Idea of the methods
 Conclusion

 0000000
 00000000
 00000000
 000

Two variables — CRT in one variable

Input: three pariwise coprime primary triangular lexGbs:

$$\begin{cases} t_1^{(1)}(x) = x^2 \\ t_2^{(1)}(x,y) = y^2 + xy + 2x \end{cases} \begin{cases} t_1^{(2)}(x) = x^2 \\ t_2^{(2)}(x,y) = (y+1)^2 + x(y+1) - x \end{cases}$$
$$\begin{cases} t_1^{(3)}(x) = (x-1)^2 \\ t_2^{(3)}(x,y) = y^2 + 2(x-1)y + 3(x-1) \end{cases}$$

 introduction
 Results
 Idea of the methods
 Conclusion

 0000000
 00000000
 00000000
 000

Two variables — CRT in one variable

Input: three pariwise coprime primary triangular lexGbs:

introduction	Results	ldea of the methods	Conclusion
000000●	0000000	00000000	000
Two variables –	– Previous work		

Two variables is not new:

[Lazard 1985] Ideal bases and primary decomposition:case of two variables

[Gonzales-Vega, El Kahoui 1996] An improved upper complexity bound for the topology computation of a real algebraic plane curve.

[D., 2009] Size of coefficients of lexicographic Gröbner bases

[Rouillier *et al.*, 2013-2014] Computing separating linear forms for bivariate polynomials

[Schost-Mehrabi, 2015] A softly optimal monte carlo algorithm for solving bivariate polynomial systems over the integers

introduction	Results	ldea of the methods	Conclusion
000000●	0000000	00000000	000
Two variables –	– Previous work		

Two variables is not new:

[Lazard 1985] Ideal bases and primary decomposition:case of two variables

[Gonzales-Vega, El Kahoui 1996] An improved upper complexity bound for the topology computation of a real algebraic plane curve.

[D., 2009] Size of coefficients of lexicographic Gröbner bases

[Rouillier *et al.*, 2013-2014] Computing separating linear forms for bivariate polynomials

[Schost-Mehrabi, 2015] A softly optimal monte carlo algorithm for solving bivariate polynomial systems over the integers

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Why two variables is not hard?

- managing the heap of monomials is easy
- Needs CRT (Extended GCD) in one variable only

introduction	Results	ldea of the methods	Conclusion
0000000	•0000000	00000000	000
Outline			

introduction

Results —	- Statement 1)-2)		
introduction	Results	Idea of the methods	Conclusion
0000000	0000000	00000000	000

Setting: G lexicographic Gröbner basis of a 0-dimensional ideal I

- (H) All the primary ideals of *I* have a lexGB that is triangular.
 Input: lexGB's (= triangular sets t⁽ⁱ⁾ = (t₁⁽ⁱ⁾, ..., t_n⁽ⁱ⁾)) of the primary components of *I* (H) For all i ≠ i, there exists a largest integer l such that
 - $t_{\leq \ell}^{(i)} = t_{\leq \ell}^{(j)} \text{ and } \langle t_{\ell+1}^{(i)} \rangle + \langle t_{\ell+1}^{(j)} \rangle = \langle 1 \rangle \text{ in } k[x_1, \dots, x_\ell] / \langle t_{\leq \ell}^{(i)} \rangle.$
- Standard monomials SM(I) can be computed with no arithmetic operations (= with no operations over k). More precisely O(Dnr) comparisons of elements in k.
 r defined later, D = |SM(I)| = dim_k(k[x]/I) (degree of I)
- 2) (Chinese Remaindering Theorem recombination) A minimal lexGB of *I* can be computed in O(|G| · D²) operations over *k*. Or O(|G| · D · log(D)³) in the radical case (fast algorithms)

Results -	Statement 3)-4)		
introduction	Results	ldea of the methods	Conclusion
0000000	00●00000	00000000	000

3) Structure: let g be a polynomial in a minimal lexGB of I. There are polynomials $\chi_i \in k[x_1, \dots, x_i]$ such that

$$\operatorname{LM}(g) = x_1^{\alpha_1} \cdots x_n^{\alpha_n} \Rightarrow g \equiv \prod_{i=1}^n \chi_i \mod \langle I_{\leq n-1} \rangle, \quad \operatorname{LM}(\chi_i) = x_i^{\alpha_i}.$$

4) Conservation of the Gröbner property under specialization maps (stability).

Rough statement:
$$\mathcal{G} = \{g_1, \dots, g_s\}$$
. Let
 $\alpha = (\alpha_1, \dots, \alpha_t) \in \overline{k}^t$ for $t < n$.
 $\mathcal{G} \mid_{x_1 = \alpha_1, \dots, x_t = \alpha_t}$ still a Gröbner basis of $I \mid_{x_1 = \alpha_1, \dots, x_t = \alpha_t}$?
No in general. Yes under assumption (**H**).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

introduction	Results	ldea of the methods	Conclusion
0000000	000●0000	00000000	000
What's new?			

Input primary ideals are:

- Ideal of points: $\langle x_1 a_1, \dots, x_n a_n \rangle$ All results are known except the complexity of 3) (the recombination, CRT)
- Radical ideals (+ primary ⇒ prime ideal) Results 3) and 4) are known.
 Results 1) and 2) are mostly new.

introduction	Results	ldea of the methods	Conclusion
0000000	000●0000	00000000	000
What's new?			

Input primary ideals are:

- Ideal of points: ⟨x₁ − a₁,...,x_n − a_n⟩
 All results are known except the complexity of 3) (the recombination, CRT)
- Radical ideals (+ primary ⇒ prime ideal) Results 3) and 4) are known.
 Results 1) and 2) are mostly new.
- Shifted monomial ideal

 $\begin{array}{l} {\sf Example:} \ \langle (x-1)^2, (x-1)(y+1), (y+1)^2\rangle. \\ {\sf Results 3) and 4) have been claimed...} \end{array}$

but very unwieldy and checkable results

• triangular (radical or not, monomial or not) New

introduction	Results	ldea of the methods	Conclusion
0000000	00000000	00000000	000
Shifted Mon	omial vs Triangı	ular Primary	

Fact: $\sqrt{\mathfrak{q}} := \mathfrak{p}$ has a triangular lex GB represented by polynomials:

$$(p_1(x_1), p_2(x_1, x_2), \ldots, p_n(x_1, \ldots, x_n)),$$

where p_{i+1} is irreducible over the field $k[x_1, \ldots, x_i]/\langle p_1, \ldots, p_i \rangle$. This encodes a "tower of field extensions".

introduction	Results	ldea of the methods	Conclusion
0000000	0000●000	00000000	000
Shifted Mon	omial vs Triangı	ular Primary	

Fact: $\sqrt{\mathfrak{q}} := \mathfrak{p}$ has a triangular lex GB represented by polynomials:

$$(p_1(x_1), p_2(x_1, x_2), \ldots, p_n(x_1, \ldots, x_n)),$$

where p_{i+1} is irreducible over the field $k[x_1, \ldots, x_i]/\langle p_1, \ldots, p_i \rangle$. This encodes a "tower of field extensions".

Proposition (Reformulation of Gianni-Trager-Zaccharias)

Any primary triangular ideal can be written as:

$$T_{1}(x_{1}) = p_{1}^{e_{1}}$$

$$T_{2}(x_{1}, x_{2}) = p_{2}^{e_{2}} + \sum_{i_{1}=0}^{e_{1}-1} \sum_{i_{2}=0}^{e_{2}-1} c[i_{1}, i_{2}]p_{1}^{i_{1}}p_{2}^{i_{2}}$$

$$\vdots$$

$$T_{n}(x_{1}, \dots, x_{n}) = p_{n}^{e_{n}} + \sum_{i_{1}=0}^{e_{1}-1} \cdots \sum_{i_{n}=0}^{e_{n}-1} c[i_{1}, \dots, i_{n}]p_{1}^{i_{1}} \cdots p_{n}^{i_{n}}$$

$$T_{\ell} \equiv p_{\ell}^{e_{\ell}} \mod \langle p_{1}, \dots, p_{\ell-1} \rangle \Rightarrow c[0, \dots, 0, i_{\ell}] = 0 \text{ for all } i_{\ell}.$$

introduction	Results	ldea of the methods	Conclusion
0000000	00000●00	00000000	000
D	c : i		

D	с (
Liotau		previous	WORK
Dela	IS UL	DIEVIOUS	WUIN

Work	Year	Case	Results	Correctness	complexity	reduced
			1) - 4)		1) / 2)	GB
This	2018	(H)	1) - 4)	Hopefully!	O(rDn) /	no
					$O(\mathcal{G} .D^2)$	
BuchMoll	1982	IdPoint	2)	0	$O(nD^3)$	yes
Abott K.	2005	General	2)	0	· / >	yes
Robbia.					$O(nD^3)$	
Cerlienco	1995	IdPoint	1) - 2)	0	$O(n^2D^2)$	no
Mureddu					/ •	
,, ,, ,,	2003	ShiftMonId	1)	0	$O(n^2D^2)/\cdot$	no
Lexgame	2006	IdPoint	1) - 2)	0	$O(rDn)/\cdot$	no
Marinari	2003	IdPoint	3) - 4)	Complicated	· / · (NG)	no
- Mora 1						
Maarinari	2006	ShiftMonId	3) - 4)	Complicated	· / · (NG)	no
- Mora 2						
Lederer	2008	IdPoint	1) - 2)	0	· / · (NG)	yes
Lei <i>et al</i>	2014	ShiftMonId	1) - 2)	Complicated	· / · (NG)	?

Pocult 1) S	tability under spe	acialization	
introduction	Results	ldea of the methods	Conclusion
0000000	000000●0		000

Example: Consuder the lexGb for $x \prec y \prec z$.

$$\mathcal{G} = \{x^2, y^2 + x, xyz + y, z^2\}.$$

LM(\mathcal{G}) = $\{x^2, y^2, xyx, z^2\}.$

Consider the specialization map ϕ_0 : $x \to 0$.

$$\phi_0(LM(\mathcal{G})) = \{0, y^2, 0, z^2\}.$$

while

$$\phi_0(\mathcal{G}) = \{0, y^2, y, z^2\}.$$

Since $NF(y, [y^2, z^2]) = y$ is not zero, $\phi_0(\mathcal{G})$ is not a lexGB.

Theorem (Stability criterion. Kalkbrener, 1997	')
Let $\mathcal{G}_0 = \{ g \in \mathcal{G} \mid \phi(\operatorname{LM}(\mathcal{G})) = \operatorname{LM}(\phi(\mathcal{G})) \}.$	
$\operatorname{LM}(\phi(I)) = \phi(\operatorname{LM}(I)) \iff \forall g \in \mathcal{G} \setminus \mathcal{G}_0,$	$\operatorname{NF}(g, \mathcal{G}_0) = 0$

introduction	Results	ldea of the methods	Conclusion
0000000	0000000●	00000000	000
Result 4)	Stability under speci	alization: related wo	ork

Motivation:

- Solving (Gianni Kalkbrener)
- Parametric systems

Previous work:

```
[Gianni - Kalkbrener, 1987] First result in the context of specialization.
```

[Kalkbrener, 1997] General criterion for stability [Becker, 1994] Prove stability for radical lexGB

Related works:

[Yokoyama, 2004, 2007], [Pan - Wang, 2006], [Weispfeinning, 2004] **Parametric exponents** [Weispfeinning, 2003], [Kapur - Sun - Wang, 2010], [Nabeshima, 2013] Context of **Comprehensive Gröbner bases**

introduction	Results	ldea of the methods	Conclusion
0000000	0000000	●0000000	000
Outline			

introduction

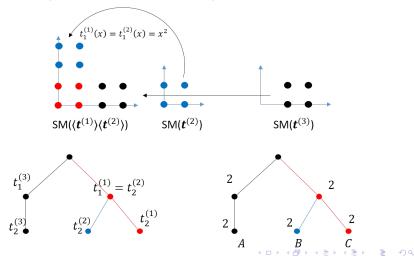
 Introduction
 Results
 Idea of the methods
 Conclusion

 00000000
 00000000
 00000000
 000

 Decult 1)
 2)
 Standard monomials
 L
 CPT

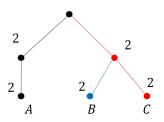
Result 1) - 2) Standard monomials + CRT

Represent the heap of monomials "cleverly": use tree data structures (following "lexgame", 2006).



From the tree T of input lexGbs, we consruct a monomial trie U:

• (level 2) Leaves of $T \rightarrow \text{Root}$ of U

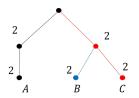


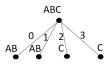
ABC

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

From the tree T of input lexGbs, we consruct a monomial trie U:

(level 1) Parent of leaves in *T*.
 Add the labels of the children (in *T*),
 record it in the labels on the edges of the trie *U*

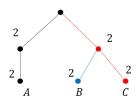


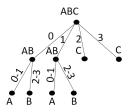


▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

From the tree T of input lexGbs, we consruct a monomial trie U

(level 0) Root of *T*.
 Add the labels of the children of root of *T* in the labels on the edges of the trie *U*.

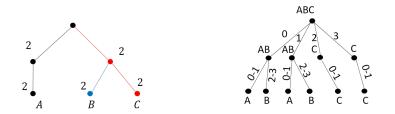




▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

From the tree T of input lexGbs, we consruct a monomial trie U

 (level 0) Root of T. Add the labels of the children of root of T in the labels on the edges of the trie U.



Read the standard monomials from on the edges of U from the leaves to the root of U: (0,0), (1,0), (2,0), (3,0), (0,1), (1,1), (2,1), (3,1) (0,2), (1,2) (0,3), (1,3)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

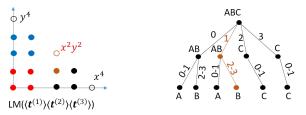
introduction	Results	ldea of the methods	Conclusion
0000000	0000000	00000000	

Standard monomials – Completing the proof

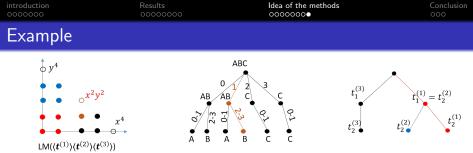
The proof of the algorithm above requires to construct a lexGb. How to do?

For a polynomial involving the largest variable x_n :

- From SM(I) deduce the minimal exponents in $LM(I) \cap x_n SM(I)$
- Identify the path from the leaf to the root in the trie U that contains the exponent.
- Sompute the polynomial recursively (using the tree structure).



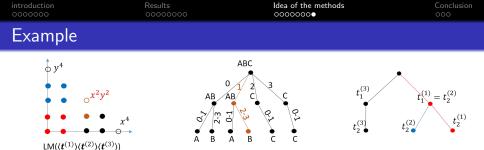
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで



• Recursive constuction from the leaf to the root of the trie U:

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

ullet \to recursive calls are made on subtrees.



- Recursive constuction from the leaf to the root of the trie U:
- ullet ightarrow recursive calls are made on subtrees.
- Requires CRT to recombine output of subtrees rooted at nodes at a same level in the tree
- ! polynomials have coefficients modulo a primary ideal.
 - CRT in defined in this context has been introduced algorithmically in:
- $\left[\mbox{ D., 2017 } \right]$ On the bit-size of non-radical triangular sets in dimension 0
 - This key step is lacking in previous works.

introduction	Results	ldea of the methods	Conclusion
0000000	00000000	00000000	•oo
Outline			

	& Applications		
introduction	Results	Idea of the methods	Conclusion
0000000	0000000		○●○

- Understand the structure of lexGb,
- \bullet to compute a decomposition "lexGB \rightarrow triangular set"

using only divisions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- In the FGLM algorithm
 - the target order is often LEX.
 - if the lexGB is complicated this becomes heavy.
 - Can we decompose the lexGB on-the-fly to relieve the computations?

Preliminary work: (Schost - Neiger - Rakhooy...) 2017

Possible gei	neralizations		
introduction	Results	ldea of the methods	Conclusion
0000000	00000000	00000000	

- Question: Can we do the same thing for any kind of primary ideals, not only those that have a triangular lexGB?
- In theory: piling up the monomials in the "4-in-a-row" fashion should be possible.
- In general requires more sophisticated data structures than the trees introduced in the lexgame and here.
- Results 3) Factorization pattern and 4) Stability under specialization – are unlikely to hold except in some special cases.

Theorem (? Reasonnable Guess)

Stability holds for G iff it holds for all its primary components.