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The problem | (Notation)

In this talk, a triangular set is:

@ a lexicographic Grobner basis (lex. G.b.) of dimension zero.
(monomial order is lexicographic with x; < -+ < x,.)

@ with as many polynomials as variables:

d,

Tn(X17X23X37---,Xn72,Xn717Xn) = x94...

dn—1
To1(X1, X5 ooy Xn—2, Xn—1) = X,/ 7 +-+-

T = o

2(x1, x2) = X2+
— d

T1(X1) = X + .-

o d; :=deg, (T;). The product d; ---d, is the (multi)degree of T.

Rmk: In general, a lex. G.b.of dimension 0 may have more
polynomials than variables.
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The problem Il (bit-size growth estimation)

Given a polynomial system f = (f1,...,fs) € Q[x1, ..., Xn],
such that its lex. G.b.is a triangular set,
how much grow the coefficients?
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The problem Il (bit-size growth estimation)

Given a polynomial system f = (f1,...,fs) € Q[x1, ..., Xn],
such that its lex. G.b.is a triangular set,

how much grow the coefficients? in function of:

@ number of variables n

@ coefficients of input system f denoted h(f)
@ its total degree, multiplicity of solutions deg(f) , u(f).
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The problem Il (bit-size growth estimation)

Given a polynomial system f = (f1,...,fs) € Q[x1, ..., Xn],
such that its lex. G.b.is a triangular set,

how much grow the coefficients? in function of:
n

denoted h(f)
deg(f) . u(F).

@ number of variables
@ coefficients of input system f
© its total degree, multiplicity of solutions

Rmk: Typical question in Symbolic Computation where coefficients

are exact thereore often very large.
e Extended Euclidean Algorithm (subresultant)

@ Mignotte’s factor bound...
e Gaussian elimination, determinant (Hadamard's inequality)
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The problem Il (bit-size growth estimation)

Given a polynomial system f = (f1,...,fs) € Q[x1, ..., Xn],
such that its lex. G.b.is a triangular set,

how much grow the coefficients? in function of:
n

denoted h(f)
deg(f) . u(F).

@ number of variables
@ coefficients of input system f
© its total degree, multiplicity of solutions

Rmk: Typical question in Symbolic Computation where coefficients
are exact thereore often very large.
e Extended Euclidean Algorithm (subresultant)

@ Mignotte’s factor bound...
e Gaussian elimination, determinant (Hadamard's inequality)

... quite more difficult for polyomial systems
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New results

@ Structure of non-radical triangular sets

e Interpolation formula that extends univariate Hermite
interpolation.

e Introduce a related system denoted N based with smaller
coefficients. I Difficult to compute from T 1.

o Extends known results on the radical case (D. & Schost'2004).
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@ Bit-size estimates on the family T

o Study the growth under the interpolation process proved in 1.
o Need the bit growth of coefficients under the inversion modulo
a triangulat set.
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New results

@ Structure of non-radical triangular sets

e Interpolation formula that extends univariate Hermite
interpolation.
e Introduce a related system denoted N based with smaller
coefficients. I Difficult to compute from T 1.
o Extends known results on the radical case (D. & Schost'2004).
@ Bit-size estimates on the family T

o Study the growth under the interpolation process proved in 1.
o Need the bit growth of coefficients under the inversion modulo
a triangulat set.

Rmk: Unable to obtain input-dependend bounds
Because a tool, heigh of variety is not well-defined for multiplicity.

However, this work 1) provides a step toward this goal.
2) understand the structure and how coefficients grow.
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Motivation

e Triangular decomposition method (Wu-ritt characteristic
method : Cf. talk of Dongming Wang)
— Triangular sets are the most basic object occuring in this
method.

@ Modular methods: upper bounds on the running-time of the
lifting /reconstruction step.
(lifting is not yet available for non-radical triangular set)

@ Understand the structure of triangular set and where the
coefficients growth comes from.
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Previous work (bit-size in multivariate polynomial system)

@ Arithmetic Nullstellenstaze: Sombra et al.

@ Rational Univariate Representation:

(Rouiller 1999), (Schost-Mantzarflaris-Tsigarida '2017) . ..
@ Triangular set:

(Gallo-Mishra 1994), (Szanto 1999), (Schost & D. 2004)

@ systems in two variables only:

o General lex. G.b.in 2 variables (D. 2009)
o RUR: (Mehrabi-Schost 2016), (Bouzidi, Lazard, Rouillier,
Pouget 2013)

@ Other: bi-homogeneous, multi-homoegeneous etc.
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Previous work (bit-size in multivariate polynomial system)

@ Arithmetic Nullstellenstaze: Sombra et al.

@ Rational Univariate Representation:

(Rouiller 1999), (Schost-Mantzarflaris-Tsigarida '2017) . ..
@ Triangular set:

(Gallo-Mishra 1994), (Szanto 1999), (Schost & D. 2004)
@ systems in two variables only:

o General lex. G.b.in 2 variables (D. 2009)
o RUR: (Mehrabi-Schost 2016), (Bouzidi, Lazard, Rouillier,
Pouget 2013)

@ Other: bi-homogeneous, multi-homoegeneous etc.

Successfull strategy: use a universal object attached to the solution
points: (independent of a polynomial system definining it).
Chow form — height of variety — Arithmetic Bézout Theorem.
unavailale yet for system with multiplicities !
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Primary triangular set

Theorem (D., 2017)

All primary ideals of a triangular set are triangular sets.

Over C, a primary triangular set is of the form:

tl(Xl) = (Xl — (\1)6](“)7
bla,e) = (e —a)@) + 307 O i jl(a — 1) (e — a2)?,
51 (c o (a 1
ta(XL, o Xn) = (X0 — ) (@) TSR

Sp—1(a)—1 Sp(a)—1 _r- i
an,llzo Z,’,,:(o) clit, .-, in] Hj:l(xj — )’

() te(a1,...,0_1,X0, ..., Xn) = (x¢ — @)?{®) = ¢[0,...,0,i] =0
for all ip, £ > 2.
T

(i) el inl = g OO

-,Oén)
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Interpolating primary ideals 7

61(a)—1 Sn(a)—1

ta(Xt, %) = (%0 — )@ 4 Do > el il [J06 — @)
=1

i1=0 in=0

(Local) multiplicity at a: pla) = d1(a) -+ dn(c).
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Interpolating primary ideals 7

61(a)—1 Sn(a)—

ta(Xty .y %n) = (x0— )™ 4 Z Z C[’la---a’.n]H()Q'_ij)ij
j=1

i1=0 in=0
(Local) multiplicity at «: pla) = o01(a) - - dp(c).
Rmk: «a is simple < () =1 and
t1(X1) = X1 — Q1
t(x1, %) = x2 — a2

ta(X1y ..y Xn) = Xn — Q.

Generalizes the standard (Lagrange) interpolation of points.
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Lagrange idempotents (example)

ti(x1) = (x1 — 1)(x1 — 2)(x1 —3) Quotient ring A = Q[x1]/(t1).

Fori=1,23, é,-:H#i(xl—j). &€& =0in Aif i #].
Lagrange idempotent: e; = u;é; up = 1_[,-;1'71"
e,-2:e,-, e1t+e+e3=1 in A

Lagange interpolation polynomial:

Given any function f(xy, x2), the polynomial P, below is the only
polynomial of degree in x; < 3 taking the values of f at

x3 =1,2,3.

P(X]_,Xz) = elf(l,Xz) + ezf(2,xz) + e3f(3,X3).
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ldempotents occuring in Hermite interpolation

t1(x1) = (x1 — 1)(x1 — 2)?(x1 — 3)° Quotient ring A = Q[x1]/(t1).
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ldempotents occuring in Hermite interpolation

t1(x1) = (x1 — 1)(x1 — 2)?(x1 — 3)° Quotient ring A = Q[x1]/(t1).
For i=1,2,3, & = [[,;(xa —j). §&=0in Aifi]

Hermite idempotent: e; = & u;, where u;& + vi(x; — jY = 1.

e?

i = €j, e1+e+e3=1 in A

Hermite interpolation polynomial:

P(x1,x) = e1f (1, x2) + ea(F(2, x2) + (x2 — 2)0x, 1 (2, x2) )+

1
es(f(3,0) + (x1 = 3)0,f(3, %) + 5 — 3)202,f (3, x2)).-
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ldempotents occuring in triangular sets

e Main idea: See tpy1(x1,...,Xn, Xn4+1) as univariate in x,41
over Q[x1, ..., xa]/{t1, ..., tn).

@ Possible to iterate univariate idempotents.

e Radical triangular set (with Lagrange):

o En(xiy. .. xn) = &1(x1)E(x2) - - - n(xn).
o Ep(x1,...,xn) = e(x1)ex(x2) - - - en(xn).
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ldempotents occuring in triangular sets

e Main idea: See tpy1(x1,...,Xn, Xn4+1) as univariate in x,41
over Q[x1,...,%n]/(t1,. .., tn).
@ Possible to iterate univariate idempotents.
e Radical triangular set (with Lagrange):
o En(xiy. .. xn) = &1(x1)E(x2) - - - n(xn).
o Ep(x1,...,xn) = e(x1)ex(x2) - - - en(xn).
e Non-radical triangular set (with Hermite idempotents built for
each primary triangular set)

o E (x1,...,%5) =

él(Xl)éz(Xl,Xz) v é',,,l(Xl, . 7X,,,l) mod <t1, Cey t,771>
o Ep(x1,...,xn) =

el(Xl)G‘Q(Xl,XQ) R en_l(xl, PN 7X,-,_l) mod <t1, ceey tn_1>

Key tool: unique factorization over a primary triangular set
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Interpolation of primary triangular sets

Theorem (This work)

Let o be a solution of T, and let t®) be its primary triangular set
over QQ.

To each o we can construct an idempotent E,(«), and its
barycentric form Ep(c).
Write Tpy1[a] = Tpe1 mod (tfa), e t,(,a)>

Tos1 = D Ex(a)Topafa] mod (Ty, ..., Tp).

Npp1 = Y En(@)Thrala] mod (Ty,..., To).

Bit-size estimates «+— how the coefficients grow when processing
these formula.



Bit-size estimates
®00

Bit-size bounds: input data

Bounds depend on:

@ (max) bit-size H(«) of the coefficients in each primary
triangular set t(®)

This is a natural extension of interpolating simple points. (D. &
Schost 2004).

© corresponds to bit-size of the coordinates of each point.
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@ degree 01(),...,dn(a) of t(@) 5 degrees dy, ..., d, of
output T.

This is a natural extension of interpolating simple points. (D. &
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© corresponds to bit-size of the coordinates of each point.

@ corresponds to the total degree (number of points)
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Bit-size bounds: input data

Bounds depend on:
@ (max) bit-size H(a) of the coefficients in each primary
triangular set t(®)

@ degree 01(),...,dn(a) of t(@) 5 degrees dy, ..., d, of
output T.

@ sum over « of the bit-size H(T) =)  H(«a)
This is a natural extension of interpolating simple points. (D. &
Schost 2004).

© corresponds to bit-size of the coordinates of each point.

@ corresponds to the total degree (number of points)

© corresponds to the height of variety
(but there is no clear notion of height of variety with multiplicity)



Bit-size estimates
oeo

Statement

Theorem (this work)

The bit-size of the contructed set triangular T (from its primary
components) and the related system N is bounded respectively by:

nDH(T) +O( nL(TYD?>w(T))  H(T)+O(L(T)Du(T))

e D=di+dr+---+d,

(commonly much smaller than the total degree d; - - - dj).
@ u(T) := maxq u(c) is the maximal multiplicty.
@ L(T) := maxas H(c) is the maximal height of the primary components.

Rmk: They are “natural” generalization of the upper-bounds
obtained in the case of a radical ideal in (D. & Schost, 2004).
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Conclusion (A safe conjecture)

No precise notion of height of varieties having multiplicities,
+ difficult to obtain a priori estimates. But:

Conjecture

If a polynomial system £ C Q[x1, ..., Xn]
@ has lex. G.b. G which is a triangular set, and:
e its coefficients have max-bit size h(f)
@ its maximal total degree is d,

then the maximal bit-size of the coefficients of G is smaller than:

n* h(f) d*" + O( nd®*" (T) L(T) )
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Conclusion (A safe conjecture)

No precise notion of height of varieties having multiplicities,
+ difficult to obtain a priori estimates. But:

Conjecture

If a polynomial system £ C Q[x1, ..., Xn]
@ has lex. G.b. G which is a triangular set, and:
e its coefficients have max-bit size h(f)
@ its maximal total degree is d,

then the maximal bit-size of the coefficients of G is smaller than:

n* h(f) d*" + O( nd®*" (T) L(T) )

Rmk: w(T) and L(T) are not a priori estimates but are local
quantities.

in certain worst-case pathological situations they can be large (up to d”
yileding cubic estiamtes in d”, otherwise should be small.)
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