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The problem I (Notation)

In this talk, a triangular set is:

a lexicographic Gröbner basis (lex. G.b.) of dimension zero.
(monomial order is lexicographic with x1 ≺ · · · ≺ xn.)

with as many polynomials as variables:

Tn(x1, x2, x3, . . . , xn−2, xn−1, xn) = xdn
n + · · ·

Tn−1(x1, x2, . . . , xn−2, xn−1) = x
dn−1
n−1 + · · ·

. . .
...

...

T2(x1, x2) = xd2
2 + · · ·

T1(x1) = xd1
1 + · · ·

di := degxi (Ti ). The product d1 · · · dn is the (multi)degree of T .

Rmk: In general, a lex. G.b.of dimension 0 may have more
polynomials than variables.
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The problem II (bit-size growth estimation)

Given a polynomial system f = (f1, . . . , fs) ∈ Q[x1, . . . , xn],
such that its lex. G.b.is a triangular set,

how much grow the coefficients?

in function of:

1 number of variables n

2 coefficients of input system f denoted h(f)

3 its total degree, multiplicity of solutions deg(f) , µ(f).

Rmk: Typical question in Symbolic Computation where coefficients
are exact thereore often very large.

Extended Euclidean Algorithm (subresultant)

Mignotte’s factor bound...

Gaussian elimination, determinant (Hadamard’s inequality)

. . . quite more difficult for polyomial systems
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New results

1 Structure of non-radical triangular sets

Interpolation formula that extends univariate Hermite
interpolation.
Introduce a related system denoted N based with smaller
coefficients. ! Difficult to compute from T !.
Extends known results on the radical case (D. & Schost’2004).

2 Bit-size estimates on the family T

Study the growth under the interpolation process proved in 1.
Need the bit growth of coefficients under the inversion modulo
a triangulat set.

Rmk: Unable to obtain input-dependend bounds

Because a tool, heigh of variety is not well-defined for multiplicity.

However, this work 1) provides a step toward this goal.
2) understand the structure and how coefficients grow.
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Motivation

Triangular decomposition method (Wu-ritt characteristic
method : Cf. talk of Dongming Wang)
→ Triangular sets are the most basic object occuring in this
method.

Modular methods: upper bounds on the running-time of the
lifting/reconstruction step.
(lifting is not yet available for non-radical triangular set)

Understand the structure of triangular set and where the
coefficients growth comes from.
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Previous work (bit-size in multivariate polynomial system)

Arithmetic Nullstellenstäze: Sombra et al.

Rational Univariate Representation:
(Rouiller 1999), (Schost-Mantzarflaris-Tsigarida ’2017) . . .

Triangular set:
(Gallo-Mishra 1994), (Szanto 1999), (Schost & D. 2004)

systems in two variables only:

General lex. G.b.in 2 variables (D. 2009)
RUR: (Mehrabi-Schost 2016), (Bouzidi, Lazard, Rouillier,
Pouget 2013)

Other: bi-homogeneous, multi-homoegeneous etc.

Successfull strategy: use a universal object attached to the solution
points: (independent of a polynomial system definining it).

Chow form → height of variety → Arithmetic Bézout Theorem.
unavailale yet for system with multiplicities !
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Primary triangular set

Theorem (D., 2017)

All primary ideals of a triangular set are triangular sets.

Over C, a primary triangular set is of the form:

t1(x1) = (x1 − α1)
δ1(α),

t2(x1, x2) = (x2 − α2)
δ2(α) +

∑δ1(α)−1
i1=0

∑δ2(α)−1
i2=0 c[i , j ](x1 − α1)

i1(x2 − α2)
i2 , · · ·

...

tn(x1, . . . , xn) = (xn − αn)
δn(α) +

∑δ1(α)−1
i1=0

∑δ2(α)−1
i2=0 · · ·∑δn−1(α)−1

in−1=0

∑δn(α)−1
in=0 c[i1, . . . , in]

∏n
j=1(xj − αj)

ij

(i) t`(α1, . . . , α`−1, x`, . . . , xn) = (x` − α)δ`(α) ⇒ c[0, . . . , 0, i`] = 0
for all i`, ` ≥ 2.
(ii) c[i1, . . . , in] = 1

i1!i2!···in−1!in!
∂ i1+···+in tn
∂x

i1
1 ···∂x

in
n

(α1, . . . , αn)
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Interpolating primary ideals ?

...

tn(x1, . . . , xn) = (xn − αn)
δn(α) +

δ1(α)−1∑
i1=0

· · ·
δn(α)−1∑

in=0

c[i1, . . . , in]
n∏

j=1

(xj − αj)
ij

(Local) multiplicity at α: µ(α) = δ1(α) · · · δn(α).

Rmk: α is simple ⇔ µ(α) = 1 and
t1(x1) = x1 − α1

t2(x1, x2) = x2 − α2

...
tn(x1, . . . , xn) = xn − αn.

Generalizes the standard (Lagrange) interpolation of points.
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Lagrange idempotents (example)

t1(x1) = (x1 − 1)(x1 − 2)(x1 − 3) Quotient ring A = Q̄[x1]/〈t1〉.

For i = 1, 2, 3, ẽi =
∏

j 6=i (x1 − j). ẽi ẽj = 0 in A if i 6= j .

Lagrange idempotent: ei = ui ẽi ui := 1∏
j 6=i j−i

.

e2i = ei , e1 + e2 + e3 = 1 in A.

Lagange interpolation polynomial:
Given any function f (x1, x2), the polynomial P2 below is the only
polynomial of degree in x1 < 3 taking the values of f at
x1 = 1, 2, 3.

P(x1, x2) = e1f (1, x2) + e2f (2, x2) + e3f (3, x3).
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j 6=i (x1 − j). ẽi ẽj = 0 in A if i 6= j .

Lagrange idempotent: ei = ui ẽi ui := 1∏
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Idempotents occuring in Hermite interpolation

t1(x1) = (x1 − 1)(x1 − 2)2(x1 − 3)3 Quotient ring A = Q̄[x1]/〈t1〉.

For i = 1, 2, 3, ẽi =
∏

j 6=i (x1 − j)j . ẽi ẽj = 0 in A if i 6= j .

Hermite idempotent: ei = ẽiui , where ui ẽi + vi (xi − j)j = 1.

e2i = ei , e1 + e2 + e3 = 1 in A.

Hermite interpolation polynomial:

P(x1, x2) = e1f (1, x2) + e2(f (2, x2) + (x2 − 2)∂x1f (2, x2))+

e3(f (3, x2) + (x1 − 3)∂x2f (3, x2) +
1

2
(x1 − 3)2∂2x3f (3, x2)).
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Idempotents occuring in triangular sets

Main idea: See tn+1(x1, . . . , xn, xn+1) as univariate in xn+1

over Q̄[x1, . . . , xn]/〈t1, . . . , tn〉.
Possible to iterate univariate idempotents.

Radical triangular set (with Lagrange):

Ẽn(x1, . . . , xn) = ẽ1(x1)ẽ2(x2) · · · ẽn(xn).
En(x1, . . . , xn) = e1(x1)e2(x2) · · · en(xn).

Non-radical triangular set (with Hermite idempotents built for
each primary triangular set)

Ẽn(x1, . . . , xn) ≡
ẽ1(x1)ẽ2(x1, x2) · · · ẽn−1(x1, . . . , xn−1) mod 〈t1, . . . , tn−1〉
En(x1, . . . , xn) ≡
e1(x1)e2(x1, x2) · · · en−1(x1, . . . , xn−1) mod 〈t1, . . . , tn−1〉

Key tool: unique factorization over a primary triangular set
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Interpolation of primary triangular sets

Theorem (This work)

Let α be a solution of T , and let t(α) be its primary triangular set
over Q̄.
To each α we can construct an idempotent En(α), and its
barycentric form Ẽn(α).

Write Tn+1[α] ≡ Tn+1 mod 〈t(α)1 , . . . , t
(α)
n 〉

Tn+1 =
∑
α

En(α)Tn+1[α] mod 〈T1, . . . ,Tn〉.

Nn+1 =
∑
α

Ẽn(α)Tn+1[α] mod 〈T1, . . . ,Tn〉.

Bit-size estimates ← how the coefficients grow when processing
these formula.
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Bit-size bounds: input data

Bounds depend on:

1 (max) bit-size H(α) of the coefficients in each primary
triangular set t(α)

2 degree δ1(α), . . . , δn(α) of t(α) → degrees d1, . . . , dn of
output T .

3 sum over α of the bit-size H(T ) =
∑

αH(α)

This is a natural extension of interpolating simple points. (D. &
Schost 2004).

1 corresponds to bit-size of the coordinates of each point.

2 corresponds to the total degree (number of points)

3 corresponds to the height of variety
(but there is no clear notion of height of variety with multiplicity)
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Statement

Theorem (this work)

The bit-size of the contructed set triangular T (from its primary
components) and the related system N is bounded respectively by:

n D H(T ) + Õ( n L(T )D2 µ(T ) ) H(T ) + Õ( L(T )D µ(T ) )

D = d1 + d2 + · · ·+ dn
(commonly much smaller than the total degree d1 · · · dn).
µ(T ) := maxα µ(α) is the maximal multiplicty.

L(T ) := maxα H(α) is the maximal height of the primary components.

Rmk: They are “natural” generalization of the upper-bounds
obtained in the case of a radical ideal in (D. & Schost, 2004).
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Conclusion (A safe conjecture)

No precise notion of height of varieties having multiplicities,
← difficult to obtain a priori estimates. But:

Conjecture

If a polynomial system f ⊂ Q[x1, . . . , xn]

has lex. G.b. G which is a triangular set, and:

its coefficients have max-bit size h(f)

its maximal total degree is d,

then the maximal bit-size of the coefficients of G is smaller than:

n2 h(f) d2n + Õ( n d2n µ(T ) L(T ) )

Rmk: µ(T ) and L(T ) are not a priori estimates but are local
quantities.
in certain worst-case pathological situations they can be large (up to dn

yileding cubic estiamtes in dn, otherwise should be small.)
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