On A Non-Archimedean Broyden Method

Xavier Dahan¹ Tristan Vaccon ²

¹Tohoku University, Institute for Excellence in Higher Education

²Université de Limoges, CNRS, XLIM

ISSAC 2020 — July 22

Outline

2 The three contributions

introduction 000000

Newton method over $\mathbb R$

Approximation of a simple root x^* ($f'(x^*) \neq 0$). Start from a guess x_0 , and compute $x_{n+1} = x_n - f'(x_n)^{-1}f(x_n)$.

System of *m* equations *F* in *m* unknowns: $x^* \in \mathbb{R}^m$, $F(x^*)$, $\operatorname{Jac}_F(x^*)$ invertible Start from a guess x_0 and compute: $x_{n+1} = x_n - \operatorname{Jac}_F(x_n)^{-1}F(x_n)$ in \mathbb{R}^m .

Main result

• In 1965, Broyden suggested to replace the Jacobian matrix $\operatorname{Jac}_F(x_n)$ by an approximation B_n of it \rightarrow quasi-Newton method

 $x_{n+1} = x_n - B_n^{-1}F(x_n), \quad x_n, x_{n+1} \in \mathbb{R}^m, \quad B_n \in \operatorname{Mat}_m(\mathbb{R}^m), \quad B_n \approx \operatorname{Jac}_F(x_n)$

- He chose $B_0 \approx \text{Jac}_F(x_0)$, then for B_1 a 1-dimensional deformation of B_0 , then for B_2 a 1-dim deformation of B_1 etc.
- 1965-today: numerous improvements, variants and generalizations...
- ... but nothing for systems with coefficients in a complete valued field (*p*-adic or power series coefficients).

Main outcome : adapt the Broyden method to a system F with coefficients in a valued complete field \rightarrow first non-archimedean quasi-Newton method

Broyden method in dim 1: secant method

Broyden method in dim 1: secant method

Broyden method generalizes the secant method (dimension 1) to dimension m.

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ▲□ ◆ ○へ⊙

Broyden method in dim 1: secant method

Broyden method generalizes the secant method (dimension 1) to dimension m.

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ▲□ ◆ ○へ⊙

Broyden method in dim 1: secant method

Broyden method in dim 1: secant method

Broyden method in dim 1: secant method

Broyden's construction $(F : \Omega \subset \mathbb{R}^m \to \mathbb{R}^m, F(x^*) = 0, \text{ Jac}_F(x^*) \neq 0)$

- Start with one guess x_0 and compute $B_0 \approx \text{Jac}_F(x_0)$.
- Then $x_{n+1} = x_n B_n^{-1}F(x_n)$ with B_n verifying:
 - $B_n(x_n x_{n-1}) = F(x_n) F(x_{n-1})$ (Rewrite it $B_n s_{n-1} = y_{n-1}$)
 - $B_n z = B_{n-1} z$ for all z orthogonal to s_{n-1} .
- These two conditions suffice to characterize B_n from B_{n-1} , namely:

$$B_n = B_{n-1} + (y_{n-1} - B_{n-1}s_{n-1})u_{n-1}^T$$
, where $u_{n-1}^T s_{n-1} = 1$

• Broyden's choice : $u_{n-1} = s_{n-1}/||s_{n-1}||^2 = s_{n-1}/s_{n-1}^T \cdot s_{n-1}$.

Theorem 1 (Sherman-Morrison)

Computation of the inverse B_n^{-1} from B_{n-1}^{-1} can be done in $\approx 5m^2$

$$B_n^{-1} = B_{n-1}^{-1} - \frac{B_{n-1}^{-1}F(x_n)u_{n-1}TB_{n-1}^{-1}}{u_{n-1}TB_{n-1}^{-1}y_{n-1}}$$

Presentation of the Broyden method over $\mathbb R$

Start with $B_0 \approx \text{Jac}_F(x_0)$ for x_0 near to a non-singular solution x^* of F. Broyden update (Iteration n)

$$\begin{array}{lll} x_{n+1} & = & x_n - B_n^{-1} F(x_n), \\ B_{n+1}^{-1} & = & B_n^{-1} - \frac{B_n^{-1} F(x_{n+1}) u_n^{-T} B_n^{-1}}{u_n^{-T} B_n^{-1} y_n}, & \text{(vector } u_n \text{ verifying } u_n^{-T} s_n = 1, \text{ like } u_n = \frac{s_n}{\|s_n\|^2} \end{array}$$

Cost of the *n*-th iteration (machine precision):

• $\approx 6m^2$ operations, and *m* evaluations of a scalar function (one evaluation of *F*)

Theorem 2 (Broyden — Dennis — Moré, 1973)

If F is sufficiently regular and x_0 sufficiently close to x^* then Broyden method produces a sequence that converges superlinearly to x^* : $\lim_{n\to\infty} \frac{\|x_{n+1}-x^*\|}{\|x_n-x^*\|} = 0$.

Advantage of quasi-Newton methods over $\mathbb R$

Newton method:

- Computing the Jacobian matrix not always obvious...(1965)
- Needs to evaluate the m^2 entries of the Jacobian at each iteration.
- Needs to solve the system $\operatorname{Jac}_F(x_n)s_n = -F(x_n)$ (in s_n) requires $O(m^3)$ (or $O(m^{\omega})$ operations for m large).
- Quadratic convergence is fast, yet the region of quadratic convergence may be very small.

Whereras, with a Broyden update:

- Update costs $\approx 6m^2$ and one evaluation of *F*.
- ullet ightarrow no need to evaluate m^2 entries at each iteration.
- But has a slower rate convergence, that deteriorates with *m*.

However this drawback is mitigated with machine precision.

Outline

2 The three contributions

Adaptation to the non-archimedean setting (ex: p-adic or k[[x]])

• With Broyden's original proposal: $B_{n+1} = B_n + \frac{(y_n - B_n s_n) s_n^T}{s_n^T \cdot s_n}$

$$(s_n = x_{n+1} - x_n)^{s_n}$$
 $y_n = F(x_{n+1}) - F(x_n)$

- requires a dot product which is an inner product over \mathbb{R}^m
 - Warning: dot product is isotropic over \mathbb{Q}_p .
 - However, if we use the previous formula:

$$B_{n+1}^{-1} = B_n^{-1} - \frac{B_n^{-1}F(x_{n+1})u_n^{T}B_n^{-1}}{u_n^{T}B_n^{-1}y_n}, \quad u_n^{T}s_n = 1 \text{ we only need } u_n^{T}B_n^{-1}y_n \neq 0$$

Contribution 1 (Adaptation)

Broyden update is adaptable over any complete valued field.

Idea: Write $s_n = (\sigma_1, \ldots, \sigma_\ell, \ldots, \sigma_m)^T$ and assume: $\operatorname{val}(\sigma_\ell) = \min_{i=1,\ldots,m} \operatorname{val}(\sigma_i)$, ℓ is the smallest index verifying this property. Let $u_n = (0, \ldots, \sigma_\ell^{-1}, \ldots, 0)^T$. Then naturally $1 = u_n^T s_n$, and for technical reasons $u_n^T B_n^{-1} y_n \neq 0$.

Intermezzo: ultrametric norms

Let K be a complete discrete valued field:

- $K = \mathbb{Q}_p$, *p*-adic field or K = k((X)) field or Laurent series over a field k.
- Absolute value:
 - $|a| = p^{-\operatorname{val}(a)}$ when $a \in \mathbb{Q}_p$, and $|a| = 2^{-\operatorname{val}(a)}$ when $a \in k((X))$.
 - ultrametric inequality: $|x + y| \le \max\{|x|; |y|\}$ (equality if $|x| \ne |y|$).
- Standard *p*-adic norms: $\|\vec{x}\| = \max\{|x_1|_p, \dots, |x_m|_p\}$.
 - Approximation x_n of a solution x^* : $||F(x_n)||$ is closer and closer to zero.

Lemma 3 (Operator norm on a matrix A)

 $\|A\| = \max_{\|x\|=1} \|Ax\|$ is actually equal to the max-norm: $\|A\| = \max\{|entries \text{ of } A|\}.$

- Over \mathbb{R} , matrices B_n minimize the Frobenius norm $||B_{n+1} B_n||_F$
- → Has been used to simplify the proof of superlinear convergence → no such norm in the non-archimedean setting.

R-superlinear convergence

Contribution 2 (Convergence)

the non-archimedean Broyden method converges R-superlinearly of order at least

$$=2^{1/2m}$$
: $\limsup_{k \to \infty} \|x_k - x^{\star}\|^{1/\mu^k} < 1$

• Meaning: The sequence $||x_k - x^*||$ is not necessarily strictly decreasing. Essentially one can "think" that after 2m steps

•
$$||x_{n+2m} - x^{\star}|| \leq C ||x_n - x^{\star}||^2$$
, for a constant C .

- Experimental observations suggest rather an "almost" *Q*-superlinear convergence of order $\alpha \approx 2^{1/m} \rightarrow \lim_{n \to \infty} \frac{\|x_{n+1} - x^{\star}\|}{\|x_n - x^{\star}\|^{\alpha}} \leq r$
- Hypotheses: $Jac_F(x^*)$ is invertible, and F verifies a kind of strong form of Taylor expansion at order 2 in a neighborhood U of x^* :

•
$$||F(y) - F(x) - \operatorname{Jac}_F(x^*)(y - x)|| \le c_0 ||y - x||^2$$
, $\forall x, y \in U$, $c_0 > 0$

• Remark: This is the longest and most technical part of the article.

Experiments

*F*₁: 2 polynomials, 2 unknowns*F*₂: 3 polynomials, 3 unknowns*F*₃: 4 polynomials, 4 unknowns

For n = 2, the order of superlinear convergence is $\Phi = \frac{1}{2}(1 + \sqrt{5})$: like in the secant method in one variable (archimedean setting or not).

• [E. Bach] Iterative root approximation in p-adic numerical analysis. *J. of Complexity* 2009

Implementation at finite precision: comparison with Newton

Here, the arithmetic cost depends on the precision. In case of Newton method (quadratic convergence):

$$\underbrace{x_{n+1}}_{2^{n+1} \text{ "digits"}} = \underbrace{x_n}_{2^n \text{ "digits"}} - \underbrace{\operatorname{Jac}_F(x_n)^{-1}F(x_n)}_{\text{"digits" in the interval }[2^n, 2^{n+1}]}$$

- Therefore, no digits overlap in the sum \rightarrow easy to implement and analyze.
- ullet \to The ratio (speed of convergence)/(precision gained) is somewhat optimal.
- Update of the Jacobian's inverse (by Newton method applied to $A \mapsto A^{-1}$)

$$\operatorname{Jac}_F(x_{n+1})^{-1} = 2\operatorname{Jac}_F(x_n)^{-1} - \operatorname{Jac}_F(x_n)^{-1}\operatorname{Jac}_F(x_{n+1})\operatorname{Jac}_F(x_n)^{-1}$$

• Cost: $O(m^{\omega})$ for matrix products. O(mL) for the evaluation $\operatorname{Jac}_F(x_{n+1})$ ([Baur-Strassen, 1980] \rightarrow if F is polynomial and can be valuated in L operations).

Implementation at finite precision: management of precision

Contribution 3 (Analysis of an implementation at finite precision)

Implementation, with polynomials as input, of Broyden method over \mathbb{Q}_p and k((X)) at finite precision and complexity analysis.

 $\bullet\,$ Difficulty 1: The Broyden update uses a division $\rightarrow\,$ bad for the precision

$$B_{n+1}^{-1} = B_n^{-1} - \frac{B_n^{-1}F(x_{n+1})u_n^T B_n^{-1}}{u_n^T B_n^{-1} y_n}, \quad x_{n+1} = x_n - B_n^{-1}F(x_n)$$

 \rightarrow can be addressed by tracking *p*-adic intervals along these operations.

- Difficulty 2: convergence is not quadratic, and is not known.
 - Issue: If we extend precision of interval arithmetic too much, we loose efficiency.
 - however, the speed of convergence ressembles to superlinear with an order of convergence α after a few iterations \rightarrow allows to guess without too much loss.

Complexity analysis - Comparison with Newton

• Notations:

introduction

- M(d) cost of multiplying two truncated power series/p-adic integers in an interval of length d.
- L number of arithmetic operations to evaluate the system F at any vector.
- *n*-th iteration of Newton method (interval of length 2^n): $O(M(2^n)(m^{\omega} + mL))$

•
$$ightarrow$$
 to reach precision $Npprox 2^\ell$, $O({\sf M}(N)(m^\omega+mL))$.

Assumption (order of superlinear convergence α for Broyden method)

Assume $||x_{n+1} - x^*|| \le r ||x_n - x^*||^{\alpha}$ for $\alpha > 1$ and a constant r > 0.

- Cost of one iteration: $O(\mathsf{M}(\alpha^n)(L+m^2)) \Rightarrow \left| O(\mathsf{M}(\frac{N}{\alpha-1})(m^2+L)) \right|.$
- If we assume $\alpha \approx 2^{1/m}$ then $O(M(Nm)(m^2 + L))$ which is worse than Newton.

Application - Future work

Remark: Relaxed arithmetic [van der Hoeven et al.] (specific to Newton operator).

• *p*-adic and power series coefficients: quadratic convergence while maintaining $O(M(N)(m^2 + mL))$

Not better than Newton...so what's the point ?

- Some Non-polynomial functions: [Baur-Strassen, 1980]'s theorem does not hold → Jacobian is complicated to evaluate, may require up to m^2L operations to evaluate (instead of O(mL)).
- Infinite dimensional problem: no Jacobian. Broyden's framework allows to work with finite dim. approximation [Kelley-Northrup,1988] [Kelley-Sachs, 1990] etc.