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Newton method over R

Approximation of a simple root x? (f ′(x?) 6= 0).

Start from a guess x0, and compute xn+1 = xn − f ′(xn)−1f (xn) .

System of m equations F in m unknowns: x? ∈ Rm, F (x?), JacF (x?) invertible

Start from a guess x0 and compute: xn+1 = xn − JacF (xn)−1F (xn) in Rm.
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Main result

In 1965, Broyden suggested to replace the Jacobian matrix JacF (xn) by an
approximation Bn of it → quasi-Newton method

xn+1 = xn − B−1
n F (xn), xn, xn+1 ∈ Rm, Bn ∈ Matm(Rm), Bn ≈ JacF (xn)

He chose B0 ≈ JacF (x0), then for B1 a 1-dimensional deformation of B0, then for
B2 a 1-dim deformation of B1 etc.

1965-today: numerous improvements, variants and generalizations. . .

. . . but nothing for systems with coefficients in a complete valued field (p-adic or
power series coefficients).

Main outcome : adapt the Broyden method to a system F with coefficients in a valued
complete field → first non-archimedean quasi-Newton method
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Broyden method in dim 1: secant method

Broyden method generalizes the secant method (dimension 1) to dimension m.

Approximation of simple root x?

f (x?) = 0, f ′(x?) 6= 0
Start with two guesses x0, x1 then,

xn+1 = xn −
xn − xn−1

f (xn)− f (xn−1)
f (xn).

Let B−1
n = xn−xn−1

f (xn)−f (xn−1) → Bn(xn − xn−1) = f (xn)− f (xn−1)
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Broyden’s construction (F : Ω ⊂ Rm → Rm, F (x?) = 0, JacF (x?) 6= 0)

Start with one guess x0 and compute B0 ≈ JacF (x0).
Then xn+1 = xn − B−1

n F (xn) with Bn verifying:
Bn(xn − xn−1) = F (xn)− F (xn−1) ( Rewrite it Bnsn−1 = yn−1 )
Bnz = Bn−1z for all z orthogonal to sn−1.

These two conditions suffice to characterize Bn from Bn−1, namely:

Bn = Bn−1 + (yn−1 − Bn−1sn−1)un−1
T , where un−1

T sn−1 = 1

Broyden’s choice : un−1 = sn−1/‖sn−1‖2 = sn−1/sn−1
T · sn−1.

Theorem 1 (Sherman-Morrison)

Computation of the inverse B−1
n from B−1

n−1 can be done in ≈ 5m2

B−1
n = B−1

n−1 −
B−1
n−1F (xn)un−1

TB−1
n−1

un−1
TB−1

n−1yn−1
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Presentation of the Broyden method over R

Start with B0 ≈ JacF (x0) for x0 near to a non-singular solution x? of F .
Broyden update (Iteration n)

xn+1 = xn − B−1
n F (xn),

B−1
n+1 = B−1

n − B−1
n F (xn+1)unTB

−1
n

unTB
−1
n yn

, ( vector un verifying un
T sn = 1, like un = sn

‖sn‖2 )

Cost of the n-th iteration (machine precision):

≈ 6m2 operations, and m evaluations of a scalar function (one evaluation of F )

Theorem 2 (Broyden — Dennis — Moré, 1973)

If F is sufficiently regular and x0 sufficiently close to x? then Broyden method produces

a sequence that converges superlinearly to x?: limn→∞
‖xn+1−x?‖
‖xn−x?‖ = 0 .
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Advantage of quasi-Newton methods over R
Newton method:

Computing the Jacobian matrix not always obvious. . . (1965)

Needs to evaluate the m2 entries of the Jacobian at each iteration.

Needs to solve the system JacF (xn)sn = −F (xn) (in sn) requires O(m3) (or
O(mω) operations for m large).

Quadratic convergence is fast, yet the region of quadratic convergence may be
very small.

Whereras, with a Broyden update:

Update costs ≈ 6m2 and one evaluation of F .

→ no need to evaluate m2 entries at each iteration.

• But has a slower rate convergence, that deteriorates with m.

However this drawback is mitigated with machine precision.
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Adaptation to the non-archimedean setting (ex: p-adic or k[[x ]])

With Broyden’s original proposal: Bn+1 = Bn + (yn−Bnsn)snT

snT ·sn
(sn = xn+1 − xn, yn = F (xn+1)− F (xn))

requires a dot product which is an inner product over Rm

Warning: dot product is isotropic over Qp.
However, if we use the previous formula:

B−1
n+1 = B−1

n − B−1
n F (xn+1)un

TB−1
n

unTB
−1
n yn

, un
T sn = 1 we only need un

TB−1
n yn 6= 0 .

Contribution 1 (Adaptation)

Broyden update is adaptable over any complete valued field.

Idea: Write sn = (σ1, . . . , σ`, . . . , σm)T and assume: val(σ`) = mini=1,...,m val(σi ),
` is the smallest index verifying this property. Let un = (0, . . . , σ−1

` , . . . , 0)T .
Then naturally 1 = un

T sn, and for technical reasons un
TB−1

n yn 6= 0.
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Intermezzo: ultrametric norms

Let K be a complete discrete valued field:

K = Qp, p-adic field or K = k((X )) field or Laurent series over a field k .

Absolute value:
|a| = p−val(a) when a ∈ Qp, and |a| = 2−val(a) when a ∈ k((X )).
ultrametric inequality: |x + y | ≤ max{|x |; |y |} (equality if |x | 6= |y |).

Standard p-adic norms: ‖−→x ‖ = max{|x1|p, . . . , |xm|p}.
Approximation xn of a solution x? : ‖F (xn)‖ is closer and closer to zero.

Lemma 3 (Operator norm on a matrix A)

‖A‖ = max‖x‖=1 ‖Ax‖ is actually equal to the max-norm: ‖A‖ = max{|entries of A|}.

Over R, matrices Bn minimize the Frobenius norm ‖Bn+1 − Bn‖F
→ Has been used to simplify the proof of superlinear convergence → no such
norm in the non-archimedean setting.
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R-superlinear convergence

Contribution 2 (Convergence)

the non-archimedean Broyden method converges R-superlinearly of order at least

µ = 21/2m: lim sup
k→∞

‖xk − x?‖1/µk < 1

Meaning: The sequence ‖xk − x?‖ is not necessarily strictly decreasing.
Essentially one can “think” that after 2m steps

‖xn+2m − x?‖ ≤ C‖xn − x?‖2, for a constant C .

Experimental observations suggest rather an “almost” Q-superlinear convergence

of order α ≈ 21/m → limn→∞
‖xn+1−x?‖
‖xn−x?‖α ≤ r

Hypotheses: JacF (x?) is invertible, and F verifies a kind of strong form of Taylor
expansion at order 2 in a neighborhood U of x?:

‖F (y)− F (x)− JacF (x?)(y − x)‖ ≤ c0‖y − x‖2, ∀x , y ∈ U, c0 > 0

Remark: This is the longest and most technical part of the article.
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Experiments

F1: 2 polynomials, 2 unknowns
F2: 3 polynomials, 3 unknowns
F3: 4 polynomials, 4 unknowns

For n = 2, the order of superlinear convergence is Φ = 1
2 (1 +

√
5): like in the secant

method in one variable (archimedean setting or not ).

[E. Bach] Iterative root approximation in p-adic numerical analysis. J. of
Complexity 2009
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Implementation at finite precision: comparison with Newton

Here, the arithmetic cost depends on the precision. In case of Newton method
(quadratic convergence):

xn+1︸︷︷︸
2n+1 “digits”

= xn︸︷︷︸
2n “digits”

− JacF (xn)−1F (xn)︸ ︷︷ ︸
“digits” in the interval [2n,2n+1]

.

Therefore, no digits overlap in the sum → easy to implement and analyze.

→ The ratio (speed of convergence)/(precision gained) is somewhat optimal.

Update of the Jacobian’s inverse (by Newton method applied to A 7→ A−1)

JacF (xn+1)−1 = 2JacF (xn)−1 − JacF (xn)−1JacF (xn+1)JacF (xn)−1

Cost: O(mω) for matrix products.
O(mL) for the evaluation JacF (xn+1) ([Baur-Strassen, 1980] → if F is polynomial
and can be valuated in L operations).
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Implementation at finite precision: management of precision

Contribution 3 (Analysis of an implementation at finite precision)

Implementation, with polynomials as input, of Broyden method over Qp and k((X )) at
finite precision and complexity analysis.

Difficulty 1: The Broyden update uses a division → bad for the precision

B−1
n+1 = B−1

n − B−1
n F (xn+1)uTn B

−1
n

uTn B
−1
n yn

, xn+1 = xn − B−1
n F (xn)

→ can be addressed by tracking p-adic intervals along these operations.

Difficulty 2: convergence is not quadratic, and is not known.

Issue: If we extend precision of interval arithmetic too much, we loose efficiency.
however, the speed of convergence ressembles to superlinear with an order of
convergence α after a few iterations → allows to guess without too much loss.
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Complexity analysis - Comparison with Newton

Notations:

M(d) cost of multiplying two truncated power series/p-adic integers in an interval of
length d .
L number of arithmetic operations to evaluate the system F at any vector.

n-th iteration of Newton method (interval of length 2n): O(M(2n)(mω + mL))

→ to reach precision N ≈ 2`, O(M(N)(mω + mL)) .

Assumption (order of superlinear convergence α for Broyden method)

Assume ‖xn+1 − x?‖ ≤ r‖xn − x?‖α for α > 1 and a constant r > 0.

Cost of one iteration: O(M(αn)(L + m2)) ⇒ O(M( N
α−1 )(m2 + L)) .

If we assume α ≈ 21/m then O(M(Nm)(m2 + L)) which is worse than Newton.
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Application - Future work

Remark: Relaxed arithmetic [van der Hoeven et al.] (specific to Newton operator).

p-adic and power series coefficients: quadratic convergence while maintaining
O(M(N)(m2 + mL))

Not better than Newton. . . so what’s the point ?

1 Derivative-free: Jacobian is not easily accessible/computable → divided-difference
matrix.

2 Non-polynomial functions: [Baur-Strassen, 1980]’s theorem does not hold →
Jacobian is complicated to evaluate, may require up to m2L operations to
evaluate (instead of O(mL) ).

3 Infinite dimensional problem: no Jacobian. Broyden’s framework allows to work
with finite dim. approximation [Kelley-Northrup,1988] [Kelley-Sachs, 1990] etc.
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