# On A Non-Archimedean Broyden Method 

Xavier Dahan ${ }^{1}$ Tristan Vaccon ${ }^{2}$<br>${ }^{1}$ Tohoku University, Institute for Excellence in Higher Education<br>${ }^{2}$ Université de Limoges, CNRS, XLIM

ISSAC 2020 - July 22

## Outline

(1) introduction

## (2) The three contributions

## Newton method over $\mathbb{R}$



Approximation of a simple root $x^{\star}\left(f^{\prime}\left(x^{\star}\right) \neq 0\right)$.
Start from a guess $x_{0}$, and compute $x_{n+1}=x_{n}-f^{\prime}\left(x_{n}\right)^{-1} f\left(x_{n}\right)$
System of $m$ equations $F$ in $m$ unknowns: $x^{\star} \in \mathbb{R}^{m}, F\left(x^{\star}\right), \operatorname{Jac}_{F}\left(x^{\star}\right)$ invertible Start from a guess $x_{0}$ and compute: $x_{n+1}=x_{n}-\operatorname{Jac}_{F}\left(x_{n}\right)^{-1} F\left(x_{n}\right)$ in $\mathbb{R}^{m}$.

## Main result

- In 1965, Broyden suggested to replace the Jacobian matrix $\operatorname{Jac}_{F}\left(x_{n}\right)$ by an approximation $B_{n}$ of it $\rightarrow$ quasi-Newton method

$$
x_{n+1}=x_{n}-B_{n}^{-1} F\left(x_{n}\right), \quad x_{n}, x_{n+1} \in \mathbb{R}^{m}, \quad B_{n} \in \operatorname{Mat}_{m}\left(\mathbb{R}^{m}\right), \quad B_{n} \approx \operatorname{Jac}_{F}\left(x_{n}\right)
$$

- He chose $B_{0} \approx \operatorname{Jac}_{F}\left(x_{0}\right)$, then for $B_{1}$ a 1-dimensional deformation of $B_{0}$, then for $B_{2}$ a 1-dim deformation of $B_{1}$ etc.
- 1965-today: numerous improvements, variants and generalizations...
- ... but nothing for systems with coefficients in a complete valued field ( $p$-adic or power series coefficients).
Main outcome : adapt the Broyden method to a system $F$ with coefficients in a valued complete field $\rightarrow$ first non-archimedean quasi-Newton method


## Broyden method in dim 1: secant method

Broyden method generalizes the secant method (dimension 1) to dimension $m$.

Approximation of simple root $x^{\star}$ $f\left(x^{\star}\right)=0, \quad f^{\prime}\left(x^{\star}\right) \neq 0$
Start with two guesses $x_{0}, x_{1}$ then,

$$
x_{n+1}=x_{n}-\frac{x_{n}-x_{n-1}}{f\left(x_{n}\right)-f\left(x_{n-1}\right)} f\left(x_{n}\right)
$$



Let $B_{n}^{-1}=\frac{x_{n}-x_{n-1}}{f\left(x_{n}\right)-f\left(x_{n-1}\right)}$

$$
\rightarrow B_{n}\left(x_{n}-x_{n-1}\right)=f\left(x_{n}\right)-f\left(x_{n-1}\right)
$$

## Broyden method in dim 1: secant method

Broyden method generalizes the secant method (dimension 1) to dimension $m$.

Approximation of simple root $x^{\star}$ $f\left(x^{\star}\right)=0, \quad f^{\prime}\left(x^{\star}\right) \neq 0$
Start with two guesses $x_{0}, x_{1}$ then,

$$
x_{n+1}=x_{n}-\frac{x_{n}-x_{n-1}}{f\left(x_{n}\right)-f\left(x_{n-1}\right)} f\left(x_{n}\right) .
$$



Let $B_{n}^{-1}=\frac{x_{n}-x_{n-1}}{f\left(x_{n}\right)-f\left(x_{n-1}\right)}$

$$
\rightarrow B_{n}\left(x_{n}-x_{n-1}\right)=f\left(x_{n}\right)-f\left(x_{n-1}\right)
$$

## Broyden method in dim 1: secant method

Broyden method generalizes the secant method (dimension 1) to dimension $m$.

Approximation of simple root $x^{\star}$ $f\left(x^{\star}\right)=0, \quad f^{\prime}\left(x^{\star}\right) \neq 0$
Start with two guesses $x_{0}, x_{1}$ then,

$$
x_{n+1}=x_{n}-\frac{x_{n}-x_{n-1}}{f\left(x_{n}\right)-f\left(x_{n-1}\right)} f\left(x_{n}\right) .
$$



Let $B_{n}^{-1}=\frac{x_{n}-x_{n-1}}{f\left(x_{n}\right)-f\left(x_{n-1}\right)}$

$$
\rightarrow B_{n}\left(x_{n}-x_{n-1}\right)=f\left(x_{n}\right)-f\left(x_{n-1}\right)
$$

## Broyden method in dim 1: secant method

Broyden method generalizes the secant method (dimension 1) to dimension $m$.

Approximation of simple root $x^{\star}$ $f\left(x^{\star}\right)=0, \quad f^{\prime}\left(x^{\star}\right) \neq 0$
Start with two guesses $x_{0}, x_{1}$ then,

$$
x_{n+1}=x_{n}-\frac{x_{n}-x_{n-1}}{f\left(x_{n}\right)-f\left(x_{n-1}\right)} f\left(x_{n}\right) .
$$



Let $B_{n}^{-1}=\frac{x_{n}-x_{n-1}}{f\left(x_{n}\right)-f\left(x_{n-1}\right)}$

$$
\rightarrow B_{n}\left(x_{n}-x_{n-1}\right)=f\left(x_{n}\right)-f\left(x_{n-1}\right)
$$

## Broyden method in dim 1: secant method

Broyden method generalizes the secant method (dimension 1) to dimension $m$.

Approximation of simple root $x^{\star}$ $f\left(x^{\star}\right)=0, \quad f^{\prime}\left(x^{\star}\right) \neq 0$
Start with two guesses $x_{0}, x_{1}$ then,

$$
x_{n+1}=x_{n}-\frac{x_{n}-x_{n-1}}{f\left(x_{n}\right)-f\left(x_{n-1}\right)} f\left(x_{n}\right) .
$$



Let $B_{n}^{-1}=\frac{x_{n}-x_{n-1}}{f\left(x_{n}\right)-f\left(x_{n-1}\right)}$

$$
\rightarrow B_{n}\left(x_{n}-x_{n-1}\right)=f\left(x_{n}\right)-f\left(x_{n-1}\right)
$$

## Broyden method in dim 1: secant method

Broyden method generalizes the secant method (dimension 1) to dimension $m$.

Approximation of simple root $x^{\star}$ $f\left(x^{\star}\right)=0, \quad f^{\prime}\left(x^{\star}\right) \neq 0$
Start with two guesses $x_{0}, x_{1}$ then,

$$
x_{n+1}=x_{n}-\frac{x_{n}-x_{n-1}}{f\left(x_{n}\right)-f\left(x_{n-1}\right)} f\left(x_{n}\right) .
$$



Let $B_{n}^{-1}=\frac{x_{n}-x_{n-1}}{f\left(x_{n}\right)-f\left(x_{n-1}\right)}$

$$
\rightarrow B_{n}\left(x_{n}-x_{n-1}\right)=f\left(x_{n}\right)-f\left(x_{n-1}\right)
$$

## Broyden's construction $\left(F: \Omega \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}, F\left(x^{\star}\right)=0, \operatorname{Jac}_{F}\left(x^{\star}\right) \neq 0\right)$

- Start with one guess $x_{0}$ and compute $B_{0} \approx \operatorname{Jac}_{F}\left(x_{0}\right)$.
- Then $x_{n+1}=x_{n}-B_{n}^{-1} F\left(x_{n}\right)$ with $B_{n}$ verifying:
- $B_{n}\left(x_{n}-x_{n-1}\right)=F\left(x_{n}\right)-F\left(x_{n-1}\right)$ (Rewrite it $\left.B_{n} s_{n-1}=y_{n-1}\right)$
- $B_{n} z=B_{n-1} z$ for all $z$ orthogonal to $s_{n-1}$.
- These two conditions suffice to characterize $B_{n}$ from $B_{n-1}$, namely:

$$
B_{n}=B_{n-1}+\left(y_{n-1}-B_{n-1} s_{n-1}\right) u_{n-1}{ }^{T}, \quad \text { where } \quad u_{n-1}{ }^{T} s_{n-1}=1
$$

- Broyden's choice : $u_{n-1}=s_{n-1} /\left\|s_{n-1}\right\|^{2}=s_{n-1} / s_{n-1}{ }^{T} \cdot s_{n-1}$.


## Theorem 1 (Sherman-Morrison)

Computation of the inverse $B_{n}^{-1}$ from $B_{n-1}^{-1}$ can be done in $\approx 5 m^{2}$

$$
B_{n}^{-1}=B_{n-1}^{-1}-\frac{B_{n-1}^{-1} F\left(x_{n}\right) u_{n-1}^{T} B_{n-1}^{-1}}{u_{n-1}^{T} B_{n-1}^{-1} y_{n-1}}
$$

## Presentation of the Broyden method over $\mathbb{R}$

Start with $B_{0} \approx \operatorname{Jac}_{F}\left(x_{0}\right)$ for $x_{0}$ near to a non－singular solution $x^{\star}$ of $F$ ． Broyden update（Iteration $n$ ）

$$
\begin{aligned}
& x_{n+1}=x_{n}-B_{n}^{-1} F\left(x_{n}\right), \\
& B_{n+1}^{-1}=B_{n}^{-1}-\frac{B_{n}^{-1} F\left(x_{n+1}\right) u_{n}^{\top} B_{n}^{-1}}{u_{n}^{\top} B_{n}^{-1} y_{n}}, \quad\left(\text { vector } u_{n} \text { verifying } u_{n}^{T} s_{n}=1, \text { like } u_{n}=\frac{s_{n}}{\left\|s_{n}\right\|^{2}}\right)
\end{aligned}
$$

Cost of the $n$－th iteration（machine precision）：
－$\approx 6 m^{2}$ operations，and $m$ evaluations of a scalar function（one evaluation of $F$ ）

## Theorem 2 （Broyden — Dennis－Moré，1973）

If $F$ is sufficiently regular and $x_{0}$ sufficiently close to $x^{\star}$ then Broyden method produces a sequence that converges superlinearly to $x^{\star}: \lim _{n \rightarrow \infty} \frac{\left\|x_{n+1}-x^{\star}\right\|}{\left\|x_{n}-x^{\star}\right\|}=0$ ．

## Advantage of quasi-Newton methods over $\mathbb{R}$

Newton method:

- Computing the Jacobian matrix not always obvious... (1965)
- Needs to evaluate the $m^{2}$ entries of the Jacobian at each iteration.
- Needs to solve the system $\operatorname{Jac}_{F}\left(x_{n}\right) s_{n}=-F\left(x_{n}\right)$ (in $s_{n}$ ) requires $O\left(m^{3}\right)$ (or $O\left(m^{\omega}\right)$ operations for $m$ large).
- Quadratic convergence is fast, yet the region of quadratic convergence may be very small.
Whereras, with a Broyden update:
- Update costs $\approx 6 m^{2}$ and one evaluation of $F$.
- $\rightarrow$ no need to evaluate $m^{2}$ entries at each iteration.
- But has a slower rate convergence, that deteriorates with $m$.

However this drawback is mitigated with machine precision.

## Outline

## (1) introduction

(2) The three contributions

## Adaptation to the non-archimedean setting (ex: p-adic or $k[[x]]$ )

- With Broyden's original proposal: $B_{n+1}=B_{n}+\frac{\left(y_{n}-B_{n} s_{n}\right) s_{n} T}{s_{n} T \cdot s_{n}}$

$$
\left(s_{n}=x_{n+1}-x_{n}, \quad y_{n}=F\left(x_{n+1}\right)-F\left(x_{n}\right)\right)
$$

- requires a dot product which is an inner product over $\mathbb{R}^{m}$
- Warning: dot product is isotropic over $\mathbb{Q}_{p}$.
- However, if we use the previous formula:

$$
B_{n+1}^{-1}=B_{n}^{-1}-\frac{B_{n}^{-1} F\left(x_{n+1}\right) u_{n}^{\top} B_{n}^{-1}}{u_{n}^{\top} B_{n}^{-1} y_{n}}, \quad u_{n}^{\top} s_{n}=1 \text { we only need } u_{n}^{\top} B_{n}^{-1} y_{n} \neq 0
$$

## Contribution 1 (Adaptation)

Broyden update is adaptable over any complete valued field.
Idea: Write $s_{n}=\left(\sigma_{1}, \ldots, \sigma_{\ell}, \ldots, \sigma_{m}\right)^{T}$ and assume: $\operatorname{val}\left(\sigma_{\ell}\right)=\min _{i=1, \ldots, m} \operatorname{val}\left(\sigma_{i}\right)$, $\ell$ is the smallest index verifying this property. Let $u_{n}=\left(0, \ldots, \sigma_{\ell}^{-1}, \ldots, 0\right)^{T}$. Then naturally $1=u_{n}{ }^{T} s_{n}$, and for technical reasons $u_{n}{ }^{T} B_{n}^{-1} y_{n} \neq 0$.

## Intermezzo: ultrametric norms

Let $K$ be a complete discrete valued field:

- $K=\mathbb{Q}_{p}, p$-adic field or $K=k((X))$ field or Laurent series over a field $k$.
- Absolute value:
- $|a|=p^{-\operatorname{val}(a)}$ when $a \in \mathbb{Q}_{p}$, and $|a|=2^{-\operatorname{val}(a)}$ when $a \in k((X))$.
- ultrametric inequality: $|x+y| \leq \max \{|x| ;|y|\}$ (equality if $|x| \neq|y|$ ).
- Standard $p$-adic norms: $\|\vec{x}\|=\max \left\{\left|x_{1}\right|_{p}, \ldots,\left|x_{m}\right|_{p}\right\}$.
- Approximation $x_{n}$ of a solution $x^{\star}:\left\|F\left(x_{n}\right)\right\|$ is closer and closer to zero.


## Lemma 3 (Operator norm on a matrix $A$ )

$\|A\|=\max _{\|x\|=1}\|A x\|$ is actually equal to the max-norm: $\|A\|=\max \{\mid$ entries of $A \mid\}$.

- Over $\mathbb{R}$, matrices $B_{n}$ minimize the Frobenius norm $\left\|B_{n+1}-B_{n}\right\|_{F}$
- $\rightarrow$ Has been used to simplify the proof of superlinear convergence $\rightarrow$ no such norm in the non-archimedean setting.


## $R$-superlinear convergence

## Contribution 2 (Convergence)

the non-archimedean Broyden method converges $R$-superlinearly of order at least $\mu=2^{1 / 2 m}: \quad \lim \sup \left\|x_{k}-x^{\star}\right\|^{1 / \mu^{k}}<1$
$k \rightarrow \infty$

- Meaning: The sequence $\left\|x_{k}-x^{\star}\right\|$ is not necessarily strictly decreasing. Essentially one can "think" that after $2 m$ steps

$$
\text { - } \quad\left\|x_{n+2 m}-x^{\star}\right\| \leq C\left\|x_{n}-x^{\star}\right\|^{2}, \text { for a constant } C \text {. }
$$

- Experimental observations suggest rather an "almost" $Q$-superlinear convergence of order $\alpha \approx 2^{1 / m} \quad \rightarrow \quad \lim _{n \rightarrow \infty} \frac{\left\|x_{n+1}-x^{\star}\right\|}{\left\|x_{n}-x^{\star}\right\|^{\alpha}} \leq r$
- Hypotheses: $\operatorname{Jac}_{F}\left(x^{\star}\right)$ is invertible, and $F$ verifies a kind of strong form of Taylor expansion at order 2 in a neighborhood $U$ of $x^{\star}$ :

$$
\text { - }\left\|F(y)-F(x)-\operatorname{Jac}_{F}\left(x^{\star}\right)(y-x)\right\| \leq c_{0}\|y-x\|^{2}, \quad \forall x, y \in U, \quad c_{0}>0
$$

- Remark: This is the longest and most technical part of the article.


## Experiments

$F_{1}$ : 2 polynomials, 2 unknowns
$F_{2}$ : 3 polynomials, 3 unknowns
$F_{3}$ : 4 polynomials, 4 unknowns


For $n=2$, the order of superlinear convergence is $\Phi=\frac{1}{2}(1+\sqrt{5})$ : like in the secant method in one variable (archimedean setting or not ).

- [E. Bach] Iterative root approximation in p-adic numerical analysis. J. of Complexity 2009


## Implementation at finite precision: comparison with Newton

Here, the arithmetic cost depends on the precision. In case of Newton method (quadratic convergence):

$$
\underbrace{x_{n+1}}_{2^{n+1} \text { "digits" }}=\underbrace{x_{n}}_{2^{n} \text { "digits" }}-\underbrace{\operatorname{Jac}_{F}\left(x_{n}\right)^{-1} F\left(x_{n}\right)}_{\text {"digits" in the interval }\left[2^{n}, 2^{n+1}\right]}
$$

- Therefore, no digits overlap in the sum $\rightarrow$ easy to implement and analyze.
- $\rightarrow$ The ratio (speed of convergence)/(precision gained) is somewhat optimal.
- Update of the Jacobian's inverse (by Newton method applied to $A \mapsto A^{-1}$ )

$$
\operatorname{Jac}_{F}\left(x_{n+1}\right)^{-1}=2 \operatorname{Jac}_{F}\left(x_{n}\right)^{-1}-\operatorname{Jac}_{F}\left(x_{n}\right)^{-1} \operatorname{Jac}_{F}\left(x_{n+1}\right) \operatorname{Jac}_{F}\left(x_{n}\right)^{-1}
$$

- Cost: $O\left(m^{\omega}\right)$ for matrix products.
$O(m L)$ for the evaluation $\operatorname{Jac}_{F}\left(x_{n+1}\right)$ ([Baur-Strassen, 1980] $\rightarrow$ if $F$ is polynomial and can be valuated in $L$ operations).


## Implementation at finite precision: management of precision

## Contribution 3 (Analysis of an implementation at finite precision)

Implementation, with polynomials as input, of Broyden method over $\mathbb{Q}_{p}$ and $k((X))$ at finite precision and complexity analysis.

- Difficulty 1: The Broyden update uses a division $\rightarrow$ bad for the precision

$$
B_{n+1}^{-1}=B_{n}^{-1}-\frac{B_{n}^{-1} F\left(x_{n+1}\right) u_{n}^{T} B_{n}^{-1}}{u_{n}^{T} B_{n}^{-1} y_{n}}, \quad x_{n+1}=x_{n}-B_{n}^{-1} F\left(x_{n}\right)
$$

$\rightarrow$ can be addressed by tracking $p$-adic intervals along these operations.

- Difficulty 2: convergence is not quadratic, and is not known.
- Issue: If we extend precision of interval arithmetic too much, we loose efficiency.
- however, the speed of convergence ressembles to superlinear with an order of convergence $\alpha$ after a few iterations $\rightarrow$ allows to guess without too much loss.


## Complexity analysis - Comparison with Newton

- Notations:
- $M(d)$ cost of multiplying two truncated power series/p-adic integers in an interval of length $d$.
- L number of arithmetic operations to evaluate the system $F$ at any vector.
- $n$-th iteration of Newton method (interval of length $\left.2^{n}\right): O\left(\mathrm{M}\left(2^{n}\right)\left(m^{\omega}+m L\right)\right)$
- $\rightarrow$ to reach precision $N \approx 2^{\ell}, O\left(\mathrm{M}(N)\left(m^{\omega}+m L\right)\right)$.


## Assumption (order of superlinear convergence $\alpha$ for Broyden method)

Assume $\left\|x_{n+1}-x^{\star}\right\| \leq r\left\|x_{n}-x^{\star}\right\|^{\alpha}$ for $\alpha>1$ and a constant $r>0$.

- Cost of one iteration: $O\left(\mathrm{M}\left(\alpha^{n}\right)\left(L+m^{2}\right)\right) \Rightarrow O\left(\mathrm{M}\left(\frac{N}{\alpha-1}\right)\left(m^{2}+L\right)\right)$.
- If we assume $\alpha \approx 2^{1 / m}$ then $O\left(\mathrm{M}(N m)\left(m^{2}+L\right)\right)$ which is worse than Newton.


## Application - Future work

Remark: Relaxed arithmetic [van der Hoeven et al.] (specific to Newton operator).

- $p$-adic and power series coefficients: quadratic convergence while maintaining $O\left(\mathrm{M}(N)\left(m^{2}+m L\right)\right)$
Not better than Newton... so what's the point ?
(1) Derivative-free: Jacobian is not easily accessible/computable $\rightarrow$ divided-difference matrix.
(2) Non-polynomial functions: [Baur-Strassen, 1980]'s theorem does not hold $\rightarrow$ Jacobian is complicated to evaluate, may require up to $m^{2} L$ operations to evaluate (instead of $O(m L)$ ).
(3) Infinite dimensional problem: no Jacobian. Broyden's framework allows to work with finite dim. approximation [Kelley-Northrup,1988] [Kelley-Sachs, 1990] etc.

