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Introduction

Two polynomials a, b € R[y], R commutative ring. Known gcd:
@ Unique Factorization Domains:  Example: R = k[xi, ..., Xa].

@ Over a field R = K. Bézout identity: au+ bv =g

((g) = (a, b)).
Example: R = k[x1,...,%a]/p, p a maximal ideal

@ Direct product of fields (Local-Global principle):
o Typically: R = k[x1,...,xn]/l, where | =N,p,:
p maximal and p, +p,, = (1) for v £/ .
o Computationally: the heart of some triangular decomposition
methods.
@ Realized through the CRT and the so-called “D5 principle”.

@ Gcd notions over more general rings have been introduced,
but with some limitation.
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Main Result

Address the case of coefficient rings of type R := k[x1,...,xn]/q,
® where q is a primary ideal of radical \/q = p a maximal ideal.
@ Any non zero element is either nilpotent or invertible.
Result:
@ Observation: a “gcd” depends on the “precision” to which
coefficients are taken.
@ Introduction of the Gcd chain that encompasses all these geds
with a structural isomorphism that generalizes: (a, b) = (g).
@ Computation: assume that g is given by a lex GB in a purely
triangular form (triangular set).

@ Preliminary algorithm based on a subresultant sequence, but:

@ Still relies on an unproved assumption
o Some “precision” is lost
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Background: triangular decomposition method

Triangular decomposition: Wu-Ritt, Lazard, Kalkbrener, Wang,
Moreno-Maza, ...

Implementation: RegularChains library of MAPLE.
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Background: triangular decomposition method

Triangular decomposition: Wu-Ritt, Lazard, Kalkbrener, Wang,
Moreno-Maza, ...

Implementation: RegularChains library of MAPLE.

Previous work on Gcd modulo a non-radical triangular set:

[Moreno-Maza, Rioboo'95] Ask the question of a gcd with
possibly nilpotent elements in the coefficients.

[Li,Moreno-Maza, Pan'09] Study more precise conditions for a
gcd to exist

Previous work on representing multiplicities with triangular set:
[Cheng, X.-S. Gao'14] , [B.H Li'03]

[Marcus, Moreno-Maza, Vrbik'12], [Alvandi, Moreno-Maza,
Schost, Vrbik'15]



Background & motivation
[e] le]e}

Motivation for non-radical triangular sets

For solving, computing the radical ideal representation is enough.
However:

@ The radical of a triangular set may not be triangular: more
decomposition work may be required, whereas:

the primary ideals of a triangular set are triangular

@ Triangular sets have the ability to represent non-radical ideal
(yet not as completely as a lex GB) ...

@ ... while some other methods, like RUR cannot represent
faithfully a non-radical ideal.
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[llustrative example

Basic example: R = k[x]/q, q = (x3).

a = yr @2 3x+ 1)y (X% —x—1)y?
4+ (13x% —4x — 1)y — 7x*> — 2x
b = y3+(3x% +3x)y2+ (—3x2 —3x — 1)y — 10x2 — 2x.

What could be a gcd of aand b 7
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o And : that is of intermediate precision, the gcd is of
degree 2: (v + 2x)
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[llustrative example

Basic example: R = k[x]/q, q = (x3).

a = yr @2 3x+ 1)y (X% —x—1)y?
4+ (13x% —4x — 1)y — 7x*> — 2x
b = y3+(3x% +3x)y2+ (—3x2 —3x — 1)y — 10x2 — 2x.

What could be a gcd of aand b 7
@ Over R (modulo x3) the largest degree polynomial that

divides both a and b is: y—1—x—2x>
o And : that is of intermediate precision, the gcd is of
degree 2: (v + 2x)

@ Finally modulo x (less precise coefficients), the ged is of
higher degree: yy+1)(y —1)
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[llustrative example 2

A primary lexicographic ideal can be seen as a precision ring:
Here q = (x3) is of precision 3.

And the degree of the gcd decreases with precision:
(eg v | (v +x)(y +1) mod (x) but y f (y + x)(y + 1) mod (x*))
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[llustrative example 2

A primary lexicographic ideal can be seen as a precision ring:

Here q = (x3) is of precision 3.
And the degree of the gcd decreases with precision:
(eg v | (v +x)(y +1) mod (x) but y f (y + x)(y + 1) mod (x*))
Definition 2 (Ged chain)

In the example: [(g1, (x)), (22, (7)), (g3, (x*))]. It verifies:

o (R/)y/(a, b) = (R/(x))ly]/{e1)
o (R/G)IVI/(a, b) = (R/ (" ))yl/(22) x (R/(x))¥]/(&1/22)
o (R/{(x*))lyl/(a,b) ~

(R/()y)/ (gs) x (R/ (")) y1/(e2/g3) x (R/(x))IV)/{gr/e2)
Actually. ..

o (R/{(x'")y)/(a, b) ~

(R/("))1/{g3) x (R/())yl/ (22/83) % (R/(x)) Y]/ {g1/ 22)
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General case: “Precision ring”

Fact: /q := p has a triangular lex GB represented by polynomials:

(pl(Xl), pQ(Xl,XQ), ey pn(Xl,...,Xn)),

where pj1 is irreducible over the field k[xi,...,x;]/{(p1,...,pi)-
This encodes a “tower of fields extension”.
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General case: “Precision ring”

Fact: \/q :=p has a triangular lex GB represented by polynomials:
(pl(Xl) ) P2(X1,X2) PRI pn(Xla s 7Xn))7

where pj1 is irreducible over the field k[xi,...,x;]/{(p1,...,pi)-
This encodes a “tower of fields extension”.

Proposition 1 (Reformulation of Gianni-Trager-Zaccharias)

Any primary triangular ideal can be written as:

Ti(x1) = py
To(x1,x2) = p32+ Zfll:_ll 5 c[ll, lz]pfpé2
TH(X]-?"' 7Xf7) = pﬁn +ZI?11:_11.”Zen_1 C[’17"' 7in]p£1 P;:

To=p;  mod p1,...,pe—1 = c[0,...,0,i] =0 for all iy.
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General case: “Precision ring” 2

Proposition 2 (Reformulation of Gianni-Trager-Zaccharias)

Tn(X17 000 7Xf7) = pﬁn + Zilz_]il e Zen 3 C[I17 B In]pjlll T p;1n
Ty = (p;* mod p1,...,pr—1) = ¢[0,...,0,i] =0 for all .

Remarks:

o If pj = x; — «; then this is Taylor expansion:

B 1 it +in T,
C[Il7 e "I”] T il ip! 8X{1 ~.Oxin ( ai, ..

., Q)
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@ Enhance symbolic thinking: examples with
p1 = X1, P2 = X2,...,Pp = Xp are essentially enough.
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General case: “Precision ring” 2

Proposition 2 (Reformulation of Gianni-Trager-Zaccharias)

Tn(X]-? 000 7Xf7) = pﬁn + Zilz_]il e Zen 3 C[’l? B In]pjlll T p;1n
Ty = (p;* mod p1,...,pr—1) = ¢[0,...,0,i] =0 for all .

Remarks:
o If pj = x; — «; then this is Taylor expansion:
_ 1 Qitt+inT,
[Il’ T I”] T ililip—1lin! 8)({1 ~.Ox/n ( ag,--- ’a”)
@ Enhance symbolic thinking: examples with
p1 = X1, P2 = X2,...,Pp = Xp are essentially enough.

@ Talking about precision makes sense.
disclaimer: This is not exactly the usual sense where it refers
to “truncation” (power series, p-adic numbers) by pure
powers of uniformizers. ..
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General case: Henselian ring

Since R = k[x1,...,xn]/q is local of dimension zero, abstract
algebra tells that it is Henselian:

Any factorization into coprimes of a monic polynomial over the
k[xi,...,xa]/\/q lifts into a unique factorization into
coprimes over R = k[xi,...,xn]/q.
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k[xi,...,xa]/\/q lifts into a unique factorization into
coprimes over R = k[xi,...,xn]/q.

@ The article contains a short constructive proof which clarifies
the link between primary decomposition (unique since in
dimension zero).
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General case: Henselian ring

Since R = k[x1,...,xn]/q is local of dimension zero, abstract
algebra tells that it is Henselian:

Any factorization into coprimes of a monic polynomial over the
k[xi,...,xa]/\/q lifts into a unique factorization into
coprimes over R = k[xi,...,xn]/q.

@ The article contains a short constructive proof which clarifies
the link between primary decomposition (unique since in
dimension zero).

@ this is fundamental to define the new gcd notion called ged

chain. (seems to have been overlooked in previous work)
@ Talk of Carlos Sircana “Factorization of polynomials over
Z/(p")".

¢ Implicitly uses the Henselian property over the local ring
Z/(p").
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Framework

According to unique coprime factorization, write:
a = al...ae.a£+1...as.A
b = by---by-bpy1 --- bs-B

@ gcd(A,B) =1mod p
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Framework

According to unique coprime factorization, write:

a = aj-cag-apy - asc A
b = by---bp-bpy1 - bs-B
@ gcd(A,B) =1mod p
o for . Aap, b)) = (a;) = <p?‘i> mod p, p; irreducible in
k[xi,...,xn]/p.



Ged chain
[e]e]e] Je]

Framework

According to unique coprime factorization, write:

a = ay---ag-agyr - as- A
b = by---by-byiq -+ bs-B
@ gcd(A,B) =1mod p
o for , fai,bi) =(a;) = <p?‘i> mod p, p; irreducible in
k[xi,...,xn]/p.
o for < i<s, (aj,b;)=(bj)=(p;) modp.
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According to unique coprime factorization, write:

a = ay---ag-agyr - as- A
b = by---by-byiq -+ bs-B
@ gcd(A,B) =1mod p
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Framework

According to unique coprime factorization, write:

a = ay---ag-agyr - as- A
b = by---by-byiq -+ bs-B
@ gcd(A,B) =1mod p
o for , fai,bi) =(a;) = <p?‘i> mod p, p; irreducible in
k[xi,...,xn]/p.
o for < i<s, (aj,b;)=(bj)=(p;) modp.

0 L bi=piNa b, P> ai=pN Vb (n
nilpotent) s
a = ai---ayg- H (/)?\"_V"b;—l—l’,')-A
i=(+1

b = [ ai+r) bur-bs-B



Ged chain
0000e

General gcd chain

Any sequence of p = /(T )-primary ideals contained in (T):

og=(T)Cm Cmxy G- Cmy_y Cmy
These define “precision” for coefficients of gcds.
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General gcd chain

Any sequence of p = /(T )-primary ideals contained in (T):

og=(T)CmCmC - Cmy_1 Cmy

These define “precision” for coefficients of gcds.
@ at least one ry; is in m; but not in m;_; for

< ¢(ry;) := (coefficients of ry,) = ¢(ry,) C mj, ¢(r,) T mj_1
o Define G, = I aj I b mod m,

\r,-Emv, r;gémvf1 ">£|l’i€mv, r,-¢mv,1

o [( Hi Gy, , mj )j=1,.. 4 | is a gcd chain, that is:

v=1



Ged chain
0000e

General gcd chain

Any sequence of p = /(T )-primary ideals contained in (T):
og=(T)Cm Cmxy G- Cmy_y Cmy
These define “precision” for coefficients of gcds.

@ at least one ry; is in m; but not in m;_; for
< ¢(ry;) := (coefficients of ry,) = ¢(ry,) C mj, ¢(r,) T mj_1

o Define G, = I aj I b mod m,
|[riemy, ri¢gm,_; i>llriemy, ri¢gm,_1
o [( Hf/zl Gy, , mj )j=1,.. 4 | is a gcd chain, that is:

o (R/mu)lyl/(a, b) ~ (R/mu)ly]/(IT= Gi)-



Ged chain
0000e

General gcd chain
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General gcd chain

Any sequence of p = /(T )-primary ideals contained in (T):
og=(T)Cm Cmxy G- Cmy_y Cmy
These define “precision” for coefficients of gcds.

@ at least one ry; is in m; but not in m;_; for
< ¢(ry;) := (coefficients of ry,) = ¢(ry,) C mj, ¢(r,) T mj_1

o Define G, = I aj I b mod m,
|[riemy, ri¢gm,_; i>llriemy, ri¢gm,_1
o [( Hf/zl Gy, , mj )j=1,.. 4 | is a gcd chain, that is:

o (R/my)lyl/(a,b) ~ (R/my,)V1/(TTL_, Gi).
o (R/my_1)lyl/(a, b) = (R/mu_1)[y]/{[T:= Gi) x
(R/mu)y]/{Gu)

s (R/my)lyl/(a, b) ~ (R/my)[y]/(Gr) x - x (R/m,)[y]/(Gu)
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Computation through a subresultant sequence

Let [ ( H(',:l G, , m; )j=1,.. 4 | be a notation for gcd chain.

Summary of outcomes:

@ always possible to compute ([[,_; Gy , m).
largest degree ged:  (R/my)[y]/(a, b) =~ (R/mu)ly]/{I],=; G)
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Let [ ( H(',:l G, , m; )j=1,.. 4 | be a notation for gcd chain.

Summary of outcomes:

@ always possible to compute ([[,_; Gy , m).
largest degree ged:  (R/my)[y]/(a, b) =~ (R/mu)ly]/{I],=; G)

@ more difficult to compute the other blocks
(Il,=1 Gv\ mj)iz1,.u—1

e attempt with some recursive calls. . .

@ ...OK in the case n =1 of one variable: R = k[x]

@ ...some “precision” loss in the process

@ ...general case: still built upon a strong assumption that
mimicks the case n = 1.
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Computation through a subresultant sequence

Let [ ( H(',:l G, , m; )j=1,.. 4 | be a notation for gcd chain.

Summary of outcomes:

@ always possible to compute ([[,_; Gy , m).
largest degree ged:  (R/my)[y]/(a, b) =~ (R/mu)ly]/{I],=; G)

@ more difficult to compute the other blocks
(Il,=1 Gv\ mj)iz1,.u—1

e attempt with some recursive calls. . .

@ ...OK in the case n =1 of one variable: R = k[x]

@ ...some “precision” loss in the process

@ ...general case: still built upon a strong assumption that
mimicks the case n = 1.

@ — perspective for future work.
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Theorem 4 (Last non-nilpotent subresultant criterion)
Let {a, b, Sq4,—1(a, b), ...} be the subresultant chain of a and b.
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the subresultant.
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the subresultant.

Then lce(Se) ™Sy = [[4_; G, mod (T U {coefficients of S¢+1}).
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Subresultant

Computed over the ring R/(T) given in input.

Theorem 4 (Last non-nilpotent subresultant criterion)

Let {a, b, Sq4,—1(a, b), ...} be the subresultant chain of a and b.
Assume that Sy(a, b) # 0, and S¢(a,b) =0, fork =¢—1,...,0.
Find from r = { to dp, the last non-nilpotent coefficient lc(S;) of
the subresultant.

Then lce(Se) ™Sy = [[4_; G, mod (T U {coefficients of S¢+1}).
(1e(Se)7LSe , (T U{coefficients of Se41}) ) = (14—, Gv , my ).
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Subresultant

Computed over the ring R/(T) given in input.

Theorem 4 (Last non-nilpotent subresultant criterion)

Let {a, b, Sq4,—1(a, b), ...} be the subresultant chain of a and b.
Assume that Sy(a, b) # 0, and S¢(a,b) =0, fork =¢—1,...,0.
Find from r = { to dp, the last non-nilpotent coefficient lc(S;) of
the subresultant.

Then lce(Se) ™Sy = [[4_; G, mod (T U {coefficients of S¢+1}).
(1e(Se)7LSe , (T U{coefficients of Se41}) ) = (14—, Gv , my ).

Need to detect nilpotent mod T: iterative resultant:
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Theorem 4 (Last non-nilpotent subresultant criterion)

Let {a, b, Sq4,—1(a, b), ...} be the subresultant chain of a and b.
Assume that Sy(a, b) # 0, and S¢(a,b) =0, fork =¢—1,...,0.
Find from r = { to dp, the last non-nilpotent coefficient lc(S;) of
the subresultant.

Then lce(Se) ™Sy = [[4_; G, mod (T U {coefficients of S¢+1}).
(1e(Se)7LSe , (T U{coefficients of Se41}) ) = (14—, Gv , my ).

Need to detect nilpotent mod T: iterative resultant:

f is nilpotent if and only if :
Resy, (Resy, (- - - Resy, (Resy,(f, Tn), Th-1) -+ ), T2), T1) = 0
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Subresultant 2

© Compute a subresultant sequence a, b, S, ..., S, ri > riy1,
modulo T, until to get a zero: S, = 0 mod (T).
Q/j=t
© While isNil(lc(Sy,)) do
o j=j-1
@ g. = Monic(S;) // Invert leading Coeff.

Q my, = (T)+ (coeff of S,,)

@ Return [(gy, m,) ]
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Subresultant 2

© Compute a subresultant sequence a, b, S, ..., S, ri > riy1,
modulo T, until to get a zero: S, = 0 mod (T).

Q,j=t
© While isNil(lc(Sy,)) do
0 j=j-1
@ g. = Monic(S;) // Invert leading Coeff.
Q my, = (T)+ (coeff of S,,)

s,
Q oot = InvP~H(Fa5) // Assumption

@ Return [(gu, my), Prext]
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Case of n = 1 variable: iteration

n=1: T = (Ti(x1)) = (p*), where p; € k[xi1] is irreducible.

o After having found g, = 5; := 1c(S:)™1S:, Prext, and
my, = (p'), 1<n<e.
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Case of n = 1 variable: iteration

n=1: T = (Ti(x1)) = (p*), where p; € k[xi1] is irreducible.
@ After having found g, = S = 1c(S:)™1S:, Prext, and
my, = (p'), 1<n<e.
@ iterate the same algorithm with:

o Input: S =g, , Monic(S¢+1) = Prext and
instead of a, b and T = (p;*).
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Case of n = 1 variable: iteration

n=1: T = (Ti(x1)) = (p*), where p; € k[xi1] is irreducible.
@ After having found g, = S = 1c(S:)™1S:, Prext, and
my, = (p'), 1<n<e.
@ iterate the same algorithm with:
o Input: S =g, , Monic(S¢+1) = Prext and
instead of a, b and T = (p;*).
o where Monic(A) = InvP(A) ! gt
The "nilpotent part” NilP(A) divides A and we can invert the
remaining invertible part InvP(A).
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Case of n = 1 variable: iteration

n=1: T = (Ti(x1)) = (p*), where p; € k[xi1] is irreducible.

@ After having found g, = S = 1c(S:)™1S:, Prext, and
my, = (p'), 1<n<e.
@ iterate the same algorithm with:
o Input: S =g, , Monic(S¢+1) = Prext and
instead of a, b and T = (p;*).
o where Monic(A) = InvP(A) ! gt
The "nilpotent part” NilP(A) divides A and we can invert the
remaining invertible part InvP(A).

o It ouptuts, g, 1 := H“j;i G, mod instead of modp;®
(precision loss).
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Case of n = 1 variable: iteration

n=1: T = (Ti(x1)) = (p*), where p; € k[xi1] is irreducible.
@ After having found g, = S = 1c(S:)™1S:, Prext, and
my, = (p'), 1<n<e.
@ iterate the same algorithm with:

o Input: S =g, , Monic(S¢+1) = Prext and
instead of a, b and T = (p;*).
o where Monic(A) = InvP(A) ! gt
The "nilpotent part” NilP(A) divides A and we can invert the
remaining invertible part InvP(A).
o It ouptuts, g, 1 := H“j;i G, mod instead of modp;®
(precision loss).

And repeat to find the next block: g, 1 mod pf, n<n<e.
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Remarks on the general case n > 1

For n > 1 variables, it is more delicate to iterate the subresultant
routine:

@ No simple equivalent for switching ps* <+ p*~ "™ in the

recursive call.
@ No evidence that the nilpotent part of the leading coefficient
of S;11 divides the whole Sy 1.

Some examples show that it still work though.
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Conclusion

Contributions:
@ Clarification of the meaning of gcd.
@ Preliminaries algorithms based on subresultant

@ Well identified problems to consider the case of n > 1
variables.

Perspective:

@ Remove the restriction of one primary ideal to a general
non-radical triangular set.

@ conisder “saturated ideals” in positive dimension.
By putting the free variables as coefficients.

Vielen Dank
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