Dahan Xavier

Ochanomizu Univeristy, Faculty of General Educational Research Tokyo, Japan

ISSAC 2017, July 24-28 — Kaiserslautern

Introduction

Two polynomials $a, b \in R[y]$, R commutative ring. Known gcd:

- Unique Factorization Domains: Example: $R = k[x_1, ..., x_n]$.
- Over a field R = K. Bézout identity: au + bv = g $(\langle g \rangle = \langle a, b \rangle)$.

Example: $R = k[x_1, ..., x_n]/p$, p a maximal ideal

- Direct product of fields (Local-Global principle):
 - Typically: $R = k[x_1, \dots, x_n]/I$, where $I = \cap_{\iota} \mathfrak{p}_{\iota}$: \mathfrak{p} maximal and $\mathfrak{p}_{\iota} + \mathfrak{p}_{\iota'} = \langle 1 \rangle$ for $\iota \neq \iota'$.
 - Computationally: the heart of some triangular decomposition methods.
 - Realized through the CRT and the so-called "D5 principle".
- Gcd notions over more general rings have been introduced, but with some limitation.

Main Result

Address the case of coefficient rings of type $R := k[x_1, \dots, x_n]/\mathfrak{q}$,

- where $\mathfrak q$ is a primary ideal of radical $\sqrt{\mathfrak q}=\mathfrak p$ a maximal ideal.
- Any non zero element is either nilpotent or invertible.

Result:

- Observation: a "gcd" depends on the "precision" to which coefficients are taken.
- Introduction of the Gcd chain that encompasses all these gcds with a structural isomorphism that generalizes: $\langle a,b\rangle=\langle g\rangle$.
- Computation: assume that q is given by a lex GB in a purely triangular form (triangular set).
- Preliminary algorithm based on a subresultant sequence, but:
 - Still relies on an unproved assumption
 - Some "precision" is lost

Background: triangular decomposition method

Triangular decomposition: Wu-Ritt, Lazard, Kalkbrener, Wang, Moreno-Maza, . . .

Implementation: RegularChains library of MAPLE.

Background: triangular decomposition method

Triangular decomposition: Wu-Ritt, Lazard, Kalkbrener, Wang, Moreno-Maza, . . .

Implementation: RegularChains library of MAPLE.

Previous work on Gcd modulo a non-radical triangular set:

[Moreno-Maza, Rioboo'95] Ask the question of a gcd with possibly nilpotent elements in the coefficients.

[Li,Moreno-Maza, Pan'09] Study more precise conditions for a gcd to exist

Background: triangular decomposition method

Triangular decomposition: Wu-Ritt, Lazard, Kalkbrener, Wang, Moreno-Maza, . . .

Implementation: RegularChains library of MAPLE.

Previous work on Gcd modulo a non-radical triangular set:

[Moreno-Maza, Rioboo'95] Ask the question of a gcd with possibly nilpotent elements in the coefficients.

[Li,Moreno-Maza, Pan'09] Study more precise conditions for a gcd to exist

Previous work on representing multiplicities with triangular set:

[Cheng, X.-S. Gao'14] , [B.H Li'03]

[Marcus, Moreno-Maza, Vrbik'12], [Alvandi, Moreno-Maza, Schost, Vrbik'15]

Motivation for non-radical triangular sets

For solving, computing the radical ideal representation is enough. However:

 The radical of a triangular set may not be triangular: more decomposition work may be required, whereas:

Theorem 1

the primary ideals of a triangular set are triangular

- Triangular sets have the ability to represent non-radical ideal (yet not as completely as a lex GB) . . .
- ... while some other methods, like RUR cannot represent faithfully a non-radical ideal.

Basic example: $R = k[x]/\mathfrak{q}$, $\mathfrak{q} = \langle x^3 \rangle$.

$$a = y^4 + (2x^2 + 3x + 1)y^3 + (-x^2 - x - 1)y^2 + (13x^2 - 4x - 1)y - 7x^2 - 2x$$

$$b = y^3 + (3x^2 + 3x)y^2 + (-3x^2 - 3x - 1)y - 10x^2 - 2x.$$

What could be a gcd of a and b?

Basic example: $R = k[x]/\mathfrak{q}$, $\mathfrak{q} = \langle x^3 \rangle$.

$$a = y^4 + (2x^2 + 3x + 1)y^3 + (-x^2 - x - 1)y^2 + (13x^2 - 4x - 1)y - 7x^2 - 2x$$

$$b = y^3 + (3x^2 + 3x)y^2 + (-3x^2 - 3x - 1)y - 10x^2 - 2x.$$

What could be a gcd of a and b?

• Over R (modulo x^3) the largest degree polynomial that divides both a and b is: $y - 1 - x - 2x^2$

Basic example: $R = k[x]/\mathfrak{q}$, $\mathfrak{q} = \langle x^3 \rangle$.

$$a = y^4 + (2x^2 + 3x + 1)y^3 + (-x^2 - x - 1)y^2 + (13x^2 - 4x - 1)y - 7x^2 - 2x$$

$$b = y^3 + (3x^2 + 3x)y^2 + (-3x^2 - 3x - 1)y - 10x^2 - 2x.$$

What could be a gcd of a and b?

- Over R (modulo x^3) the largest degree polynomial that divides both a and b is: $y-1-x-2x^2$
- And modulo x^2 : that is of intermediate precision, the gcd is of degree 2: (y+2x)(y-1-x).

Basic example: $R = k[x]/\mathfrak{q}$, $\mathfrak{q} = \langle x^3 \rangle$.

$$a = y^4 + (2x^2 + 3x + 1)y^3 + (-x^2 - x - 1)y^2 + (13x^2 - 4x - 1)y - 7x^2 - 2x$$

$$b = y^3 + (3x^2 + 3x)y^2 + (-3x^2 - 3x - 1)y - 10x^2 - 2x.$$

What could be a gcd of a and b?

- Over R (modulo x^3) the largest degree polynomial that divides both a and b is: $y-1-x-2x^2$
- And modulo x^2 : that is of intermediate precision, the gcd is of degree 2: (y+2x)(y-1-x).
- Finally modulo x (less precise coefficients), the gcd is of higher degree: y(y+1)(y-1)

A primary lexicographic ideal can be seen as a precision ring: Here $\mathfrak{q}=\langle x^3\rangle$ is of precision 3.

And the degree of the gcd decreases with precision:

(e.g.
$$y \mid (y+x)(y+1) \mod \langle x \rangle$$
 but $y \nmid (y+x)(y+1) \mod \langle x^2 \rangle$)

introduction

A primary lexicographic ideal can be seen as a precision ring: Here $\mathfrak{q}=\langle x^3\rangle$ is of precision 3.

And the degree of the gcd decreases with precision: (e.g. $y \mid (y+x)(y+1) \mod \langle x \rangle$ but $y \nmid (y+x)(y+1) \mod \langle x^2 \rangle$)

Definition 2 (Gcd chain)

In the example: $[(g_1, \langle x \rangle), (g_2, \langle x^2 \rangle), (g_3, \langle x^3 \rangle)].$

It verifies:

• $(R/\langle x \rangle)[y]/\langle a,b \rangle \simeq (R/\langle x \rangle)[y]/\langle g_1 \rangle$

introduction

A primary lexicographic ideal can be seen as a precision ring: Here $\mathfrak{q} = \langle x^3 \rangle$ is of precision 3.

And the degree of the gcd decreases with precision:

(e.g.
$$y \mid (y+x)(y+1) \bmod \langle x \rangle$$
 but $y \nmid (y+x)(y+1) \bmod \langle x^2 \rangle$)

Definition 2 (Gcd chain)

In the example: $[(g_1, \langle x \rangle), (g_2, \langle x^2 \rangle), (g_3, \langle x^3 \rangle)].$ It verifies:

- $(R/\langle x \rangle)[y]/\langle a, b \rangle \simeq (R/\langle x \rangle)[y]/\langle g_1 \rangle$
- $(R/\langle x^2 \rangle)[y]/\langle a, b \rangle \simeq (R/\langle x^2 \rangle)[y]/\langle g_2 \rangle \times (R/\langle x \rangle)[y]/\langle g_1/g_2 \rangle$

introduction

A primary lexicographic ideal can be seen as a precision ring: Here $\mathfrak{q}=\langle x^3\rangle$ is of precision 3.

And the degree of the gcd decreases with precision:

(e.g.
$$y \mid (y+x)(y+1) \mod \langle x \rangle$$
 but $y \nmid (y+x)(y+1) \mod \langle x^2 \rangle$)

Definition 2 (Gcd chain)

In the example: $[(g_1, \langle x \rangle), (g_2, \langle x^2 \rangle), (g_3, \langle x^3 \rangle)]$. It verifies:

- $(R/\langle x \rangle)[y]/\langle a,b \rangle \simeq (R/\langle x \rangle)[y]/\langle g_1 \rangle$
- $(R/\langle x^2 \rangle)[y]/\langle a, b \rangle \simeq (R/\langle x^2 \rangle)[y]/\langle g_2 \rangle \times (R/\langle x \rangle)[y]/\langle g_1/g_2 \rangle$
- $(R/\langle x^3 \rangle)[y]/\langle a, b \rangle \simeq$ $(R/\langle x^3 \rangle)[y]/\langle g_3 \rangle \times (R/\langle x^2 \rangle)[y]/\langle g_2/g_3 \rangle \times (R/\langle x \rangle)[y]/\langle g_1/g_2 \rangle$

introduction

A primary lexicographic ideal can be seen as a precision ring: Here $\mathfrak{q} = \langle x^3 \rangle$ is of precision 3.

And the degree of the gcd decreases with precision:

(e.g.
$$y \mid (y+x)(y+1) \bmod \langle x \rangle$$
 but $y \nmid (y+x)(y+1) \bmod \langle x^2 \rangle$)

Definition 2 (Gcd chain)

In the example: $[(g_1, \langle x \rangle), (g_2, \langle x^2 \rangle), (g_3, \langle x^3 \rangle)].$ It verifies:

- $(R/\langle x \rangle)[y]/\langle a, b \rangle \simeq (R/\langle x \rangle)[y]/\langle g_1 \rangle$
- $(R/\langle x^2 \rangle)[y]/\langle a,b \rangle \simeq (R/\langle x^2 \rangle)[y]/\langle g_2 \rangle \times (R/\langle x \rangle)[y]/\langle g_1/g_2 \rangle$
- $(R/\langle x^3\rangle)[v]/\langle a,b\rangle \simeq$ $(R/\langle x^3\rangle)[y]/\langle g_3\rangle \times (R/\langle x^2\rangle)[y]/\langle g_2/g_3\rangle \times (R/\langle x\rangle)[y]/\langle g_1/g_2\rangle$

Actually...

• $(R/\langle x^{10}\rangle)[y]/\langle a,b\rangle \simeq$ $(R/\langle x^{10}\rangle)[y]/\langle g_3\rangle \times (R/\langle x^2\rangle)[y]/\langle g_2/g_3\rangle \times (R/\langle x\rangle)[y]/\langle g_1/g_2\rangle$

General case: "Precision ring"

Fact: $\sqrt{\mathfrak{q}} := \mathfrak{p}$ has a triangular lex GB represented by polynomials:

$$(p_1(x_1), p_2(x_1, x_2), \ldots, p_n(x_1, \ldots, x_n)),$$

where p_{i+1} is irreducible over the field $k[x_1, \ldots, x_i]/\langle p_1, \ldots, p_i \rangle$. This encodes a "tower of fields extension".

General case: "Precision ring"

Fact: $\sqrt{\mathfrak{q}} := \mathfrak{p}$ has a triangular lex GB represented by polynomials:

$$(p_1(x_1), p_2(x_1, x_2), \ldots, p_n(x_1, \ldots, x_n)),$$

where p_{i+1} is irreducible over the field $k[x_1, \ldots, x_i]/\langle p_1, \ldots, p_i \rangle$. This encodes a "tower of fields extension".

Proposition 1 (Reformulation of Gianni-Trager-Zaccharias)

Any primary triangular ideal can be written as:

$$T_1(x_1) = p_1^{e_1} \ T_2(x_1, x_2) = p_2^{e_2} + \sum_{i_1=1}^{e_1-1} \sum_{i_2=0}^{e_2-1} c[i_1, i_2] p_1^{i_1} p_2^{i_2} \ dots \ T_n(x_1, \dots, x_n) = p_n^{e_n} + \sum_{i_1=1}^{e_1-1} \dots \sum_{i_n=0}^{e_n-1} c[i_1, \dots, i_n] p_1^{i_1} \dots p_n^{i_n} \ T_\ell \equiv p_\ell^{e_\ell} \mod p_1, \dots, p_{\ell-1} \Rightarrow c[0, \dots, 0, i_\ell] = 0 \text{ for all } i_\ell.$$

General case: "Precision ring" 2

Proposition 2 (Reformulation of Gianni-Trager-Zaccharias)

$$\begin{array}{c} \vdots \\ T_n(x_1,\ldots,x_n) = p_n^{e_n} + \sum_{i_1=1}^{e_1-1} \cdots \sum_{i_n=0}^{e_n-1} c[i_1,\ldots,i_n] p_1^{i_1} \cdots p_n^{i_n} \\ T_\ell \equiv \langle p_\ell^{e_\ell} \bmod p_1,\ldots,p_{\ell-1} \rangle \Rightarrow c[0,\ldots,0,i_\ell] = 0 \text{ for all } i_\ell. \end{array}$$

• If
$$p_i = x_i - \alpha_i$$
 then this is Taylor expansion:
$$c[i_1, \dots, i_n] = \frac{1}{i_1!i_2!\cdots i_{n-1}!i_n!} \frac{\partial^{i_1+\cdots+i_n}T_n}{\partial x_i^{i_1}\cdots \partial x_n^{i_n}} (\alpha_1, \dots, \alpha_n)$$

Proposition 2 (Reformulation of Gianni-Trager-Zaccharias)

$$T_n(x_1, ..., x_n) = p_n^{e_n} + \sum_{i_1=1}^{e_1-1} \cdots \sum_{i_n=0}^{e_n-1} c[i_1, ..., i_n] p_1^{i_1} \cdots p_n^{i_n}$$

$$T_\ell \equiv \langle p_\ell^{e_\ell} \bmod p_1, ..., p_{\ell-1} \rangle \Rightarrow c[0, ..., 0, i_\ell] = 0 \text{ for all } i_\ell.$$

- If $p_i = x_i \alpha_i$ then this is Taylor expansion: $c[i_1, \dots, i_n] = \frac{1}{i_1! i_2! \cdots i_{n-1}! i_n!} \frac{\partial^{i_1 + \dots + i_n} T_n}{\partial x_i^{i_1} \cdots \partial x_n^{i_n}} (\alpha_1, \dots, \alpha_n)$
- Enhance symbolic thinking: examples with $p_1 = x_1, p_2 = x_2, \dots, p_n = x_n$ are essentially enough.

Proposition 2 (Reformulation of Gianni-Trager-Zaccharias)

$$\begin{array}{c} \vdots \\ T_n(x_1,\ldots,x_n) = p_n^{e_n} + \sum_{i_1=1}^{e_1-1} \cdots \sum_{i_n=0}^{e_n-1} c[i_1,\ldots,i_n] p_1^{i_1} \cdots p_n^{i_n} \\ T_\ell \equiv \langle p_\ell^{e_\ell} \bmod p_1,\ldots,p_{\ell-1} \rangle \Rightarrow c[0,\ldots,0,i_\ell] = 0 \text{ for all } i_\ell. \end{array}$$

- If $p_i = x_i \alpha_i$ then this is Taylor expansion: $c[i_1, \dots, i_n] = \frac{1}{i_1! i_2! \cdots i_{n-1}! i_n!} \frac{\partial^{i_1 + \dots + i_n} T_n}{\partial x_i^{i_1} \cdots \partial x_n^{i_n}} (\alpha_1, \dots, \alpha_n)$
- Enhance symbolic thinking: examples with $p_1 = x_1, p_2 = x_2, \dots, p_n = x_n$ are essentially enough.
- Talking about precision makes sense.

Proposition 2 (Reformulation of Gianni-Trager-Zaccharias)

 $\begin{array}{c} \vdots \\ T_n(x_1,\ldots,x_n) = p_n^{e_n} + \sum_{i_1=1}^{e_1-1} \cdots \sum_{i_n=0}^{e_n-1} c[i_1,\ldots,i_n] p_1^{i_1} \cdots p_n^{i_n} \\ T_\ell \equiv \langle p_\ell^{e_\ell} \bmod p_1,\ldots,p_{\ell-1} \rangle \Rightarrow c[0,\ldots,0,i_\ell] = 0 \text{ for all } i_\ell. \end{array}$

- If $p_i = x_i \alpha_i$ then this is Taylor expansion: $c[i_1, \dots, i_n] = \frac{1}{i_1!i_2!\cdots i_{n-1}!i_n!} \frac{\partial^{i_1+\cdots+i_n}T_n}{\partial x_i^{i_1}\cdots \partial x_n^{i_n}} (\alpha_1, \dots, \alpha_n)$
- Enhance symbolic thinking: examples with $p_1 = x_1, p_2 = x_2, \dots, p_n = x_n$ are essentially enough.
- Talking about precision makes sense.
 disclaimer: This is not exactly the usual sense where it refers to "truncation" (power series, p-adic numbers) by pure powers of uniformizers...

Since $R = k[x_1, \dots, x_n]/\mathfrak{q}$ is local of dimension zero, abstract algebra tells that it is Henselian:

Theorem 3

Any factorization into coprimes of a monic polynomial over the field $k[x_1, \ldots, x_n]/\sqrt{\mathfrak{q}}$ lifts into a unique factorization into coprimes over $R = k[x_1, \ldots, x_n]/\mathfrak{q}$.

Since $R = k[x_1, \dots, x_n]/\mathfrak{q}$ is local of dimension zero, abstract algebra tells that it is Henselian:

Theorem 3

Any factorization into coprimes of a monic polynomial over the field $k[x_1, \ldots, x_n]/\sqrt{\mathfrak{q}}$ lifts into a unique factorization into coprimes over $R = k[x_1, \ldots, x_n]/\mathfrak{q}$.

 The article contains a short constructive proof which clarifies the link between primary decomposition (unique since in dimension zero).

Since $R = k[x_1, \dots, x_n]/\mathfrak{q}$ is local of dimension zero, abstract algebra tells that it is Henselian:

Theorem 3

Any factorization into coprimes of a monic polynomial over the field $k[x_1, \ldots, x_n]/\sqrt{\mathfrak{q}}$ lifts into a unique factorization into coprimes over $R = k[x_1, \ldots, x_n]/\mathfrak{q}$.

- The article contains a short constructive proof which clarifies the link between primary decomposition (unique since in dimension zero).
- this is fundamental to define the new gcd notion called gcd chain. (seems to have been overlooked in previous work)

Since $R = k[x_1, \dots, x_n]/\mathfrak{q}$ is local of dimension zero, abstract algebra tells that it is Henselian:

Theorem 3

Any factorization into coprimes of a monic polynomial over the field $k[x_1, \ldots, x_n]/\sqrt{\mathfrak{q}}$ lifts into a unique factorization into coprimes over $R = k[x_1, \ldots, x_n]/\mathfrak{q}$.

- The article contains a short constructive proof which clarifies the link between primary decomposition (unique since in dimension zero).
- this is fundamental to define the new gcd notion called gcd chain. (seems to have been overlooked in previous work)
- Talk of Carlos Sircana "Factorization of polynomials over $\mathbb{Z}/\langle p^\ell \rangle$ " .
 - Implicitly uses the Henselian property over the local ring $\mathbb{Z}/\langle p^\ell \rangle$.

$$a = a_1 \cdots a_\ell \cdot a_{\ell+1} \cdots a_s \cdot A$$

$$b = b_1 \cdots b_\ell \cdot b_{\ell+1} \cdots b_s \cdot B$$

•
$$gcd(A, B) \equiv 1 \mod p$$

$$a = a_1 \cdots a_{\ell} \cdot a_{\ell+1} \cdots a_s \cdot A$$

$$b = b_1 \cdots b_{\ell} \cdot b_{\ell+1} \cdots b_s \cdot B$$

- $gcd(A, B) \equiv 1 \mod p$
- for $i \leq \ell$, $\langle a_i, b_i \rangle \equiv \langle a_i \rangle \equiv \langle \rho_i^{\lambda_i} \rangle$ mod \mathfrak{p} , ρ_i irreducible in $k[x_1, \ldots, x_n]/\mathfrak{p}$.

$$a = a_1 \cdots a_\ell \cdot a_{\ell+1} \cdots a_s \cdot A$$

 $b = b_1 \cdots b_\ell \cdot b_{\ell+1} \cdots b_s \cdot B$

- $gcd(A, B) \equiv 1 \mod p$
- for $i \leq \ell$, $\langle a_i, b_i \rangle \equiv \langle a_i \rangle \equiv \langle \rho_i^{\lambda_i} \rangle$ mod \mathfrak{p} , ρ_i irreducible in $k[x_1, \ldots, x_n]/\mathfrak{p}$.
- for $\ell < i \le s$, $\langle a_i, b_i \rangle \equiv \langle b_i \rangle \equiv \langle \rho_i^{\nu_i} \rangle \mod \mathfrak{p}$.

$$a = a_1 \cdots a_{\ell} \cdot a_{\ell+1} \cdots a_s \cdot A$$

$$b = b_1 \cdots b_{\ell} \cdot b_{\ell+1} \cdots b_s \cdot B$$

- $gcd(A, B) \equiv 1 \mod p$
- for $i \leq \ell$, $\langle a_i, b_i \rangle \equiv \langle a_i \rangle \equiv \langle \rho_i^{\lambda_i} \rangle$ mod \mathfrak{p} , ρ_i irreducible in $k[x_1, \ldots, x_n]/\mathfrak{p}$.
- for $\ell < i \le s$, $\langle a_i, b_i \rangle \equiv \langle b_i \rangle \equiv \langle \rho_i^{\nu_i} \rangle \mod \mathfrak{p}$.
- $i \leq \ell$, $b_i \equiv \rho^{\nu_i \lambda_i} a_i + r_i$, nilpotent) (r_i)

$$a = a_1 \cdots a_{\ell} \cdot a_{\ell+1} \cdots a_s \cdot A$$

$$b = b_1 \cdots b_{\ell} \cdot b_{\ell+1} \cdots b_s \cdot B$$

- $gcd(A, B) \equiv 1 \mod p$
- for $i \leq \ell$, $\langle a_i, b_i \rangle \equiv \langle a_i \rangle \equiv \langle \rho_i^{\lambda_i} \rangle$ mod \mathfrak{p} , ρ_i irreducible in $k[x_1, \ldots, x_n]/\mathfrak{p}$.
- for $\ell < i \le s$, $\langle a_i, b_i \rangle \equiv \langle b_i \rangle \equiv \langle \rho_i^{\nu_i} \rangle \mod \mathfrak{p}$.
- $i \leq \ell$, $b_i \equiv \rho^{\nu_i \lambda_i} a_i + r_i$, $i > \ell$, $a_i \equiv \rho^{\lambda_i \nu_i} b_i + r_i$ (r_i nilpotent)

$$a = a_1 \cdots a_\ell \cdot a_{\ell+1} \cdots a_s \cdot A$$

 $b = b_1 \cdots b_\ell \cdot b_{\ell+1} \cdots b_s \cdot B$

- $gcd(A, B) \equiv 1 \mod p$
- for $i \leq \ell$, $\langle a_i, b_i \rangle \equiv \langle a_i \rangle \equiv \langle \rho_i^{\lambda_i} \rangle$ mod \mathfrak{p} , ρ_i irreducible in $k[x_1, \ldots, x_n]/\mathfrak{p}$.
- for $\ell < i \le s$, $\langle a_i, b_i \rangle \equiv \langle b_i \rangle \equiv \langle \rho_i^{\nu_i} \rangle \mod \mathfrak{p}$.
- $i \leq \ell$, $b_i \equiv \rho^{\nu_i \lambda_i} a_i + r_i$, $i > \ell$, $a_i \equiv \rho^{\lambda_i \nu_i} b_i + r_i$ (r_i nilpotent)

 $a_i = a_1 \cdots a_\ell$.

 $a_i = a_1 \cdots a_\ell$ ($a_i = a_1 \cdots a_\ell = a_1 \cdots a_\ell$).

$$a = a_1 \cdots a_\ell \cdot \prod_{i=\ell+1} (\rho_i^{\lambda_i - \nu_i} b_i + r_i) \cdot A$$

$$b = \prod_{i=1}^{\ell} (\rho_i^{\nu_i - \lambda_i} a_i + r_i) \cdot b_{\ell+1} \cdots b_s \cdot B$$

Any sequence of $\mathfrak{p} = \sqrt{\langle T \rangle}$ -primary ideals contained in $\langle T \rangle$:

• $\mathfrak{q} = \langle T \rangle \subset \mathfrak{m}_1 \subsetneq \mathfrak{m}_2 \subsetneq \cdots \subsetneq \mathfrak{m}_{u-1} \subsetneq \mathfrak{m}_u$ These define "precision" for coefficients of gcds. Any sequence of $\mathfrak{p} = \sqrt{\langle T \rangle}$ -primary ideals contained in $\langle T \rangle$:

- $\mathfrak{q} = \langle T \rangle \subset \mathfrak{m}_1 \subsetneq \mathfrak{m}_2 \subsetneq \cdots \subsetneq \mathfrak{m}_{u-1} \subsetneq \mathfrak{m}_u$ These define "precision" for coefficients of gcds.
- at least one r_{ℓ_i} is in \mathfrak{m}_i but not in \mathfrak{m}_{i-1} for $\Leftrightarrow \mathfrak{c}(r_{\ell_i}) := \langle \text{coefficients of } r_{\ell_i} \rangle \Rightarrow \mathfrak{c}(r_{\ell_i}) \subset \mathfrak{m}_i, \ \mathfrak{c}(r_{\ell_i}) \subsetneq \mathfrak{m}_{i-1}$

General gcd chain

Any sequence of $\mathfrak{p} = \sqrt{\langle T \rangle}$ -primary ideals contained in $\langle T \rangle$:

- $\mathfrak{q} = \langle T \rangle \subset \mathfrak{m}_1 \subsetneq \mathfrak{m}_2 \subsetneq \cdots \subsetneq \mathfrak{m}_{n-1} \subsetneq \mathfrak{m}_n$ These define "precision" for coefficients of gcds.
- at least one r_{ℓ_i} is in \mathfrak{m}_i but not in \mathfrak{m}_{i-1} for $\Leftrightarrow \mathfrak{c}(r_{\ell_i}) := \langle \text{coefficients of } r_{\ell_i} \rangle \Rightarrow \mathfrak{c}(r_{\ell_i}) \subset \mathfrak{m}_i, \ \mathfrak{c}(r_{\ell_i}) \subseteq \mathfrak{m}_{i-1}$
- $i \leq \ell | r_i \in \mathfrak{m}_v, r_i \notin \mathfrak{m}_{v-1}$ $i > \ell | r_i \in \mathfrak{m}_v, r_i \notin \mathfrak{m}_{v-1}$

Any sequence of $\mathfrak{p} = \sqrt{\langle T \rangle}$ -primary ideals contained in $\langle T \rangle$:

- $\mathfrak{q} = \langle T \rangle \subset \mathfrak{m}_1 \subsetneq \mathfrak{m}_2 \subsetneq \cdots \subsetneq \mathfrak{m}_{u-1} \subsetneq \mathfrak{m}_u$ These define "precision" for coefficients of gcds.
- at least one r_{ℓ_i} is in \mathfrak{m}_i but not in \mathfrak{m}_{i-1} for $\Leftrightarrow \mathfrak{c}(r_{\ell_i}) := \langle \text{coefficients of } r_{\ell_i} \rangle \Rightarrow \mathfrak{c}(r_{\ell_i}) \subset \mathfrak{m}_i, \ \mathfrak{c}(r_{\ell_i}) \subsetneq \mathfrak{m}_{i-1}$
- $\bullet \ \ \mathsf{Define} \ \ G_v \equiv \prod_{i \leq \ell \mid r_i \in \mathfrak{m}_v, \ r_i \notin \mathfrak{m}_{v-1}} a_i \cdot \prod_{i > \ell \mid r_i \in \mathfrak{m}_v, \ r_i \notin \mathfrak{m}_{v-1}} b_i \ \mathsf{mod} \ \mathfrak{m}_v$
- [$(\prod_{v=1}^{i} G_v, \mathfrak{m}_i)_{i=1,\dots,u}$] is a gcd chain, that is:

Any sequence of $\mathfrak{p} = \sqrt{\langle T \rangle}$ -primary ideals contained in $\langle T \rangle$:

- $\mathfrak{q} = \langle T \rangle \subset \mathfrak{m}_1 \subsetneq \mathfrak{m}_2 \subsetneq \cdots \subsetneq \mathfrak{m}_{u-1} \subsetneq \mathfrak{m}_u$ These define "precision" for coefficients of gcds.
- at least one r_{ℓ_i} is in \mathfrak{m}_i but not in \mathfrak{m}_{i-1} for $\Leftrightarrow \mathfrak{c}(r_{\ell_i}) := \langle \text{coefficients of } r_{\ell_i} \rangle \Rightarrow \mathfrak{c}(r_{\ell_i}) \subset \mathfrak{m}_i, \ \mathfrak{c}(r_{\ell_i}) \subsetneq \mathfrak{m}_{i-1}$
- $\bullet \ \ \mathsf{Define} \ \ G_v \equiv \prod_{i \leq \ell \mid r_i \in \mathfrak{m}_v, \ r_i \notin \mathfrak{m}_{v-1}} a_i \cdot \prod_{i > \ell \mid r_i \in \mathfrak{m}_v, \ r_i \notin \mathfrak{m}_{v-1}} b_i \ \mathsf{mod} \ \mathfrak{m}_v$
- [($\prod_{v=1}^{i} G_v$, \mathfrak{m}_i)_{i=1,...,u}] is a gcd chain, that is:
 - $(R/\mathfrak{m}_u)[y]/\langle a,b\rangle \simeq (R/\mathfrak{m}_u)[y]/\langle \prod_{i=1}^u G_i\rangle$.

A (77)

Any sequence of $\mathfrak{p}=\sqrt{\langle \mathcal{T} \rangle}$ -primary ideals contained in $\langle \mathcal{T} \rangle$:

- $\mathfrak{q} = \langle T \rangle \subset \mathfrak{m}_1 \subsetneq \mathfrak{m}_2 \subsetneq \cdots \subsetneq \mathfrak{m}_{u-1} \subsetneq \mathfrak{m}_u$ These define "precision" for coefficients of gcds.
- at least one r_{ℓ_i} is in \mathfrak{m}_i but not in \mathfrak{m}_{i-1} for $\Leftrightarrow \mathfrak{c}(r_{\ell_i}) := \langle \text{coefficients of } r_{\ell_i} \rangle \Rightarrow \mathfrak{c}(r_{\ell_i}) \subset \mathfrak{m}_i, \ \mathfrak{c}(r_{\ell_i}) \subsetneq \mathfrak{m}_{i-1}$
- $\bullet \ \ \mathsf{Define} \ \ G_v \equiv \prod_{i \leq \ell \mid r_i \in \mathfrak{m}_v, \ r_i \notin \mathfrak{m}_{v-1}} a_i \cdot \prod_{i > \ell \mid r_i \in \mathfrak{m}_v, \ r_i \notin \mathfrak{m}_{v-1}} b_i \ \mathsf{mod} \ \mathfrak{m}_v$
- [($\prod_{v=1}^{i} G_v$, \mathfrak{m}_i) $_{i=1,...,u}$] is a gcd chain, that is:
 - $(R/\mathfrak{m}_u)[y]/\langle a,b\rangle \simeq (R/\mathfrak{m}_u)[y]/\langle \prod_{i=1}^u G_i\rangle$.
 - $(R/\mathfrak{m}_{u-1})[y]/\langle a,b\rangle \simeq (R/\mathfrak{m}_{u-1})[y]/\langle \prod_{i=1}^{u-1} G_i\rangle \times (R/\mathfrak{m}_u)[y]/\langle G_u\rangle$

Any sequence of $\mathfrak{p} = \sqrt{\langle T \rangle}$ -primary ideals contained in $\langle T \rangle$:

- $\mathfrak{q} = \langle T \rangle \subset \mathfrak{m}_1 \subsetneq \mathfrak{m}_2 \subsetneq \cdots \subsetneq \mathfrak{m}_{u-1} \subsetneq \mathfrak{m}_u$ These define "precision" for coefficients of gcds.
- at least one r_{ℓ_i} is in \mathfrak{m}_i but not in \mathfrak{m}_{i-1} for $\Leftrightarrow \mathfrak{c}(r_{\ell_i}) := \langle \text{coefficients of } r_{\ell_i} \rangle \Rightarrow \mathfrak{c}(r_{\ell_i}) \subset \mathfrak{m}_i, \ \mathfrak{c}(r_{\ell_i}) \subsetneq \mathfrak{m}_{i-1}$
- $\bullet \ \ \mathsf{Define} \ \ G_v \equiv \prod_{i \leq \ell \mid r_i \in \mathfrak{m}_v, \ r_i \notin \mathfrak{m}_{v-1}} a_i \cdot \prod_{i > \ell \mid r_i \in \mathfrak{m}_v, \ r_i \notin \mathfrak{m}_{v-1}} b_i \ \mathsf{mod} \ \mathfrak{m}_v$
- [($\prod_{v=1}^{i} G_v$, \mathfrak{m}_i) $_{i=1,...,u}$] is a gcd chain, that is:
 - $(R/\mathfrak{m}_u)[y]/\langle a,b\rangle \simeq (R/\mathfrak{m}_u)[y]/\langle \prod_{i=1}^u G_i\rangle$.
 - $(R/\mathfrak{m}_{u-1})[y]/\langle a,b\rangle \simeq (R/\mathfrak{m}_{u-1})[y]/\langle \prod_{i=1}^{u-1} G_i\rangle \times (R/\mathfrak{m}_u)[y]/\langle G_u\rangle$
 - : : :
 - $(R/\mathfrak{m}_1)[y]/\langle a,b\rangle \simeq (R/\mathfrak{m}_1)[y]/\langle G_1\rangle \times \cdots \times (R/\mathfrak{m}_u)[y]/\langle G_u\rangle$

Computation through a subresultant sequence

Let $[(\prod_{v=1}^{i} G_v, \mathfrak{m}_i)_{i=1,\dots,u}]$ be a notation for gcd chain.

Summary of outcomes:

• always possible to compute $(\prod_{v=1}^u G_v \ , \ \mathfrak{m}_u)$. largest degree gcd: $(R/\mathfrak{m}_u)[y]/\langle a,b\rangle \simeq (R/\mathfrak{m}_u)[y]/\langle \prod_{v=1}^u G_v\rangle$

Let
$$[(\prod_{v=1}^{i} G_v, \mathfrak{m}_i)_{i=1,\dots,u}]$$
 be a notation for gcd chain.

Summary of outcomes:

- always possible to compute $(\prod_{v=1}^u G_v \ , \ \mathfrak{m}_u)$. largest degree gcd: $(R/\mathfrak{m}_u)[y]/\langle a,b\rangle \simeq (R/\mathfrak{m}_u)[y]/\langle \prod_{v=1}^u G_v\rangle$
- more difficult to compute the other blocks $(\prod_{v=1}^{i} G_v, \mathfrak{m}_i)_{i=1,\dots,u-1}$
 - attempt with some recursive calls...
 - ... OK in the case n = 1 of one variable: $R = k[x_1]$
 - ... some "precision" loss in the process
 - ... general case: still built upon a strong assumption that mimicks the case n=1.

Let $[(\prod_{v=1}^{i} G_v, \mathfrak{m}_i)_{i=1,\dots,u}]$ be a notation for gcd chain.

Summary of outcomes:

- always possible to compute $(\prod_{v=1}^u G_v \ , \ \mathfrak{m}_u)$. largest degree gcd: $(R/\mathfrak{m}_u)[y]/\langle a,b\rangle \simeq (R/\mathfrak{m}_u)[y]/\langle \prod_{v=1}^u G_v\rangle$
- more difficult to compute the other blocks $(\prod_{v=1}^{i} G_v, \mathfrak{m}_i)_{i=1,\dots,u-1}$
 - attempt with some recursive calls...
 - ... OK in the case n = 1 of one variable: $R = k[x_1]$
 - ... some "precision" loss in the process
 - ... general case: still built upon a strong assumption that mimicks the case n = 1.
- ullet o perspective for future work.

Computed over the ring $R/\langle T \rangle$ given in input.

Theorem 4 (Last non-nilpotent subresultant criterion)

Let $\{a, b, S_{d_b-1}(a, b), \ldots\}$ be the subresultant chain of a and b.

Computed over the ring $R/\langle T \rangle$ given in input.

Theorem 4 (Last non-nilpotent subresultant criterion)

Let $\{a, b, S_{d_b-1}(a, b), \ldots\}$ be the subresultant chain of a and b. Assume that $S_{\ell}(a,b) \neq 0$, and $S_{k}(a,b) = 0$, for $k = \ell - 1, \ldots, 0$.

Computed over the ring $R/\langle T \rangle$ given in input.

Theorem 4 (Last non-nilpotent subresultant criterion)

Let $\{a,b,S_{d_b-1}(a,b),\ldots\}$ be the subresultant chain of a and b. Assume that $S_\ell(a,b)\neq 0$, and $S_k(a,b)=0$, for $k=\ell-1,\ldots,0$. Find from $r=\ell$ to d_b , the last non-nilpotent coefficient $lc(S_t)$ of the subresultant.

Computed over the ring $R/\langle T \rangle$ given in input.

Theorem 4 (Last non-nilpotent subresultant criterion)

Let $\{a,b,S_{d_b-1}(a,b),\ldots\}$ be the subresultant chain of a and b. Assume that $S_\ell(a,b)\neq 0$, and $S_k(a,b)=0$, for $k=\ell-1,\ldots,0$. Find from $r=\ell$ to d_b , the last non-nilpotent coefficient $lc(S_t)$ of the subresultant.

Then $lc(S_t)^{-1}S_t \equiv \prod_{v=1}^u G_v \mod \langle T \cup \{coefficients \ of \ S_{t+1}\} \rangle$.

Computed over the ring $R/\langle T \rangle$ given in input.

Theorem 4 (Last non-nilpotent subresultant criterion)

Let $\{a,b,S_{d_b-1}(a,b),\ldots\}$ be the subresultant chain of a and b. Assume that $S_\ell(a,b) \neq 0$, and $S_k(a,b) = 0$, for $k = \ell - 1,\ldots,0$. Find from $r = \ell$ to d_b , the last non-nilpotent coefficient $lc(S_t)$ of the subresultant.

Then
$$lc(S_t)^{-1}S_t \equiv \prod_{v=1}^u G_v \mod \langle T \cup \{\text{coefficients of } S_{t+1}\} \rangle$$
. ($lc(S_t)^{-1}S_t$, $\langle T \cup \{\text{coefficients of } S_{t+1}\} \rangle$) = $(\prod_{v=1}^u G_v, \mathfrak{m}_u)$.

Computed over the ring $R/\langle T \rangle$ given in input.

Theorem 4 (Last non-nilpotent subresultant criterion)

Let $\{a,b,S_{d_b-1}(a,b),\ldots\}$ be the subresultant chain of a and b. Assume that $S_\ell(a,b) \neq 0$, and $S_k(a,b) = 0$, for $k = \ell - 1,\ldots,0$. Find from $r = \ell$ to d_b , the last non-nilpotent coefficient $lc(S_t)$ of the subresultant.

Then
$$lc(S_t)^{-1}S_t \equiv \prod_{v=1}^u G_v \mod \langle T \cup \{\text{coefficients of } S_{t+1}\} \rangle$$
. $(lc(S_t)^{-1}S_t, \langle T \cup \{\text{coefficients of } S_{t+1}\} \rangle) = (\prod_{v=1}^u G_v, \mathfrak{m}_u)$.

Need to detect nilpotent mod *T*: iterative resultant:

Computed over the ring $R/\langle T \rangle$ given in input.

Theorem 4 (Last non-nilpotent subresultant criterion)

Let $\{a,b,S_{d_b-1}(a,b),\ldots\}$ be the subresultant chain of a and b. Assume that $S_\ell(a,b) \neq 0$, and $S_k(a,b) = 0$, for $k = \ell - 1,\ldots,0$. Find from $r = \ell$ to d_b , the last non-nilpotent coefficient $lc(S_t)$ of the subresultant.

Then
$$lc(S_t)^{-1}S_t \equiv \prod_{v=1}^u G_v \mod \langle T \cup \{\text{coefficients of } S_{t+1}\} \rangle$$
. ($lc(S_t)^{-1}S_t$, $\langle T \cup \{\text{coefficients of } S_{t+1}\} \rangle$) = $(\prod_{v=1}^u G_v, \mathfrak{m}_u)$.

Need to detect nilpotent mod *T*: iterative resultant:

f is nilpotent if and only if :

$$\operatorname{Res}_{x_1}(\operatorname{Res}_{x_2}(\cdots \operatorname{Res}_{x_{n-1}}(\operatorname{Res}_{x_n}(f, T_n), T_{n-1})\cdots), T_2), T_1) = 0$$

Algorithms

- Ompute a subresultant sequence $a, b, S_{r_1}, \ldots, S_{r_t}, r_i > r_{i+1},$ modulo T, until to get a zero: $S_{r_t} \equiv 0 \mod \langle T \rangle$.
- 0 j = t
- ullet While isNil($lc(S_{r_j})$) do

$$j = j - 1$$

- \bigcirc Return $[(g_u, \mathfrak{m}_u)]$

// Invert leading Coeff.

- ① Compute a subresultant sequence $a, b, S_{r_1}, \ldots, S_{r_t}, r_i > r_{i+1}$, modulo T, until to get a zero: $S_{r_t} \equiv 0 \mod \langle T \rangle$.
- 0 j = t
- **3** While isNil($lc(S_{r_i})$) do

$$j = j - 1$$

// Assumption

7 Return $[(g_u, \mathfrak{m}_u), p_{next}]$

Case of n = 1 variable: iteration

$$n = 1$$
: $T = (T_1(x_1)) = (p_1^{e_1})$, where $p_1 \in k[x_1]$ is irreducible.

• After having found $g_u = \tilde{S}_t := \operatorname{lc}(S_t)^{-1}S_t$, p_{next} , and $\mathfrak{m}_u := \langle p_1^{r_1} \rangle$, $1 \leq r_1 < e_1$.

Case of n = 1 variable: iteration

$$n=1$$
: $T=(T_1(x_1))=(p_1^{e_1})$, where $p_1\in k[x_1]$ is irreducible.

- After having found $g_u = \tilde{S}_t := \operatorname{lc}(S_t)^{-1}S_t$, p_{next} , and $\mathfrak{m}_u := \langle p_1^{r_1} \rangle$, $1 \leq r_1 < e_1$.
- iterate the same algorithm with:
- Input: $\tilde{S}_t = \mathbf{g}_u$, Monic $(S_{t+1}) = p_{next}$ and $p_1^{r_1}$. instead of a, b and $T = (p_1^{e_1})$.

Case of n=1 variable: iteration

n = 1: $T = (T_1(x_1)) = (p_1^{e_1})$, where $p_1 \in k[x_1]$ is irreducible.

- After having found $g_{tt} = \tilde{S}_t := \operatorname{lc}(S_t)^{-1}S_t$, p_{next} , and $\mathfrak{m}_{"} := \langle p_1^{r_1} \rangle, \ 1 \leq r_1 < e_1.$
- iterate the same algorithm with:
- Input: $\ddot{S}_t = \mathbf{g}_u$, Monic $(S_{t+1}) = p_{next}$ and $\mathbf{p}_1^{r_1}$. instead of a, b and $T = (p_1^{e_1})$.
 - where Monic(A) = $InvP(A)^{-1} \frac{A}{NiIP(A)}$. The "nilpotent part" NilP(A) divides A and we can invert the remaining invertible part InvP(A).

n = 1: $T = (T_1(x_1)) = (p_1^{e_1})$, where $p_1 \in k[x_1]$ is irreducible.

- After having found $g_u = \tilde{S}_t := \operatorname{lc}(S_t)^{-1}S_t$, p_{next} , and $\mathfrak{m}_u := \langle p_1^{r_1} \rangle$, $1 \leq r_1 < e_1$.
- iterate the same algorithm with:
- Input: $\tilde{S}_t = \mathbf{g}_u$, Monic $(S_{t+1}) = p_{next}$ and $\mathbf{p}_1^{r_1}$. instead of a, b and $T = (p_1^{e_1})$.
 - where $Monic(A) = InvP(A)^{-1} \frac{A}{NiIP(A)}$. The "nilpotent part" NiIP(A) divides A and we can invert the remaining invertible part InvP(A).
- It ouptuts, $g_{u-1} := \prod_{v=1}^{u-1} G_v \mod p_1^{r_1}$ instead of $\mod p_1^{e_1}$ (precision loss).

Case of n = 1 variable: iteration

$$n=1$$
: $T=(T_1(x_1))=(p_1^{e_1})$, where $p_1\in k[x_1]$ is irreducible.

- After having found $g_u = \tilde{S}_t := \operatorname{lc}(S_t)^{-1}S_t$, p_{next} , and $\mathfrak{m}_u := \langle p_1^{r_1} \rangle$, $1 \leq r_1 < e_1$.
- iterate the same algorithm with:
- Input: $\tilde{S}_t = \mathbf{g}_u$, Monic $(S_{t+1}) = p_{next}$ and $\mathbf{p}_1^{r_1}$. instead of a, b and $T = (p_1^{e_1})$.
 - where Monic(A) = $InvP(A)^{-1} \frac{A}{NiIP(A)}$. The "nilpotent part" NiIP(A) divides A and we can invert the remaining invertible part InvP(A).
- It ouptuts, $g_{u-1} := \prod_{v=1}^{u-1} G_v \mod p_1^{r_1}$ instead of $\mod p_1^{e_1}$ (precision loss).

And repeat to find the next block: $g_{u-1} \mod p_1^{r_2}$, $r_2 < r_1 < e_1$.

Remarks on the general case n > 1

For n > 1 variables, it is more delicate to iterate the subresultant routine:

- No simple equivalent for switching $p_1^{e_1} \leftrightarrow p_1^{e_1-r_1}$ in the recursive call.
- No evidence that the nilpotent part of the leading coefficient of S_{t+1} divides the whole S_{t+1} .

Some examples show that it still work though.

Conclusion

Contributions:

- Clarification of the meaning of gcd.
- Preliminaries algorithms based on subresultant
- Well identified problems to consider the case of n > 1 variables.

Perspective:

- Remove the restriction of one primary ideal to a general non-radical triangular set.
- conisder "saturated ideals" in positive dimension.
 By putting the free variables as coefficients.

Vielen Dank