Fast construction of a lexicographic Grobner basis
of the vanishing ideal of a set of points

Dahan Xavier

Ochanomizu Univeristy, Faculty of General Educational Research

ACA 2017, July 17-21 — High-performance computing

introduction
®000

Introduction

o Setting: Let V C k" a finite set of points
V is Zariski-closed over k: V' is the set of solutions of a
polynomial system over k.

@ Problem: Compute a lexicographic Grobner basis of the
vanishing polynomials on V.

o Classical problem: Buchberger-Méller (1982) for any monomial
order
e ...and for the lex order, dedicated algorithms: 1995 to 2016.

introduction
®000

Introduction

o Setting: Let V C k" a finite set of points
V is Zariski-closed over k: V' is the set of solutions of a
polynomial system over k.

@ Problem: Compute a lexicographic Grobner basis of the
vanishing polynomials on V.
o Classical problem: Buchberger-Méller (1982) for any monomial
order
e ...and for the lex order, dedicated algorithms: 1995 to 2016.
@ Yet, all those works are somewhat still “incomplete”. Why 7
e research articles tend to address some aspects and ignoring
some others.
o for example, fully explicit interpolation formulas have not
appear clearly. ..
e ...itis a key for a sharp complexity study.

introduction
0®00

Non-generic LexGB of Dimension Zero

LexGB = Lexicographic Grobner Basis: x3 < xp < -+ < X,.

() (X1, X2, X3, . .., Xn—2, Xn—1, Xn)

8e(n)— (X13X25-~~7Xn72,xn—1)
gﬂ(”*l)(xh v 7Xn—1)

gé(z)(Xh Xz)
g£(2)71(X17 Xz)

gi(x1)

dp(m—
lcnfl(gg(,,),l)x,,z()1 —+ ...
den Doy

d,
X2£(2) + .-

ne2)—1 _de(2)—1
Xl X2 _|_ e

d;
X11+"'

This work — “Highly” non-generic lexGB : |G| > n.

introduction
0®00

Non-generic LexGB of Dimension Zero

LexGB = Lexicographic Grobner Basis: x3 < xp < -+ < X,.

_ do(n)
8u(n) (X1, X2, X3, + oy X2, Xn—1, Xn) = X) A
dlnfl
gem—1(X1, %2+ X2, %0-1) = leam1(gum-1)xa VT 4
den 1
gen—1)(X1, ..y Xa1) =)y
de(2)
82y (x1, %) = X 4
ne2)—1 _de(2)—1
gi-1(x, %) = x DT O 4
-
gi(x1) = xt4---

This work — “Highly” non-generic lexGB : |G| > n.
Non-generic: Shape Lemma, Triangular Set — nothing new.

introduction
feeX Yol

Results

Let D; := |V<;| where V<; = m;(V),
7T,-:En—>E',(al,...,an)r—)(al,...,a,-)

@ There is a Grobner basis G', non-reduced in general, such that
any polynomial g € G’ can be computed in at most:

O(A(D1) + A(D2) + - - - + A(Dp)) < O(nDy),

arithmetic operations in k.
o A(d) cost to construct Lagrange idempotents of d points.
o A(d) = M(d) log(d), by the subproduct tree technique.
(M(d) = O(d log(d) loglog(d)) by Schénhage-Strassen, or
naively d?).

introduction
feeX Yol

Results

Let D; := |V<;| where V<; = m;(V),
7T,-:En—>E',(al,...,an)r—)(al,...,a,-)

@ There is a Grobner basis G', non-reduced in general, such that
any polynomial g € G’ can be computed in at most:

O(A(D1) + A(D2) + - - - + A(Dp)) < O(nDy),

arithmetic operations in k.
o A(d) cost to construct Lagrange idempotents of d points.
o A(d) = M(d) log(d), by the subproduct tree technique.
(M(d) = O(d log(d) loglog(d)) by Schénhage-Strassen, or
naively d?).
@ The structure of (non-generic) lexGB allows to recycle
computations.
e But difficult to estimate in general. Simple strategy is still a
work in progress.

introduction
oooe

Previous Work

@ Buchberger-Mdller (1982): linear algebra O(nD3) (but for any
monomial order)

introduction
oooe

Previous Work

@ Buchberger-Mdller (1982): linear algebra O(nD3) (but for any
monomial order)
o Lederer (2008): almost “fully” explicit formulas, no
complexity at all.
e focuses on the reduced lexGB G which complicates the matter
quite a lot.
e essentially computes the above non-reduced lexGB G, stops
half-way, then withdraw linear combinations of other
polynomials built “on-demand” to cancel unwanted monomials.

introduction
oooe

Previous Work

@ Buchberger-Mdller (1982): linear algebra O(nD3) (but for any
monomial order)

o Lederer (2008): almost “fully” explicit formulas, no
complexity at all.

e focuses on the reduced lexGB G which complicates the matter
quite a lot.

e essentially computes the above non-reduced lexGB G, stops
half-way, then withdraw linear combinations of other
polynomials built “on-demand” to cancel unwanted monomials.

e Finding a separating basis: Vv € V, p, € k[xi,...,xp], such
that p,(w) =0 if v # w, and p,(v) = 1 otherwise.

introduction
oooe

Previous Work

@ Buchberger-Mdller (1982): linear algebra O(nD3) (but for any
monomial order)

o Lederer (2008): almost “fully” explicit formulas, no
complexity at all.

e focuses on the reduced lexGB G which complicates the matter
quite a lot.

e essentially computes the above non-reduced lexGB G, stops
half-way, then withdraw linear combinations of other
polynomials built “on-demand” to cancel unwanted monomials.

e Finding a separating basis: Vv € V, p, € k[xi,...,xp], such
that p,(w) =0 if v # w, and p,(v) = 1 otherwise.

o Lundqvist (2010): O(D?) But using subproduct tree
O(D log(D)).

introduction
oooe

Previous Work

@ Buchberger-Mdller (1982): linear algebra O(nD3) (but for any
monomial order)

o Lederer (2008): almost “fully” explicit formulas, no
complexity at all.

e focuses on the reduced lexGB G which complicates the matter
quite a lot.

e essentially computes the above non-reduced lexGB G, stops
half-way, then withdraw linear combinations of other
polynomials built “on-demand” to cancel unwanted monomials.

e Finding a separating basis: Vv € V, p, € k[xi,...,xp], such
that p,(w) =0 if v # w, and p,(v) = 1 otherwise.

o Lundqvist (2010): O(D?) But using subproduct tree
O(D log(D)).

o Lei-Teng-Ren (2016): lexGB for vanishing polynomials of
higher order (Hermite interpolation). (O(7 + 3)D?) where T is
a dislacement rank.

introduction
oooe

Previous Work

@ Buchberger-Mdller (1982): linear algebra O(nD3) (but for any
monomial order)

o Lederer (2008): almost “fully” explicit formulas, no
complexity at all.

e focuses on the reduced lexGB G which complicates the matter
quite a lot.

e essentially computes the above non-reduced lexGB G, stops
half-way, then withdraw linear combinations of other
polynomials built “on-demand” to cancel unwanted monomials.

e Finding a separating basis: Vv € V, p, € k[xi,...,xp], such
that p,(w) =0 if v # w, and p,(v) = 1 otherwise.

o Lundqvist (2010): O(D?) But using subproduct tree
O(D log(D)).

o Lei-Teng-Ren (2016): lexGB for vanishing polynomials of
higher order (Hermite interpolation). (O(7 + 3)D?) where T is
a dislacement rank. Vandermonde matrix, 7 =2 — O(D?)

Lextree
900000

The lextree: introduction and backgrounds

A key tool to study lexGB is a combinatorial decomposition of V:
One-one correspondence between standard monomials of G and
points of V.

@ Macaulay? Lazard in two variables.

e Cerlienco-Muredu (1995 & 01), Marinari Mora (2003 & 06):
linear algebra.

Lextree
900000

The lextree: introduction and backgrounds

A key tool to study lexGB is a combinatorial decomposition of V:
One-one correspondence between standard monomials of G and
points of V.

@ Macaulay? Lazard in two variables.

e Cerlienco-Muredu (1995 & 01), Marinari Mora (2003 & 06):
linear algebra.

@ Lex game (Ronyai et al., 2006) Lextree: Major simplification
by using a tree data structure.

Lextree
900000

The lextree: introduction and backgrounds

A key tool to study lexGB is a combinatorial decomposition of V:
One-one correspondence between standard monomials of G and
points of V.

@ Macaulay? Lazard in two variables.

e Cerlienco-Muredu (1995 & 01), Marinari Mora (2003 & 06):
linear algebra.

@ Lex game (Ronyai et al., 2006) Lextree: Major simplification
by using a tree data structure.

@ Lederer (2008): Instead of lextree uses a “four-in-a-row"-like
operation on the standard monomials.

Lextree
900000

The lextree: introduction and backgrounds

A key tool to study lexGB is a combinatorial decomposition of V:
One-one correspondence between standard monomials of G and
points of V.

Macaulay? Lazard in two variables.

Cerlienco-Muredu (1995 & 01), Marinari Mora (2003 & 06):
linear algebra.

Lex game (Ronyai et al., 2006) Lextree: Major simplification
by using a tree data structure.

Lederer (2008): Instead of lextree uses a “four-in-a-row” -like
operation on the standard monomials.

Lundgvist (2010): complexity of building the lextree to find
standard monomials.

Lextree
900000

The lextree: introduction and backgrounds

A key tool to study lexGB is a combinatorial decomposition of V:
One-one correspondence between standard monomials of G and
points of V.

Macaulay? Lazard in two variables.

Cerlienco-Muredu (1995 & 01), Marinari Mora (2003 & 06):
linear algebra.

Lex game (Ronyai et al., 2006) Lextree: Major simplification
by using a tree data structure.

Lederer (2008): Instead of lextree uses a “four-in-a-row” -like
operation on the standard monomials.

Lundgvist (2010): complexity of building the lextree to find
standard monomials.

One-one correspondence between standard monomials and leaves

Lextree
0®0000

Lextree |l

More than standard monomials, we are interested in leading
monomials of a lexGB.

We introduce a new variation of computing standard monomials to
compute leading exponents:

Example interlude

Lextree
00@000

Lextree: construction

L4 root

Lextree
00@000

Lextree: construction

Lextree
00@000

Lextree: construction

Lextree
00@000

Lextree: construction

Lextree
00@000

Lextree: construction

Lextree
00@000

Lextree: construction

Lextree
00@000

Lextree: construction

Lextree
00@000

Lextree: construction

Lextree
000®00

Lextree: From leaves to exponents in the GB

Lextree
000®00

Lextree: From leaves to exponents in the GB

3

Lextree
000®00

Lextree: From leaves to exponents in the GB

3 How many siblings with
>3 children ?

Lextree
000®00

Lextree: From leaves to exponents in the GB

\, One child

3 How many siblings with
>3 children ?

Lextree
000®00

Lextree: From leaves to exponents in the GB

\, One child

Lextree
000®00

Lextree: From leaves to exponents in the GB

How many siblings having
=0 child having
>3 children ?

Lextree
000®00

Lextree: From leaves to exponents in the GB

How many siblings having
=0 child having
>3 children ?

Lextree
000®00

Lextree: From leaves to exponents in the GB

o]

Lextree
000®00

Lextree: From leaves to exponents in the GB

3 1 How many siblings with
> 1 children ?

o

Lextree
000®00

Lextree: From leaves to exponents in the GB

3 1 How many siblings with
0 1 >1children?

Lextree
000®00

Lextree: From leaves to exponents in the GB

How many siblings having
»1 child having
>1 children ?

Lextree
000®00

Lextree: From leaves to exponents in the GB

How many siblings having
»1 child having
>1 children ?

Lextree
000®00

Lextree: From leaves to exponents in the GB

Lextree
000®00

Lextree: From leaves to exponents in the GB

2 How many siblings with
> 2 children ?

Lextree
000®00

Lextree: From leaves to exponents in the GB

Lextree
000®00

Lextree: From leaves to exponents in the GB

How many siblings having:
>0 child({ren) having
> 2 children ?

Lextree
000®00

Lextree: From leaves to exponents in the GB

How many siblings having:
>0 child({ren) having
> 2 children ?

Lextree
000®00

Lextree: From leaves to exponents in the GB

Lextree
000®00

Lextree: From leaves to exponents in the GB

How many
siblings with
> 2 children ?

Lextree
000®00

Lextree: From leaves to exponents in the GB

How many
siblings with
> 2 children ?

Lextree
000®00

Lextree: From leaves to exponents in the GB

How many siblings with
> 1 children having
> 2 children

Lextree
000®00

Lextree: From leaves to exponents in the GB

How many siblings with
> 1 children having
> 2 children

Lextree
000®00

Lextree: From leaves to exponents in the GB

Lextree
000®00

Lextree: From leaves to exponents in the GB

How many
siblings with
> 1 children ?

Lextree
000®00

Lextree: From leaves to exponents in the GB

How many
siblings with
> 1 children ?

Lextree
000®00

Lextree: From leaves to exponents in the GB

How many siblings with
> 2 children having
> 1 children

Lextree

[e]e]e] lele]

Lextree: From leaves to exponents in the GB

How many siblings with
> 2 children having
>1 children

Lextree
000®00

Lextree: From leaves to exponents in the GB

Lextree
000®00

Lextree: From leaves to exponents in the GB

Lextree
0000@0

Lextree: From leaves to interpolation

X
XA E

Ya Yp YE Ye

Za Zp Zc Zp Zg ZF Zg “Zy Zr
3
0
0

Lextree
0000@0

Lextree: From leaves to interpolation

X
XA E
Ya Yo YE YG
Za Zp Zg Zp Zg ZF Zg “Zy Z;

0
0

(z — 24)(z — 25)(z — 2) z*

Lextree
0000@0

Lextree: From leaves to interpolation

X
XA E
Ya Yo YE YG
Za Zp Zg Zp Zg ZF Zg “Zy Z;

3
0
0

Y—¥p Y—Va
z—zZa)z—zg)lz —2 + (z —zp)——
(e~ za)(z — 25)(z —2¢) 322 4 (2 —zp) 7 2%

Lextree
0000@0

Lextree: From leaves to interpolation

XA XE
Ya Yo YE YG
Za Zp Zg Zp Zg ZF Zg “Zy Z;
3
0
0
(z—za)(z — zg)(z — z¢) 222 4+ (z—zp) 22 Lead. Mon, # z°
Ya~—¥p ¥Yp—Ya

Lextree
0000@0

Lextree: From leaves to interpolation

XA XE
Ya Yo YE YG
Za Zp Zg Zp Zg ZF Zg “Zy Z;
3
0
0
(z—z)(z—2p)(z —z0) 222 4 22(z — z,) X224 Lead. Mon. = z3
Ya~—¥p ¥p—

Lextree
0000@0

Lextree: From leaves to interpolation

X
XA E

Ya Yo YE Ye

Zpo Zp Zc Zp Zg ZF Zg Zh
3
0
0
(z—zp)(z—2zp) 2z +z(z—z;)(z—zy) +
2

72

Lextree
0000@0

Lextree: From leaves to interpolation

x

XA E

Ya Yp YE Y6
Zp Zp ZIc Zp Zg Zp Zg Zy

3
0
0

Y-Yg YY1 Y-Ye Y-V
z—zp)z—zp)z —— +z(z—z;)(z—z
(= z)(F) YE=YG YE—Vi (6)(H)y S Gl

z2 2oYe I Lead. Mon. is z°
YE-YG YE=VI

Lextree
0000@0

Lextree: From leaves to interpolation

Zy Zp Zc Zp Zg Zp Zg Zy @ Z)

Y-Ya Y-Vi +

(z—zp)(z—2zp)z

YE-YGcYE—-YI
Y—¥p
(z—za)(z—2zp)(z —2c) ===+ - _
) vy, Ya~Y¥p Z(Z — ZG)(Z — ZH)&M
z%(z —zp) 2 Lead. Mon. = z3 YE-YGYE-VI
¥Y¥p—Va
22 Y=Ye Y
YE-YGYE—VI

Lead. Mon. is z3

Lextree
0000@0

Lextree: From leaves to interpolation

Xa XE
Ya Yp YE Yo
Zpy Zp Z¢ Zp Zg ZF ZG Zy Z;

(z—zg)(z—zp) z ZEEXI 4 (7 — 2.)(z — zpp) T2 XX

YE=YcYE—VI YE=YGYE=)YI
ZZ(Z—Z;')y Ve Y=YiI
~ YE-YGYE-)I
Y—¥p 2 Y—Va
Z—Zy)Nz—2zg)(z—2 + z°(z—z2
(2= z4)(z — 2)(z — 2¢) 322 + 2°(z = 2p) 522

Lextree
0000@0

Lextree: From leaves to interpolation

Xa XE
Ya Yp YE Yo
Zpy Zp Z¢ Zp Zg ZF ZG Zy Z;

(‘Z_ZE)('Z_ZF') y YG y Y +Z(Z_Z()(Z_ZH)y Y6 y Vi +

_ YE-YGYE-VI oy YE-YGYE-YI
ZZ(Z—Z;')&;V;V) 2Xa
U YE-YGYE-VI Xp—Xa
X—Xg
z—zZx)(z—z2p)(z— 2 + z? Z— Zp X —
+ |-z -2z —z0) 2+ a—zp) 2 x T

oad. Mon. is z°

Lextree
00000e

Relation with interpolation: account of the current status

All proofs of the correspondence {leaves} <+ {std. mononmials}
rely on some sort of interpolation formulas, more or less explicit.

Lextree
00000e

Relation with interpolation: account of the current status

All proofs of the correspondence {leaves} <+ {std. mononmials}
rely on some sort of interpolation formulas, more or less explicit.

— construct polynomials that vanish on some parts of V, and
whose leading monomials are standard monomials.

@ “Hidden" in case of purely linear algeba method
(Cerlienco-Mureddu, Marinari-Mora, Lei-Teng-Ren)

Lextree
00000e

Relation with interpolation: account of the current status

All proofs of the correspondence {leaves} <+ {std. mononmials}
rely on some sort of interpolation formulas, more or less explicit.

— construct polynomials that vanish on some parts of V, and
whose leading monomials are standard monomials.

@ “Hidden" in case of purely linear algeba method
(Cerlienco-Mureddu, Marinari-Mora, Lei-Teng-Ren)

e Explicit: (Lederer,2008) recursive foormula.
(Lexgame, 2006): quite coarse.

Lextree
00000e

Relation with interpolation: account of the current status

All proofs of the correspondence {leaves} <+ {std. mononmials}
rely on some sort of interpolation formulas, more or less explicit.

— construct polynomials that vanish on some parts of V, and
whose leading monomials are standard monomials.

@ “Hidden" in case of purely linear algeba method
(Cerlienco-Mureddu, Marinari-Mora, Lei-Teng-Ren)

e Explicit: (Lederer,2008) recursive foormula.
(Lexgame, 2006): quite coarse.

@ Here: expliciteness of the interpolation formula for
polynomials in G’

— Exploit fully the simplcity supplied by the lextree.
= Prone to complexity analysis.

Lextree
00000e

Relation with interpolation: account of the current status

All proofs of the correspondence {leaves} <+ {std. mononmials}
rely on some sort of interpolation formulas, more or less explicit.

— construct polynomials that vanish on some parts of V, and
whose leading monomials are standard monomials.

@ “Hidden" in case of purely linear algeba method
(Cerlienco-Mureddu, Marinari-Mora, Lei-Teng-Ren)

e Explicit: (Lederer,2008) recursive foormula.
(Lexgame, 2006): quite coarse.

@ Here: expliciteness of the interpolation formula for
polynomials in G’

— Exploit fully the simplcity supplied by the lextree.
= Prone to complexity analysis.

Easy Fact: algebraic complexity depends only on the shape of the
tree (number of children of nodes) and not on labels at each node.

Interpolation on the lextree
©0000

Interpolating & Discarding points in the lextree

Given an exponent at a leaf x®, from (parent of the) leaf to the
root, perform bottom-up test on siblings of the current node to
identify:

© branches that must be interpolated:

@ branches that must be discarded:
the branch has a leaf of larger exponent than the current one.

Interpolation on the lextree
©0000

Interpolating & Discarding points in the lextree

Given an exponent at a leaf x®, from (parent of the) leaf to the
root, perform bottom-up test on siblings of the current node to
identify:

© branches that must be interpolated:

o Lagrange interpolation with eventually additional monomials to
guarantee that the leading monomial is 1.

@ branches that must be discarded:
the branch has a leaf of larger exponent than the current one.

e Remark: The exponent x¢ comes from polynomials that
discard some branches at each level.

Interpolation on the lextree
©0000

Interpolating & Discarding points in the lextree

Given an exponent at a leaf x®, from (parent of the) leaf to the
root, perform bottom-up test on siblings of the current node to
identify:

© branches that must be interpolated:

o Lagrange interpolation with eventually additional monomials to
guarantee that the leading monomial is 1.

@ branches that must be discarded:

the branch has a leaf of larger exponent than the current one.
e simple product over the labels at those siblings.
e Remark: The exponent x¢ comes from polynomials that
discard some branches at each level.

Interpolation on the lextree
©0000

Interpolating & Discarding points in the lextree

Given an exponent at a leaf x®, from (parent of the) leaf to the
root, perform bottom-up test on siblings of the current node to
identify:

© branches that must be interpolated:

o Lagrange interpolation with eventually additional monomials to
guarantee that the leading monomial is 1.

At a given level ¢ : < O(A(D1) +A(D2) + -- -+ A(Dy))

@ branches that must be discarded:

the branch has a leaf of larger exponent than the current one.
e simple product over the labels at those siblings.
e Remark: The exponent x¢ comes from polynomials that
discard some branches at each level.

Interpolation on the lextree
©0000

Interpolating & Discarding points in the lextree

Given an exponent at a leaf x®, from (parent of the) leaf to the
root, perform bottom-up test on siblings of the current node to
identify:

© branches that must be interpolated:

o Lagrange interpolation with eventually additional monomials to
guarantee that the leading monomial is 1.

At a given level ¢ : < O(A(D1) +A(D2) + -- -+ A(Dy))

@ branches that must be discarded:
the branch has a leaf of larger exponent than the current one.
e simple product over the labels at those siblings.
e Remark: The exponent x¢ comes from polynomials that
discard some branches at each level.

At a given level ¢: < O(A(Dy))

Interpolation on the lextree
0®000

Non-reduced Grobner basis 7 Bit-size

@ ...but minimal: LM(G) = {LM(g) | g € G} = Lm(G).
@ Bad: More coefficients . . .,
Good: Coefficients of smaller bit-size

Interpolation on the lextree
0®000

Non-reduced Grobner basis 7 Bit-size

@ ...but minimal: LM(G) = {LM(g) | g € G} = Lm(G).
@ Bad: More coefficients . . .,
Good: Coefficients of smaller bit-size

@ More precisely let h(g) be “roughly” the max bit-size among
all coefficients on g € GB":

h(g) < O(nD?hps)

where hps is the max bit-size among coordinates of all points
inV.

@ all in all, this is not a bad choice. .. it has moreover good
properties. . .

Interpolation on the lextree
[eeX Yolo)

Non-reduced Grobner basis 7 Stability |

o Let ¢ : k[x1,...,xn] = k[Xmi1,-..,Xn], m < n evaluation
map ata = (a1,...,am).
@ an ideal / is stable under ¢, if LM(¢p(1)) = ¢a(LTm(1)).

Interpolation on the lextree
[eeX Yolo)

Non-reduced Grobner basis 7 Stability |

o Let ¢ : k[x1,...,xn] = k[Xmi1,-..,Xn], m < n evaluation
map ata = (a1,...,am).
@ an ideal / is stable under ¢, if LM(¢p(1)) = ¢a(LTm(1)).

@ A Grobner basis G of | for an m-elimination order <,
specializes well at a:

®a(G) is a Grobner basis of ¢,(/).

Interpolation on the lextree
[eeX Yolo)

Non-reduced Grobner basis 7 Stability |

o Let ¢ : k[x1,...,xn] = k[Xmi1,-..,Xn], m < n evaluation
map ata = (a1,...,am).

@ an ideal / is stable under ¢, if LM(¢(1)) = pa(LTm(1)).

@ A Grobner basis G of | for an m-elimination order <,
specializes well at a:

®a(G) is a Grobner basis of ¢,(/).

@ Stronger condition is: LT(¢pa(g)) <m ¢a(LTm(g)) then
$a(g) = 0.

Interpolation on the lextree
[eeX Yolo)

Non-reduced Grobner basis 7 Stability |

o Let ¢ : k[x1,...,xn] = k[Xmi1,-..,Xn], m < n evaluation
map ata = (a1,...,am).
@ an ideal / is stable under ¢, if LM(¢p(1)) = ¢a(LTm(1)).

@ A Grobner basis G of | for an m-elimination order <,
specializes well at a:

®a(G) is a Grobner basis of ¢,(/).

@ Stronger condition is: LT(¢pa(g)) <m ¢a(LTm(g)) then
$a(g) = 0.

e whereas stability is:

LT(¢a(g)) <m ¢a(LTm(g)) = ¢a(g) = 0 mod ¢a(G \ {g}).

Interpolation on the lextree
000®0

Non-reduced Grobner basis 7 Stability I

Previous work: Stability for m-elimination order (includes lex
order)
e Gianni (Kalkbrener): m = n — 1 for 0-dimensional ideals.
Strong version of stability.

Interpolation on the lextree
000®0

Non-reduced Grobner basis 7 Stability I

Previous work: Stability for m-elimination order (includes lex
order)
e Gianni (Kalkbrener): m = n — 1 for 0-dimensional ideals.
Strong version of stability.

@ Becker: Stability for radical m-elimination Grobner bases.
(not strong).

Interpolation on the lextree
000®0

Non-reduced Grobner basis 7 Stability I

Previous work: Stability for m-elimination order (includes lex
order)

e Gianni (Kalkbrener): m = n — 1 for 0-dimensional ideals.
Strong version of stability.

@ Becker: Stability for radical m-elimination Grobner bases.
(not strong).

@ Kalkbrener: extension and clarification to the notion of
stability.

Interpolation on the lextree
000®0

Non-reduced Grobner basis 7 Stability I

Previous work: Stability for m-elimination order (includes lex
order)

e Gianni (Kalkbrener): m = n — 1 for 0-dimensional ideals.
Strong version of stability.

@ Becker: Stability for radical m-elimination Grobner bases.
(not strong).

@ Kalkbrener: extension and clarification to the notion of
stability.

o Grobner basis G’ of this talk: strong stability property.

Interpolation on the lextree
000®0

Non-reduced Grobner basis 7 Stability I

Previous work: Stability for m-elimination order (includes lex
order)

e Gianni (Kalkbrener): m = n — 1 for 0-dimensional ideals.
Strong version of stability.

@ Becker: Stability for radical m-elimination Grobner bases.
(not strong).

@ Kalkbrener: extension and clarification to the notion of
stability.
o Grobner basis G’ of this talk: strong stability property.

@ Not the case of the reduced Grébner basis G.

Interpolation on the lextree
ooooe

Summary of the interpolation of one polynomial

Step 1. ldentify leaves that yields a leading monomial in the Grobner
basis.
— purely combinatorial (complexity: only comparisons)

Interpolation on the lextree
ooooe

Summary of the interpolation of one polynomial

Step 1.

Step 2.

Identify leaves that yields a leading monomial in the Grobner
basis.
— purely combinatorial (complexity: only comparisons)
Bottom-up interpolation or discard sibling branches.
o This creates an arithmetic circuit. It depends only on the
shape of the tree.
e In both case, subproduct tree can be used
— many times similar products must be perform.
e About the upper bound an arithmetic complexity —
Can we do better ? Reuse already computed polynomials.

Recycling
®00

Recycling already computed components

The more polynomials in G’, have been computed the more it is
likely possible to recycle
Two ways to recycle:

© Detect a product already computed in a subproduct

Recycling
®00

Recycling already computed components

The more polynomials in G’, have been computed the more it is
likely possible to recycle
Two ways to recycle:

© Detect a product already computed in a subproduct

@ Use structure: some polynomials naturally divides other

Recycling
®00

Recycling already computed components

The more polynomials in G’, have been computed the more it is
likely possible to recycle
Two ways to recycle:

© Detect a product already computed in a subproduct

e Too much memory? Is it possible to know in advance
which products to store ?

@ Use structure: some polynomials naturally divides other

Recycling
®00

Recycling already computed components

The more polynomials in G’, have been computed the more it is
likely possible to recycle
Two ways to recycle:

© Detect a product already computed in a subproduct

e Too much memory? Is it possible to know in advance
which products to store ?

@ Use structure: some polynomials naturally divides other
o Work in progress: structural results. . .

Recycling
oceo

Work in progress — Structure

Assume that f € ¢, with LM(g) = x| - - - x§".

f= Z »Coc(Xla e 7Xn—1)f17oc(X1) tet fn,a(xn) s Mgy

a€A

@ where f; , depends only on the / — 1-th first coordinates
(a1,...,aj_1) of a,

e L, is a multivariate Lagrange idempotent on a grid of points
ACV.

o = KO (5,0) — deg(£.0))

Recycling
oceo

Work in progress — Structure

Assume that f € ¢, with LM(g) = x| - - - x§".

f= Z »Coc(Xla e 7Xn—1)f17oc(X1) tet fn,a(xn) s Mgy

a€A

@ where f; , depends only on the / — 1-th first coordinates
(a1,...,aj_1) of a,

e L, is a multivariate Lagrange idempotent on a grid of points
ACV.

o = KO (5,0) — deg(£.0))

Kind of generalization of Lazard's structural theorem
(1985) full result for lexGB in two variables.

Recycling
ocoe

Perspective

@ Find a simple formulation of the previous problems.

Recycling
ocoe

Perspective

@ Find a simple formulation of the previous problems.

o find a simple way, on the lextree, to address a (sharp)
complexity analysis of the recycling phase.

Recycling
ocoe

Perspective

@ Find a simple formulation of the previous problems.

o find a simple way, on the lextree, to address a (sharp)
complexity analysis of the recycling phase.

@ The ideal of vanishing polynomials is radical.

Recycling
ocoe

Perspective

@ Find a simple formulation of the previous problems.

o find a simple way, on the lextree, to address a (sharp)
complexity analysis of the recycling phase.

@ The ideal of vanishing polynomials is radical.

o Generalization to non-radical ideals: Hermite conditions
attached to each point in V.

Recycling
ocoe

Perspective

@ Find a simple formulation of the previous problems.

o find a simple way, on the lextree, to address a (sharp)
complexity analysis of the recycling phase.

@ The ideal of vanishing polynomials is radical.

o Generalization to non-radical ideals: Hermite conditions
attached to each point in V.

o Lei-Zheng-Ruen 2014: investigated using Lederer formulation
(four-in-a-row). From their own account, dautingly
complicated to estimate complexity in this way.

Recycling
ocoe

Perspective

@ Find a simple formulation of the previous problems.
o find a simple way, on the lextree, to address a (sharp)
complexity analysis of the recycling phase.

@ The ideal of vanishing polynomials is radical.

o Generalization to non-radical ideals: Hermite conditions
attached to each point in V.

o Lei-Zheng-Ruen 2014: investigated using Lederer formulation
(four-in-a-row). From their own account, dautingly
complicated to estimate complexity in this way.

o the key is simplicity. It is the case when the Hermite
conditions are triangular: the highest order in the derivative of
Taylor expansions appear to the largest (single) variable.

	introduction
	Lextree
	Interpolation on the lextree
	Recycling

