
introduction Lextree Interpolation on the lextree Recycling

Fast construction of a lexicographic Gröbner basis
of the vanishing ideal of a set of points

Dahan Xavier

Ochanomizu Univeristy, Faculty of General Educational Research

ACA 2017, July 17-21 — High-performance computing

introduction Lextree Interpolation on the lextree Recycling

Introduction

Setting: Let V ⊂ k
n

a finite set of points
V is Zariski-closed over k: V is the set of solutions of a
polynomial system over k.

Problem: Compute a lexicographic Gröbner basis of the
vanishing polynomials on V .

Classical problem: Buchberger-Möller (1982) for any monomial
order
. . . and for the lex order, dedicated algorithms: 1995 to 2016.

Yet, all those works are somewhat still “incomplete”. Why ?

research articles tend to address some aspects and ignoring
some others.
for example, fully explicit interpolation formulas have not
appear clearly. . .
. . . it is a key for a sharp complexity study.

introduction Lextree Interpolation on the lextree Recycling

Introduction

Setting: Let V ⊂ k
n

a finite set of points
V is Zariski-closed over k: V is the set of solutions of a
polynomial system over k.

Problem: Compute a lexicographic Gröbner basis of the
vanishing polynomials on V .

Classical problem: Buchberger-Möller (1982) for any monomial
order
. . . and for the lex order, dedicated algorithms: 1995 to 2016.

Yet, all those works are somewhat still “incomplete”. Why ?

research articles tend to address some aspects and ignoring
some others.
for example, fully explicit interpolation formulas have not
appear clearly. . .
. . . it is a key for a sharp complexity study.

introduction Lextree Interpolation on the lextree Recycling

Non-generic LexGB of Dimension Zero

LexGB = Lexicographic Gröbner Basis: x1 ≺ x2 ≺ · · · ≺ xn.

g`(n)(x1, x2, x3, . . . , xn−2, xn−1, xn) = x
d`(n)
n + · · ·

g`(n)−1(x1, x2, . . . , xn−2, xn−1) = lcn−1(g`(n)−1)x
d`(n)−1
n + . . .

. . .
...

...

g`(n−1)(x1, . . . , xn−1) = x
d`(n−1)

n−1 + · · ·
. . .

...
...

g`(2)(x1, x2) = x
d`(2)
2 + · · ·

g`(2)−1(x1, x2) = x
n`(2)−1

1 x
d`(2)−1

2 + · · ·
. . .

...
...

g1(x1) = xd1
1 + · · ·

This work → “Highly” non-generic lexGB : |G| > n.

Non-generic: Shape Lemma, Triangular Set → nothing new.

introduction Lextree Interpolation on the lextree Recycling

Non-generic LexGB of Dimension Zero

LexGB = Lexicographic Gröbner Basis: x1 ≺ x2 ≺ · · · ≺ xn.

g`(n)(x1, x2, x3, . . . , xn−2, xn−1, xn) = x
d`(n)
n + · · ·

g`(n)−1(x1, x2, . . . , xn−2, xn−1) = lcn−1(g`(n)−1)x
d`(n)−1
n + . . .

. . .
...

...

g`(n−1)(x1, . . . , xn−1) = x
d`(n−1)

n−1 + · · ·
. . .

...
...

g`(2)(x1, x2) = x
d`(2)
2 + · · ·

g`(2)−1(x1, x2) = x
n`(2)−1

1 x
d`(2)−1

2 + · · ·
. . .

...
...

g1(x1) = xd1
1 + · · ·

This work → “Highly” non-generic lexGB : |G| > n.
Non-generic: Shape Lemma, Triangular Set → nothing new.

introduction Lextree Interpolation on the lextree Recycling

Results

Let Di := |V≤i | where V≤i = πi (V),

πi : k
n → k

i
, (a1, . . . , an) 7→ (a1, . . . , ai)

1 There is a Gröbner basis G′, non-reduced in general, such that
any polynomial g ∈ G′ can be computed in at most:

O(A(D1) + A(D2) + · · ·+ A(Dn)) < O(nDn),

arithmetic operations in k.

A(d) cost to construct Lagrange idempotents of d points.
A(d) = M(d) log(d), by the subproduct tree technique.
(M(d) = O(d log(d) log log(d)) by Schönhage-Strassen, or
naively d2).

2 The structure of (non-generic) lexGB allows to recycle
computations.

But difficult to estimate in general. Simple strategy is still a
work in progress.

introduction Lextree Interpolation on the lextree Recycling

Results

Let Di := |V≤i | where V≤i = πi (V),

πi : k
n → k

i
, (a1, . . . , an) 7→ (a1, . . . , ai)

1 There is a Gröbner basis G′, non-reduced in general, such that
any polynomial g ∈ G′ can be computed in at most:

O(A(D1) + A(D2) + · · ·+ A(Dn)) < O(nDn),

arithmetic operations in k.

A(d) cost to construct Lagrange idempotents of d points.
A(d) = M(d) log(d), by the subproduct tree technique.
(M(d) = O(d log(d) log log(d)) by Schönhage-Strassen, or
naively d2).

2 The structure of (non-generic) lexGB allows to recycle
computations.

But difficult to estimate in general. Simple strategy is still a
work in progress.

introduction Lextree Interpolation on the lextree Recycling

Previous Work

Buchberger-Möller (1982): linear algebra O(nD3
n) (but for any

monomial order)

Lederer (2008): almost “fully” explicit formulas, no
complexity at all.

focuses on the reduced lexGB G which complicates the matter
quite a lot.
essentially computes the above non-reduced lexGB G′, stops
half-way, then withdraw linear combinations of other
polynomials built “on-demand” to cancel unwanted monomials.

Finding a separating basis: ∀v ∈ V , pv ∈ k[x1, . . . , xn], such
that pv (w) = 0 if v 6= w , and pv (v) = 1 otherwise.

Lundqvist (2010): O(D2) But using subproduct tree
O(D log(D)).

Lei-Teng-Ren (2016): lexGB for vanishing polynomials of
higher order (Hermite interpolation). (O(τ + 3)D2) where τ is
a dislacement rank.

Vandermonde matrix, τ = 2 → O(D2)

introduction Lextree Interpolation on the lextree Recycling

Previous Work

Buchberger-Möller (1982): linear algebra O(nD3
n) (but for any

monomial order)

Lederer (2008): almost “fully” explicit formulas, no
complexity at all.

focuses on the reduced lexGB G which complicates the matter
quite a lot.
essentially computes the above non-reduced lexGB G′, stops
half-way, then withdraw linear combinations of other
polynomials built “on-demand” to cancel unwanted monomials.

Finding a separating basis: ∀v ∈ V , pv ∈ k[x1, . . . , xn], such
that pv (w) = 0 if v 6= w , and pv (v) = 1 otherwise.

Lundqvist (2010): O(D2) But using subproduct tree
O(D log(D)).

Lei-Teng-Ren (2016): lexGB for vanishing polynomials of
higher order (Hermite interpolation). (O(τ + 3)D2) where τ is
a dislacement rank.

Vandermonde matrix, τ = 2 → O(D2)

introduction Lextree Interpolation on the lextree Recycling

Previous Work

Buchberger-Möller (1982): linear algebra O(nD3
n) (but for any

monomial order)

Lederer (2008): almost “fully” explicit formulas, no
complexity at all.

focuses on the reduced lexGB G which complicates the matter
quite a lot.
essentially computes the above non-reduced lexGB G′, stops
half-way, then withdraw linear combinations of other
polynomials built “on-demand” to cancel unwanted monomials.

Finding a separating basis: ∀v ∈ V , pv ∈ k[x1, . . . , xn], such
that pv (w) = 0 if v 6= w , and pv (v) = 1 otherwise.

Lundqvist (2010): O(D2) But using subproduct tree
O(D log(D)).

Lei-Teng-Ren (2016): lexGB for vanishing polynomials of
higher order (Hermite interpolation). (O(τ + 3)D2) where τ is
a dislacement rank.

Vandermonde matrix, τ = 2 → O(D2)

introduction Lextree Interpolation on the lextree Recycling

Previous Work

Buchberger-Möller (1982): linear algebra O(nD3
n) (but for any

monomial order)

Lederer (2008): almost “fully” explicit formulas, no
complexity at all.

focuses on the reduced lexGB G which complicates the matter
quite a lot.
essentially computes the above non-reduced lexGB G′, stops
half-way, then withdraw linear combinations of other
polynomials built “on-demand” to cancel unwanted monomials.

Finding a separating basis: ∀v ∈ V , pv ∈ k[x1, . . . , xn], such
that pv (w) = 0 if v 6= w , and pv (v) = 1 otherwise.

Lundqvist (2010): O(D2) But using subproduct tree
O(D log(D)).

Lei-Teng-Ren (2016): lexGB for vanishing polynomials of
higher order (Hermite interpolation). (O(τ + 3)D2) where τ is
a dislacement rank.

Vandermonde matrix, τ = 2 → O(D2)

introduction Lextree Interpolation on the lextree Recycling

Previous Work

Buchberger-Möller (1982): linear algebra O(nD3
n) (but for any

monomial order)

Lederer (2008): almost “fully” explicit formulas, no
complexity at all.

focuses on the reduced lexGB G which complicates the matter
quite a lot.
essentially computes the above non-reduced lexGB G′, stops
half-way, then withdraw linear combinations of other
polynomials built “on-demand” to cancel unwanted monomials.

Finding a separating basis: ∀v ∈ V , pv ∈ k[x1, . . . , xn], such
that pv (w) = 0 if v 6= w , and pv (v) = 1 otherwise.

Lundqvist (2010): O(D2) But using subproduct tree
O(D log(D)).
Lei-Teng-Ren (2016): lexGB for vanishing polynomials of
higher order (Hermite interpolation). (O(τ + 3)D2) where τ is
a dislacement rank.

Vandermonde matrix, τ = 2 → O(D2)

introduction Lextree Interpolation on the lextree Recycling

Previous Work

Buchberger-Möller (1982): linear algebra O(nD3
n) (but for any

monomial order)

Lederer (2008): almost “fully” explicit formulas, no
complexity at all.

focuses on the reduced lexGB G which complicates the matter
quite a lot.
essentially computes the above non-reduced lexGB G′, stops
half-way, then withdraw linear combinations of other
polynomials built “on-demand” to cancel unwanted monomials.

Finding a separating basis: ∀v ∈ V , pv ∈ k[x1, . . . , xn], such
that pv (w) = 0 if v 6= w , and pv (v) = 1 otherwise.

Lundqvist (2010): O(D2) But using subproduct tree
O(D log(D)).
Lei-Teng-Ren (2016): lexGB for vanishing polynomials of
higher order (Hermite interpolation). (O(τ + 3)D2) where τ is
a dislacement rank. Vandermonde matrix, τ = 2 → O(D2)

introduction Lextree Interpolation on the lextree Recycling

The lextree: introduction and backgrounds

A key tool to study lexGB is a combinatorial decomposition of V :
One-one correspondence between standard monomials of G and
points of V .

Macaulay? Lazard in two variables.

Cerlienco-Muredu (1995 & 01), Marinari Mora (2003 & 06):
linear algebra.

Lex game (Ronyai et al., 2006) Lextree: Major simplification
by using a tree data structure.

Lederer (2008): Instead of lextree uses a “four-in-a-row”-like
operation on the standard monomials.

Lundqvist (2010): complexity of building the lextree to find
standard monomials.

One-one correspondence between standard monomials and leaves

introduction Lextree Interpolation on the lextree Recycling

The lextree: introduction and backgrounds

A key tool to study lexGB is a combinatorial decomposition of V :
One-one correspondence between standard monomials of G and
points of V .

Macaulay? Lazard in two variables.

Cerlienco-Muredu (1995 & 01), Marinari Mora (2003 & 06):
linear algebra.

Lex game (Ronyai et al., 2006) Lextree: Major simplification
by using a tree data structure.

Lederer (2008): Instead of lextree uses a “four-in-a-row”-like
operation on the standard monomials.

Lundqvist (2010): complexity of building the lextree to find
standard monomials.

One-one correspondence between standard monomials and leaves

introduction Lextree Interpolation on the lextree Recycling

The lextree: introduction and backgrounds

A key tool to study lexGB is a combinatorial decomposition of V :
One-one correspondence between standard monomials of G and
points of V .

Macaulay? Lazard in two variables.

Cerlienco-Muredu (1995 & 01), Marinari Mora (2003 & 06):
linear algebra.

Lex game (Ronyai et al., 2006) Lextree: Major simplification
by using a tree data structure.

Lederer (2008): Instead of lextree uses a “four-in-a-row”-like
operation on the standard monomials.

Lundqvist (2010): complexity of building the lextree to find
standard monomials.

One-one correspondence between standard monomials and leaves

introduction Lextree Interpolation on the lextree Recycling

The lextree: introduction and backgrounds

A key tool to study lexGB is a combinatorial decomposition of V :
One-one correspondence between standard monomials of G and
points of V .

Macaulay? Lazard in two variables.

Cerlienco-Muredu (1995 & 01), Marinari Mora (2003 & 06):
linear algebra.

Lex game (Ronyai et al., 2006) Lextree: Major simplification
by using a tree data structure.

Lederer (2008): Instead of lextree uses a “four-in-a-row”-like
operation on the standard monomials.

Lundqvist (2010): complexity of building the lextree to find
standard monomials.

One-one correspondence between standard monomials and leaves

introduction Lextree Interpolation on the lextree Recycling

The lextree: introduction and backgrounds

A key tool to study lexGB is a combinatorial decomposition of V :
One-one correspondence between standard monomials of G and
points of V .

Macaulay? Lazard in two variables.

Cerlienco-Muredu (1995 & 01), Marinari Mora (2003 & 06):
linear algebra.

Lex game (Ronyai et al., 2006) Lextree: Major simplification
by using a tree data structure.

Lederer (2008): Instead of lextree uses a “four-in-a-row”-like
operation on the standard monomials.

Lundqvist (2010): complexity of building the lextree to find
standard monomials.

One-one correspondence between standard monomials and leaves

introduction Lextree Interpolation on the lextree Recycling

Lextree II

More than standard monomials, we are interested in leading
monomials of a lexGB.

We introduce a new variation of computing standard monomials to
compute leading exponents:

Example interlude

introduction Lextree Interpolation on the lextree Recycling

Lextree: construction

introduction Lextree Interpolation on the lextree Recycling

Lextree: construction

introduction Lextree Interpolation on the lextree Recycling

Lextree: construction

introduction Lextree Interpolation on the lextree Recycling

Lextree: construction

introduction Lextree Interpolation on the lextree Recycling

Lextree: construction

introduction Lextree Interpolation on the lextree Recycling

Lextree: construction

introduction Lextree Interpolation on the lextree Recycling

Lextree: construction

introduction Lextree Interpolation on the lextree Recycling

Lextree: construction

introduction Lextree Interpolation on the lextree Recycling

Lextree: From leaves to exponents in the GB

introduction Lextree Interpolation on the lextree Recycling

Lextree: From leaves to exponents in the GB

introduction Lextree Interpolation on the lextree Recycling

Lextree: From leaves to exponents in the GB

introduction Lextree Interpolation on the lextree Recycling

Lextree: From leaves to exponents in the GB

introduction Lextree Interpolation on the lextree Recycling

Lextree: From leaves to exponents in the GB

introduction Lextree Interpolation on the lextree Recycling

Lextree: From leaves to exponents in the GB

introduction Lextree Interpolation on the lextree Recycling

Lextree: From leaves to exponents in the GB

introduction Lextree Interpolation on the lextree Recycling

Lextree: From leaves to exponents in the GB

introduction Lextree Interpolation on the lextree Recycling

Lextree: From leaves to exponents in the GB

introduction Lextree Interpolation on the lextree Recycling

Lextree: From leaves to exponents in the GB

introduction Lextree Interpolation on the lextree Recycling

Lextree: From leaves to exponents in the GB

introduction Lextree Interpolation on the lextree Recycling

Lextree: From leaves to exponents in the GB

introduction Lextree Interpolation on the lextree Recycling

Lextree: From leaves to exponents in the GB

introduction Lextree Interpolation on the lextree Recycling

Lextree: From leaves to exponents in the GB

introduction Lextree Interpolation on the lextree Recycling

Lextree: From leaves to exponents in the GB

introduction Lextree Interpolation on the lextree Recycling

Lextree: From leaves to exponents in the GB

introduction Lextree Interpolation on the lextree Recycling

Lextree: From leaves to exponents in the GB

introduction Lextree Interpolation on the lextree Recycling

Lextree: From leaves to exponents in the GB

introduction Lextree Interpolation on the lextree Recycling

Lextree: From leaves to exponents in the GB

introduction Lextree Interpolation on the lextree Recycling

Lextree: From leaves to exponents in the GB

introduction Lextree Interpolation on the lextree Recycling

Lextree: From leaves to exponents in the GB

introduction Lextree Interpolation on the lextree Recycling

Lextree: From leaves to exponents in the GB

introduction Lextree Interpolation on the lextree Recycling

Lextree: From leaves to exponents in the GB

introduction Lextree Interpolation on the lextree Recycling

Lextree: From leaves to exponents in the GB

introduction Lextree Interpolation on the lextree Recycling

Lextree: From leaves to exponents in the GB

introduction Lextree Interpolation on the lextree Recycling

Lextree: From leaves to exponents in the GB

introduction Lextree Interpolation on the lextree Recycling

Lextree: From leaves to exponents in the GB

introduction Lextree Interpolation on the lextree Recycling

Lextree: From leaves to exponents in the GB

introduction Lextree Interpolation on the lextree Recycling

Lextree: From leaves to exponents in the GB

introduction Lextree Interpolation on the lextree Recycling

Lextree: From leaves to interpolation

introduction Lextree Interpolation on the lextree Recycling

Lextree: From leaves to interpolation

introduction Lextree Interpolation on the lextree Recycling

Lextree: From leaves to interpolation

introduction Lextree Interpolation on the lextree Recycling

Lextree: From leaves to interpolation

introduction Lextree Interpolation on the lextree Recycling

Lextree: From leaves to interpolation

introduction Lextree Interpolation on the lextree Recycling

Lextree: From leaves to interpolation

introduction Lextree Interpolation on the lextree Recycling

Lextree: From leaves to interpolation

introduction Lextree Interpolation on the lextree Recycling

Lextree: From leaves to interpolation

introduction Lextree Interpolation on the lextree Recycling

Lextree: From leaves to interpolation

introduction Lextree Interpolation on the lextree Recycling

Lextree: From leaves to interpolation

introduction Lextree Interpolation on the lextree Recycling

Relation with interpolation: account of the current status

All proofs of the correspondence {leaves} ↔ {std. mononmials}
rely on some sort of interpolation formulas, more or less explicit.

→ construct polynomials that vanish on some parts of V , and
whose leading monomials are standard monomials.

“Hidden” in case of purely linear algeba method
(Cerlienco-Mureddu, Marinari-Mora, Lei-Teng-Ren)

Explicit: (Lederer,2008) recursive foormula.
(Lexgame, 2006): quite coarse.

Here: expliciteness of the interpolation formula for
polynomials in G′
→ Exploit fully the simplcity supplied by the lextree.
⇒ Prone to complexity analysis.

Easy Fact: algebraic complexity depends only on the shape of the
tree (number of children of nodes) and not on labels at each node.

introduction Lextree Interpolation on the lextree Recycling

Relation with interpolation: account of the current status

All proofs of the correspondence {leaves} ↔ {std. mononmials}
rely on some sort of interpolation formulas, more or less explicit.

→ construct polynomials that vanish on some parts of V , and
whose leading monomials are standard monomials.

“Hidden” in case of purely linear algeba method
(Cerlienco-Mureddu, Marinari-Mora, Lei-Teng-Ren)

Explicit: (Lederer,2008) recursive foormula.
(Lexgame, 2006): quite coarse.

Here: expliciteness of the interpolation formula for
polynomials in G′
→ Exploit fully the simplcity supplied by the lextree.
⇒ Prone to complexity analysis.

Easy Fact: algebraic complexity depends only on the shape of the
tree (number of children of nodes) and not on labels at each node.

introduction Lextree Interpolation on the lextree Recycling

Relation with interpolation: account of the current status

All proofs of the correspondence {leaves} ↔ {std. mononmials}
rely on some sort of interpolation formulas, more or less explicit.

→ construct polynomials that vanish on some parts of V , and
whose leading monomials are standard monomials.

“Hidden” in case of purely linear algeba method
(Cerlienco-Mureddu, Marinari-Mora, Lei-Teng-Ren)

Explicit: (Lederer,2008) recursive foormula.
(Lexgame, 2006): quite coarse.

Here: expliciteness of the interpolation formula for
polynomials in G′
→ Exploit fully the simplcity supplied by the lextree.
⇒ Prone to complexity analysis.

Easy Fact: algebraic complexity depends only on the shape of the
tree (number of children of nodes) and not on labels at each node.

introduction Lextree Interpolation on the lextree Recycling

Relation with interpolation: account of the current status

All proofs of the correspondence {leaves} ↔ {std. mononmials}
rely on some sort of interpolation formulas, more or less explicit.

→ construct polynomials that vanish on some parts of V , and
whose leading monomials are standard monomials.

“Hidden” in case of purely linear algeba method
(Cerlienco-Mureddu, Marinari-Mora, Lei-Teng-Ren)

Explicit: (Lederer,2008) recursive foormula.
(Lexgame, 2006): quite coarse.

Here: expliciteness of the interpolation formula for
polynomials in G′
→ Exploit fully the simplcity supplied by the lextree.
⇒ Prone to complexity analysis.

Easy Fact: algebraic complexity depends only on the shape of the
tree (number of children of nodes) and not on labels at each node.

introduction Lextree Interpolation on the lextree Recycling

Relation with interpolation: account of the current status

All proofs of the correspondence {leaves} ↔ {std. mononmials}
rely on some sort of interpolation formulas, more or less explicit.

→ construct polynomials that vanish on some parts of V , and
whose leading monomials are standard monomials.

“Hidden” in case of purely linear algeba method
(Cerlienco-Mureddu, Marinari-Mora, Lei-Teng-Ren)

Explicit: (Lederer,2008) recursive foormula.
(Lexgame, 2006): quite coarse.

Here: expliciteness of the interpolation formula for
polynomials in G′
→ Exploit fully the simplcity supplied by the lextree.
⇒ Prone to complexity analysis.

Easy Fact: algebraic complexity depends only on the shape of the
tree (number of children of nodes) and not on labels at each node.

introduction Lextree Interpolation on the lextree Recycling

Interpolating & Discarding points in the lextree

Given an exponent at a leaf xe, from (parent of the) leaf to the
root, perform bottom-up test on siblings of the current node to
identify:

1 branches that must be interpolated:

Lagrange interpolation with eventually additional monomials to
guarantee that the leading monomial is 1.

At a given level ` : ≤ O(A(D1) + A(D2) + · · ·+ A(D`))

2 branches that must be discarded:

the branch has a leaf of larger exponent than the current one.

simple product over the labels at those siblings.
Remark: The exponent xe comes from polynomials that
discard some branches at each level.

At a given level `: ≤ O(A(D`))

introduction Lextree Interpolation on the lextree Recycling

Interpolating & Discarding points in the lextree

Given an exponent at a leaf xe, from (parent of the) leaf to the
root, perform bottom-up test on siblings of the current node to
identify:

1 branches that must be interpolated:

Lagrange interpolation with eventually additional monomials to
guarantee that the leading monomial is 1.

At a given level ` : ≤ O(A(D1) + A(D2) + · · ·+ A(D`))

2 branches that must be discarded:

the branch has a leaf of larger exponent than the current one.

simple product over the labels at those siblings.

Remark: The exponent xe comes from polynomials that
discard some branches at each level.

At a given level `: ≤ O(A(D`))

introduction Lextree Interpolation on the lextree Recycling

Interpolating & Discarding points in the lextree

Given an exponent at a leaf xe, from (parent of the) leaf to the
root, perform bottom-up test on siblings of the current node to
identify:

1 branches that must be interpolated:

Lagrange interpolation with eventually additional monomials to
guarantee that the leading monomial is 1.

At a given level ` : ≤ O(A(D1) + A(D2) + · · ·+ A(D`))

2 branches that must be discarded:

the branch has a leaf of larger exponent than the current one.
simple product over the labels at those siblings.
Remark: The exponent xe comes from polynomials that
discard some branches at each level.

At a given level `: ≤ O(A(D`))

introduction Lextree Interpolation on the lextree Recycling

Interpolating & Discarding points in the lextree

Given an exponent at a leaf xe, from (parent of the) leaf to the
root, perform bottom-up test on siblings of the current node to
identify:

1 branches that must be interpolated:

Lagrange interpolation with eventually additional monomials to
guarantee that the leading monomial is 1.

At a given level ` : ≤ O(A(D1) + A(D2) + · · ·+ A(D`))

2 branches that must be discarded:

the branch has a leaf of larger exponent than the current one.
simple product over the labels at those siblings.
Remark: The exponent xe comes from polynomials that
discard some branches at each level.

At a given level `: ≤ O(A(D`))

introduction Lextree Interpolation on the lextree Recycling

Interpolating & Discarding points in the lextree

Given an exponent at a leaf xe, from (parent of the) leaf to the
root, perform bottom-up test on siblings of the current node to
identify:

1 branches that must be interpolated:

Lagrange interpolation with eventually additional monomials to
guarantee that the leading monomial is 1.

At a given level ` : ≤ O(A(D1) + A(D2) + · · ·+ A(D`))

2 branches that must be discarded:

the branch has a leaf of larger exponent than the current one.
simple product over the labels at those siblings.
Remark: The exponent xe comes from polynomials that
discard some branches at each level.

At a given level `: ≤ O(A(D`))

introduction Lextree Interpolation on the lextree Recycling

Non-reduced Gröbner basis G ′? Bit-size

. . . but minimal: lm(G) = {lm(g) | g ∈ G} = lm(G′).

Bad: More coefficients . . . ,
Good: Coefficients of smaller bit-size

More precisely let h(g) be “roughly” the max bit-size among
all coefficients on g ∈ GB ′:

h(g) ≤ O(nD2h2pts)

where hpts is the max bit-size among coordinates of all points
in V .

all in all, this is not a bad choice. . . it has moreover good
properties. . .

introduction Lextree Interpolation on the lextree Recycling

Non-reduced Gröbner basis G ′? Bit-size

. . . but minimal: lm(G) = {lm(g) | g ∈ G} = lm(G′).

Bad: More coefficients . . . ,
Good: Coefficients of smaller bit-size

More precisely let h(g) be “roughly” the max bit-size among
all coefficients on g ∈ GB ′:

h(g) ≤ O(nD2h2pts)

where hpts is the max bit-size among coordinates of all points
in V .

all in all, this is not a bad choice. . . it has moreover good
properties. . .

introduction Lextree Interpolation on the lextree Recycling

Non-reduced Gröbner basis G ′? Stability I

Let φa : k[x1, . . . , xn]→ k[xm+1, . . . , xn], m < n evaluation
map at a = (a1, . . . , am).

an ideal I is stable under φa if lm(φ(I)) = φa(ltm(I)).

A Gröbner basis G of I for an m-elimination order ≺m

specializes well at a:

φa(G) is a Gröbner basis of φa(I).

Stronger condition is: lt(φa(g)) ≺m φa(ltm(g)) then
φa(g) = 0.

whereas stability is:
lt(φa(g)) ≺m φa(ltm(g))⇒ φa(g) ≡ 0 mod φa(G \ {g}).

introduction Lextree Interpolation on the lextree Recycling

Non-reduced Gröbner basis G ′? Stability I

Let φa : k[x1, . . . , xn]→ k[xm+1, . . . , xn], m < n evaluation
map at a = (a1, . . . , am).

an ideal I is stable under φa if lm(φ(I)) = φa(ltm(I)).

A Gröbner basis G of I for an m-elimination order ≺m

specializes well at a:

φa(G) is a Gröbner basis of φa(I).

Stronger condition is: lt(φa(g)) ≺m φa(ltm(g)) then
φa(g) = 0.

whereas stability is:
lt(φa(g)) ≺m φa(ltm(g))⇒ φa(g) ≡ 0 mod φa(G \ {g}).

introduction Lextree Interpolation on the lextree Recycling

Non-reduced Gröbner basis G ′? Stability I

Let φa : k[x1, . . . , xn]→ k[xm+1, . . . , xn], m < n evaluation
map at a = (a1, . . . , am).

an ideal I is stable under φa if lm(φ(I)) = φa(ltm(I)).

A Gröbner basis G of I for an m-elimination order ≺m

specializes well at a:

φa(G) is a Gröbner basis of φa(I).

Stronger condition is: lt(φa(g)) ≺m φa(ltm(g)) then
φa(g) = 0.

whereas stability is:
lt(φa(g)) ≺m φa(ltm(g))⇒ φa(g) ≡ 0 mod φa(G \ {g}).

introduction Lextree Interpolation on the lextree Recycling

Non-reduced Gröbner basis G ′? Stability I

Let φa : k[x1, . . . , xn]→ k[xm+1, . . . , xn], m < n evaluation
map at a = (a1, . . . , am).

an ideal I is stable under φa if lm(φ(I)) = φa(ltm(I)).

A Gröbner basis G of I for an m-elimination order ≺m

specializes well at a:

φa(G) is a Gröbner basis of φa(I).

Stronger condition is: lt(φa(g)) ≺m φa(ltm(g)) then
φa(g) = 0.

whereas stability is:
lt(φa(g)) ≺m φa(ltm(g))⇒ φa(g) ≡ 0 mod φa(G \ {g}).

introduction Lextree Interpolation on the lextree Recycling

Non-reduced Gröbner basis G ′? Stability II

Previous work: Stability for m-elimination order (includes lex
order)

Gianni (Kalkbrener): m = n − 1 for 0-dimensional ideals.
Strong version of stability.

Becker: Stability for radical m-elimination Gröbner bases.
(not strong).

Kalkbrener: extension and clarification to the notion of
stability.

Gröbner basis G′ of this talk: strong stability property.

Not the case of the reduced Gröbner basis G.

introduction Lextree Interpolation on the lextree Recycling

Non-reduced Gröbner basis G ′? Stability II

Previous work: Stability for m-elimination order (includes lex
order)

Gianni (Kalkbrener): m = n − 1 for 0-dimensional ideals.
Strong version of stability.

Becker: Stability for radical m-elimination Gröbner bases.
(not strong).

Kalkbrener: extension and clarification to the notion of
stability.

Gröbner basis G′ of this talk: strong stability property.

Not the case of the reduced Gröbner basis G.

introduction Lextree Interpolation on the lextree Recycling

Non-reduced Gröbner basis G ′? Stability II

Previous work: Stability for m-elimination order (includes lex
order)

Gianni (Kalkbrener): m = n − 1 for 0-dimensional ideals.
Strong version of stability.

Becker: Stability for radical m-elimination Gröbner bases.
(not strong).

Kalkbrener: extension and clarification to the notion of
stability.

Gröbner basis G′ of this talk: strong stability property.

Not the case of the reduced Gröbner basis G.

introduction Lextree Interpolation on the lextree Recycling

Non-reduced Gröbner basis G ′? Stability II

Previous work: Stability for m-elimination order (includes lex
order)

Gianni (Kalkbrener): m = n − 1 for 0-dimensional ideals.
Strong version of stability.

Becker: Stability for radical m-elimination Gröbner bases.
(not strong).

Kalkbrener: extension and clarification to the notion of
stability.

Gröbner basis G′ of this talk: strong stability property.

Not the case of the reduced Gröbner basis G.

introduction Lextree Interpolation on the lextree Recycling

Non-reduced Gröbner basis G ′? Stability II

Previous work: Stability for m-elimination order (includes lex
order)

Gianni (Kalkbrener): m = n − 1 for 0-dimensional ideals.
Strong version of stability.

Becker: Stability for radical m-elimination Gröbner bases.
(not strong).

Kalkbrener: extension and clarification to the notion of
stability.

Gröbner basis G′ of this talk: strong stability property.

Not the case of the reduced Gröbner basis G.

introduction Lextree Interpolation on the lextree Recycling

Summary of the interpolation of one polynomial

Step 1. Identify leaves that yields a leading monomial in the Gröbner
basis.
→ purely combinatorial (complexity: only comparisons)

Step 2. Bottom-up interpolation or discard sibling branches.

This creates an arithmetic circuit. It depends only on the
shape of the tree.
In both case, subproduct tree can be used
→ many times similar products must be perform.
About the upper bound an arithmetic complexity →
Can we do better ? Reuse already computed polynomials.

introduction Lextree Interpolation on the lextree Recycling

Summary of the interpolation of one polynomial

Step 1. Identify leaves that yields a leading monomial in the Gröbner
basis.
→ purely combinatorial (complexity: only comparisons)

Step 2. Bottom-up interpolation or discard sibling branches.

This creates an arithmetic circuit. It depends only on the
shape of the tree.
In both case, subproduct tree can be used
→ many times similar products must be perform.
About the upper bound an arithmetic complexity →
Can we do better ? Reuse already computed polynomials.

introduction Lextree Interpolation on the lextree Recycling

Recycling already computed components

The more polynomials in G′, have been computed the more it is
likely possible to recycle
Two ways to recycle:

1 Detect a product already computed in a subproduct

Too much memory? Is it possible to know in advance
which products to store ?

2 Use structure: some polynomials naturally divides other

Work in progress: structural results. . .

introduction Lextree Interpolation on the lextree Recycling

Recycling already computed components

The more polynomials in G′, have been computed the more it is
likely possible to recycle
Two ways to recycle:

1 Detect a product already computed in a subproduct

Too much memory? Is it possible to know in advance
which products to store ?

2 Use structure: some polynomials naturally divides other

Work in progress: structural results. . .

introduction Lextree Interpolation on the lextree Recycling

Recycling already computed components

The more polynomials in G′, have been computed the more it is
likely possible to recycle
Two ways to recycle:

1 Detect a product already computed in a subproduct

Too much memory? Is it possible to know in advance
which products to store ?

2 Use structure: some polynomials naturally divides other

Work in progress: structural results. . .

introduction Lextree Interpolation on the lextree Recycling

Recycling already computed components

The more polynomials in G′, have been computed the more it is
likely possible to recycle
Two ways to recycle:

1 Detect a product already computed in a subproduct

Too much memory? Is it possible to know in advance
which products to store ?

2 Use structure: some polynomials naturally divides other

Work in progress: structural results. . .

introduction Lextree Interpolation on the lextree Recycling

Work in progress – Structure

Assume that f ∈ G′, with lm(g) = xd11 · · · xdnn .

f =
∑
α∈A
Lα(x1, . . . , xn−1)f1,α(x1) · · · fn,α(xn) ·mα

where fi ,α depends only on the i − 1-th first coordinates
(α1, . . . , αi−1) of α,

Lα is a multivariate Lagrange idempotent on a grid of points
A ⊂ V .

mα = x
d1−δ1(α)
1 · · · xdn−δn(α)n (δi (α) = degi (fi ,α))

Kind of generalization of Lazard’s structural theorem
(1985) full result for lexGB in two variables.

introduction Lextree Interpolation on the lextree Recycling

Work in progress – Structure

Assume that f ∈ G′, with lm(g) = xd11 · · · xdnn .

f =
∑
α∈A
Lα(x1, . . . , xn−1)f1,α(x1) · · · fn,α(xn) ·mα

where fi ,α depends only on the i − 1-th first coordinates
(α1, . . . , αi−1) of α,

Lα is a multivariate Lagrange idempotent on a grid of points
A ⊂ V .

mα = x
d1−δ1(α)
1 · · · xdn−δn(α)n (δi (α) = degi (fi ,α))

Kind of generalization of Lazard’s structural theorem
(1985) full result for lexGB in two variables.

introduction Lextree Interpolation on the lextree Recycling

Perspective

1 Find a simple formulation of the previous problems.

find a simple way, on the lextree, to address a (sharp)
complexity analysis of the recycling phase.

2 The ideal of vanishing polynomials is radical.

Generalization to non-radical ideals: Hermite conditions
attached to each point in V .

Lei-Zheng-Ruen 2014: investigated using Lederer formulation
(four-in-a-row). From their own account, dautingly
complicated to estimate complexity in this way.

the key is simplicity. It is the case when the Hermite
conditions are triangular: the highest order in the derivative of
Taylor expansions appear to the largest (single) variable.

introduction Lextree Interpolation on the lextree Recycling

Perspective

1 Find a simple formulation of the previous problems.

find a simple way, on the lextree, to address a (sharp)
complexity analysis of the recycling phase.

2 The ideal of vanishing polynomials is radical.

Generalization to non-radical ideals: Hermite conditions
attached to each point in V .

Lei-Zheng-Ruen 2014: investigated using Lederer formulation
(four-in-a-row). From their own account, dautingly
complicated to estimate complexity in this way.

the key is simplicity. It is the case when the Hermite
conditions are triangular: the highest order in the derivative of
Taylor expansions appear to the largest (single) variable.

introduction Lextree Interpolation on the lextree Recycling

Perspective

1 Find a simple formulation of the previous problems.

find a simple way, on the lextree, to address a (sharp)
complexity analysis of the recycling phase.

2 The ideal of vanishing polynomials is radical.

Generalization to non-radical ideals: Hermite conditions
attached to each point in V .

Lei-Zheng-Ruen 2014: investigated using Lederer formulation
(four-in-a-row). From their own account, dautingly
complicated to estimate complexity in this way.

the key is simplicity. It is the case when the Hermite
conditions are triangular: the highest order in the derivative of
Taylor expansions appear to the largest (single) variable.

introduction Lextree Interpolation on the lextree Recycling

Perspective

1 Find a simple formulation of the previous problems.

find a simple way, on the lextree, to address a (sharp)
complexity analysis of the recycling phase.

2 The ideal of vanishing polynomials is radical.

Generalization to non-radical ideals: Hermite conditions
attached to each point in V .

Lei-Zheng-Ruen 2014: investigated using Lederer formulation
(four-in-a-row). From their own account, dautingly
complicated to estimate complexity in this way.

the key is simplicity. It is the case when the Hermite
conditions are triangular: the highest order in the derivative of
Taylor expansions appear to the largest (single) variable.

introduction Lextree Interpolation on the lextree Recycling

Perspective

1 Find a simple formulation of the previous problems.

find a simple way, on the lextree, to address a (sharp)
complexity analysis of the recycling phase.

2 The ideal of vanishing polynomials is radical.

Generalization to non-radical ideals: Hermite conditions
attached to each point in V .

Lei-Zheng-Ruen 2014: investigated using Lederer formulation
(four-in-a-row). From their own account, dautingly
complicated to estimate complexity in this way.

the key is simplicity. It is the case when the Hermite
conditions are triangular: the highest order in the derivative of
Taylor expansions appear to the largest (single) variable.

introduction Lextree Interpolation on the lextree Recycling

Perspective

1 Find a simple formulation of the previous problems.

find a simple way, on the lextree, to address a (sharp)
complexity analysis of the recycling phase.

2 The ideal of vanishing polynomials is radical.

Generalization to non-radical ideals: Hermite conditions
attached to each point in V .

Lei-Zheng-Ruen 2014: investigated using Lederer formulation
(four-in-a-row). From their own account, dautingly
complicated to estimate complexity in this way.

the key is simplicity. It is the case when the Hermite
conditions are triangular: the highest order in the derivative of
Taylor expansions appear to the largest (single) variable.

	introduction
	Lextree
	Interpolation on the lextree
	Recycling

