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Introduction

o Setting: Let V C k" a finite set of points
V is Zariski-closed over k: V' is the set of solutions of a
polynomial system over k.

@ Problem: Compute a lexicographic Grobner basis of the
vanishing polynomials on V.

o Classical problem: Buchberger-Méller (1982) for any monomial
order
e ...and for the lex order, dedicated algorithms: 1995 to 2016.
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o Setting: Let V C k" a finite set of points
V is Zariski-closed over k: V' is the set of solutions of a
polynomial system over k.

@ Problem: Compute a lexicographic Grobner basis of the
vanishing polynomials on V.
o Classical problem: Buchberger-Méller (1982) for any monomial
order
e ...and for the lex order, dedicated algorithms: 1995 to 2016.
@ Yet, all those works are somewhat still “incomplete”. Why 7
e research articles tend to address some aspects and ignoring
some others.
o for example, fully explicit interpolation formulas have not
appear clearly. ..
e ...itis a key for a sharp complexity study.
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Non-generic LexGB of Dimension Zero

LexGB = Lexicographic Grobner Basis: x3 < xp < -+ < X,.
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This work — “Highly” non-generic lexGB : |G| > n.
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Non-generic LexGB of Dimension Zero

LexGB = Lexicographic Grobner Basis: x3 < xp < -+ < X,.

_ do(n)
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This work — “Highly” non-generic lexGB : |G| > n.
Non-generic: Shape Lemma, Triangular Set — nothing new.
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Results

Let D; := |V<;| where V<; = m;(V),
7T,-:En—>E',(al,...,an)r—)(al,...,a,-)

@ There is a Grobner basis G', non-reduced in general, such that
any polynomial g € G’ can be computed in at most:

O(A(D1) + A(D2) + - - - + A(Dp)) < O(nDy),

arithmetic operations in k.
o A(d) cost to construct Lagrange idempotents of d points.
o A(d) = M(d) log(d), by the subproduct tree technique.
(M(d) = O(d log(d) loglog(d)) by Schénhage-Strassen, or
naively d?).
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Results

Let D; := |V<;| where V<; = m;(V),
7T,-:En—>E',(al,...,an)r—)(al,...,a,-)

@ There is a Grobner basis G', non-reduced in general, such that
any polynomial g € G’ can be computed in at most:

O(A(D1) + A(D2) + - - - + A(Dp)) < O(nDy),

arithmetic operations in k.
o A(d) cost to construct Lagrange idempotents of d points.
o A(d) = M(d) log(d), by the subproduct tree technique.
(M(d) = O(d log(d) loglog(d)) by Schénhage-Strassen, or
naively d?).
@ The structure of (non-generic) lexGB allows to recycle
computations.
e But difficult to estimate in general. Simple strategy is still a
work in progress.
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half-way, then withdraw linear combinations of other
polynomials built “on-demand” to cancel unwanted monomials.
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Previous Work

@ Buchberger-Mdller (1982): linear algebra O(nD3) (but for any
monomial order)

o Lederer (2008): almost “fully” explicit formulas, no
complexity at all.

e focuses on the reduced lexGB G which complicates the matter
quite a lot.

e essentially computes the above non-reduced lexGB G, stops
half-way, then withdraw linear combinations of other
polynomials built “on-demand” to cancel unwanted monomials.

e Finding a separating basis: Vv € V, p, € k[xi,...,xp], such
that p,(w) =0 if v # w, and p,(v) = 1 otherwise.

o Lundqvist (2010): O(D?) But using subproduct tree
O(D log(D)).

o Lei-Teng-Ren (2016): lexGB for vanishing polynomials of
higher order (Hermite interpolation). (O(7 + 3)D?) where T is
a dislacement rank. Vandermonde matrix, 7 =2 — O(D?)
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A key tool to study lexGB is a combinatorial decomposition of V:
One-one correspondence between standard monomials of G and
points of V.

@ Macaulay? Lazard in two variables.

e Cerlienco-Muredu (1995 & 01), Marinari Mora (2003 & 06):
linear algebra.
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The lextree: introduction and backgrounds

A key tool to study lexGB is a combinatorial decomposition of V:
One-one correspondence between standard monomials of G and
points of V.

Macaulay? Lazard in two variables.

Cerlienco-Muredu (1995 & 01), Marinari Mora (2003 & 06):
linear algebra.

Lex game (Ronyai et al., 2006) Lextree: Major simplification
by using a tree data structure.

Lederer (2008): Instead of lextree uses a “four-in-a-row” -like
operation on the standard monomials.

Lundgvist (2010): complexity of building the lextree to find
standard monomials.

One-one correspondence between standard monomials and leaves
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More than standard monomials, we are interested in leading
monomials of a lexGB.

We introduce a new variation of computing standard monomials to
compute leading exponents:

Example interlude
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Lextree: From leaves to interpolation
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Lextree: From leaves to interpolation
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Lextree: From leaves to interpolation
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Lextree: From leaves to interpolation
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Lextree: From leaves to interpolation
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Relation with interpolation: account of the current status

All proofs of the correspondence {leaves} <+ {std. mononmials}
rely on some sort of interpolation formulas, more or less explicit.

— construct polynomials that vanish on some parts of V, and
whose leading monomials are standard monomials.

@ “Hidden" in case of purely linear algeba method
(Cerlienco-Mureddu, Marinari-Mora, Lei-Teng-Ren)

e Explicit: (Lederer,2008) recursive foormula.
(Lexgame, 2006): quite coarse.

@ Here: expliciteness of the interpolation formula for
polynomials in G’

— Exploit fully the simplcity supplied by the lextree.
= Prone to complexity analysis.

Easy Fact: algebraic complexity depends only on the shape of the
tree (number of children of nodes) and not on labels at each node.
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© branches that must be interpolated:

@ branches that must be discarded:
the branch has a leaf of larger exponent than the current one.
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Non-reduced Grobner basis 7 Bit-size

@ ...but minimal: LM(G) = {LM(g) | g € G} = Lm(G).
@ Bad: More coefficients . . .,
Good: Coefficients of smaller bit-size

@ More precisely let h(g) be “roughly” the max bit-size among
all coefficients on g € GB":

h(g) < O(nD?hps)

where hps is the max bit-size among coordinates of all points
inV.

@ all in all, this is not a bad choice. .. it has moreover good
properties. . .
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o Let ¢ : k[x1,...,xn] = k[Xmi1,-..,Xn], m < n evaluation
map ata = (a1,...,am).
@ an ideal / is stable under ¢, if LM(¢p(1)) = ¢a(LTm(1)).

@ A Grobner basis G of | for an m-elimination order <,
specializes well at a:

®a(G) is a Grobner basis of  ¢,(/).

@ Stronger condition is: LT(¢pa(g)) <m ¢a(LTm(g)) then
$a(g) = 0.

e whereas stability is:

LT(¢a(g)) <m ¢a(LTm(g)) = ¢a(g) = 0 mod ¢a(G \ {g}).
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Non-reduced Grobner basis 7 Stability I

Previous work: Stability for m-elimination order (includes lex
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Non-reduced Grobner basis 7 Stability I

Previous work: Stability for m-elimination order (includes lex
order)

e Gianni (Kalkbrener): m = n — 1 for 0-dimensional ideals.
Strong version of stability.

@ Becker: Stability for radical m-elimination Grobner bases.
(not strong).

@ Kalkbrener: extension and clarification to the notion of
stability.
o Grobner basis G’ of this talk: strong stability property.

@ Not the case of the reduced Grébner basis G.
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Summary of the interpolation of one polynomial

Step 1.

Step 2.

Identify leaves that yields a leading monomial in the Grobner
basis.
— purely combinatorial (complexity: only comparisons)
Bottom-up interpolation or discard sibling branches.
o This creates an arithmetic circuit. It depends only on the
shape of the tree.
e In both case, subproduct tree can be used
— many times similar products must be perform.
e About the upper bound an arithmetic complexity —
Can we do better ? Reuse already computed polynomials.
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Recycling already computed components

The more polynomials in G’, have been computed the more it is
likely possible to recycle
Two ways to recycle:

© Detect a product already computed in a subproduct

e Too much memory? Is it possible to know in advance
which products to store ?

@ Use structure: some polynomials naturally divides other
o Work in progress: structural results. . .
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Work in progress — Structure

Assume that f € ¢, with LM(g) = x| - - - x§".

f= Z »Coc(Xla e 7Xn—1)f17oc(X1) tet fn,a(xn) s Mgy

a€A

@ where f; , depends only on the / — 1-th first coordinates
(a1,...,aj_1) of a,

e L, is a multivariate Lagrange idempotent on a grid of points
ACV.

o = KO (5,0) — deg(£.0))

Kind of generalization of Lazard's structural theorem
(1985) full result for lexGB in two variables.
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Perspective

@ Find a simple formulation of the previous problems.
o find a simple way, on the lextree, to address a (sharp)
complexity analysis of the recycling phase.

@ The ideal of vanishing polynomials is radical.

o Generalization to non-radical ideals: Hermite conditions
attached to each point in V.

o Lei-Zheng-Ruen 2014: investigated using Lederer formulation
(four-in-a-row). From their own account, dautingly
complicated to estimate complexity in this way.

o the key is simplicity. It is the case when the Hermite
conditions are triangular: the highest order in the derivative of
Taylor expansions appear to the largest (single) variable.
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