introduction 0000	Lextree 000000	Interpolation on the lextree	Recycling

Fast construction of a lexicographic Gröbner basis of the vanishing ideal of a set of points

Dahan Xavier

Ochanomizu Univeristy, Faculty of General Educational Research

ACA 2017, July 17-21 — High-performance computing

introduction	Lextree	Interpolation on the lextree	Recycling
●000	000000		000
Introduction			

- Setting: Let V ⊂ k
 ⁿ a finite set of points
 V is Zariski-closed over k: V is the set of solutions of a polynomial system over k.
- Problem: Compute a lexicographic Gröbner basis of the vanishing polynomials on *V*.
 - Classical problem: Buchberger-Möller (1982) for any monomial order

• ... and for the lex order, dedicated algorithms: 1995 to 2016.

introduction	Lextree	Interpolation on the lextree	Recycling
●000	000000		000
Introduction			

- Setting: Let V ⊂ k
 ⁿ a finite set of points
 V is Zariski-closed over k: V is the set of solutions of a polynomial system over k.
- Problem: Compute a lexicographic Gröbner basis of the vanishing polynomials on *V*.
 - Classical problem: Buchberger-Möller (1982) for any monomial order
 - ... and for the lex order, dedicated algorithms: 1995 to 2016.
- Yet, all those works are somewhat still "incomplete". Why ?
 - research articles tend to address some aspects and ignoring some others.
 - for example, fully explicit interpolation formulas have not appear clearly. . .
 - ... it is a key for a sharp complexity study.

 introduction
 Lextree
 Interpolation on the lextree
 Recycling

 0=00
 000000
 00000
 000

Non-generic LexGB of Dimension Zero

LexGB = Lexicographic Gröbner Basis: $x_1 \prec x_2 \prec \cdots \prec x_n$.

$$\begin{array}{rcl} g_{\ell(n)}(x_1, x_2, x_3, \dots, x_{n-2}, x_{n-1}, x_n) &=& x_n^{d_{\ell(n)}} + \cdots \\ g_{\ell(n)-1}(x_1, x_2, \dots, x_{n-2}, x_{n-1}) &=& \mathrm{lc}_{n-1}(g_{\ell(n)-1}) x_n^{d_{\ell(n)-1}} + \cdots \\ & \ddots & \vdots & \vdots \\ g_{\ell(n-1)}(x_1, \dots, x_{n-1}) &=& x_{n-1}^{d_{\ell(n-1)}} + \cdots \\ & \ddots & \vdots & \vdots \\ g_{\ell(2)}(x_1, x_2) &=& x_2^{d_{\ell(2)}} + \cdots \\ g_{\ell(2)-1}(x_1, x_2) &=& x_1^{n_{\ell(2)-1}} x_2^{d_{\ell(2)-1}} + \cdots \\ & \ddots & \vdots & \vdots \\ g_{1}(x_1) &=& x_1^{d_1} + \cdots \end{array}$$

This work \rightarrow "Highly" non-generic lexGB : $|\mathcal{G}| > n$.

 introduction
 Lextree
 Interpolation on the lextree
 Recycling

 0=00
 000000
 00000
 000

Non-generic LexGB of Dimension Zero

LexGB = Lexicographic Gröbner Basis: $x_1 \prec x_2 \prec \cdots \prec x_n$.

This work \rightarrow "Highly" non-generic lexGB : $|\mathcal{G}| > n$. Non-generic: Shape Lemma, Triangular Set \rightarrow nothing new.

introduction	Lextree	Interpolation on the lextree	Recycling
00●0	000000		000
Results			

Let
$$D_i := |V_{\leq i}|$$
 where $V_{\leq i} = \pi_i(V)$,
 $\pi_i : \overline{\mathbf{k}}^n \to \overline{\mathbf{k}}^i, (a_1, \dots, a_n) \mapsto (a_1, \dots, a_i)$

• There is a Gröbner basis \mathcal{G}' , non-reduced in general, such that any polynomial $g \in \mathcal{G}'$ can be computed in at most:

$$O(\mathsf{A}(D_1) + \mathsf{A}(D_2) + \cdots + \mathsf{A}(D_n)) < O(nD_n),$$

arithmetic operations in k.

- A(d) cost to construct Lagrange idempotents of d points.
- A(d) = M(d) log(d), by the subproduct tree technique.
 (M(d) = O(d log(d) log log(d)) by Schönhage-Strassen, or naively d²).

introduction	Lextree	Interpolation on the lextree	Recycling
00●0	000000		000
Results			

Let
$$D_i := |V_{\leq i}|$$
 where $V_{\leq i} = \pi_i(V)$,
 $\pi_i : \overline{\mathbf{k}}^n \to \overline{\mathbf{k}}^i, (a_1, \dots, a_n) \mapsto (a_1, \dots, a_i)$

• There is a Gröbner basis \mathcal{G}' , non-reduced in general, such that any polynomial $g \in \mathcal{G}'$ can be computed in at most:

$$O(\mathsf{A}(D_1) + \mathsf{A}(D_2) + \cdots + \mathsf{A}(D_n)) < O(nD_n),$$

arithmetic operations in k.

- A(d) cost to construct Lagrange idempotents of d points.
- A(d) = M(d) log(d), by the subproduct tree technique.
 (M(d) = O(d log(d) log log(d)) by Schönhage-Strassen, or naively d²).
- The structure of (non-generic) lexGB allows to recycle computations.
 - But difficult to estimate in general. Simple strategy is still a work in progress.

introduction	Lextree	Interpolation on the lextree	Recycling
000●	000000	00000	000
Previous Work			

• Buchberger-Möller (1982): linear algebra $O(nD_n^3)$ (but for any monomial order)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

introduction	Lextree	Interpolation on the lextree	Recycling
0000			
Previous W	lork		
FIEWROUS VV			

- Buchberger-Möller (1982): linear algebra $O(nD_n^3)$ (but for any monomial order)
- Lederer (2008): almost "fully" explicit formulas, no complexity at all.
 - $\bullet\,$ focuses on the reduced lexGB ${\cal G}$ which complicates the matter quite a lot.
 - essentially computes the above non-reduced lexGB G', stops half-way, then withdraw linear combinations of other polynomials built "on-demand" to cancel unwanted monomials.

introduction	Lextree	Interpolation on the lextree	Recycling
000●	000000	00000	000
Previous Work			

- Buchberger-Möller (1982): linear algebra $O(nD_n^3)$ (but for any monomial order)
- Lederer (2008): almost "fully" explicit formulas, no complexity at all.
 - $\bullet\,$ focuses on the reduced lexGB ${\cal G}$ which complicates the matter quite a lot.
 - essentially computes the above non-reduced lexGB G', stops half-way, then withdraw linear combinations of other polynomials built "on-demand" to cancel unwanted monomials.

• Finding a separating basis: $\forall v \in V, p_v \in k[x_1, \dots, x_n]$, such that $p_v(w) = 0$ if $v \neq w$, and $p_v(v) = 1$ otherwise.

introduction	Lextree	Interpolation on the lextree	Recycling
000●	000000	00000	000
Previous Work			

- Buchberger-Möller (1982): linear algebra O(nD_n³) (but for any monomial order)
- Lederer (2008): almost "fully" explicit formulas, no complexity at all.
 - $\bullet\,$ focuses on the reduced lexGB ${\cal G}$ which complicates the matter quite a lot.
 - essentially computes the above non-reduced lexGB G', stops half-way, then withdraw linear combinations of other polynomials built "on-demand" to cancel unwanted monomials.

(日) (同) (三) (三) (三) (○) (○)

- Finding a separating basis: $\forall v \in V, p_v \in k[x_1, \dots, x_n]$, such that $p_v(w) = 0$ if $v \neq w$, and $p_v(v) = 1$ otherwise.
 - Lundqvist (2010): $O(D^2)$ But using subproduct tree $O(D \log(D))$.

introduction	Lextree	Interpolation on the lextree	Recycling
000●	000000	00000	000
Previous Work			

- Buchberger-Möller (1982): linear algebra $O(nD_n^3)$ (but for any monomial order)
- Lederer (2008): almost "fully" explicit formulas, no complexity at all.
 - $\bullet\,$ focuses on the reduced lexGB ${\cal G}$ which complicates the matter quite a lot.
 - essentially computes the above non-reduced lexGB G', stops half-way, then withdraw linear combinations of other polynomials built "on-demand" to cancel unwanted monomials.
- Finding a separating basis: $\forall v \in V, p_v \in k[x_1, \dots, x_n]$, such that $p_v(w) = 0$ if $v \neq w$, and $p_v(v) = 1$ otherwise.
 - Lundqvist (2010): $O(D^2)$ But using subproduct tree $O(D \log(D))$.
 - Lei-Teng-Ren (2016): lexGB for vanishing polynomials of higher order (Hermite interpolation). (O(τ + 3)D²) where τ is a dislacement rank.

introduction	Lextree	Interpolation on the lextree	Recycling
000●	000000	00000	000
Previous Work			

- Buchberger-Möller (1982): linear algebra $O(nD_n^3)$ (but for any monomial order)
- Lederer (2008): almost "fully" explicit formulas, no complexity at all.
 - $\bullet\,$ focuses on the reduced lexGB ${\cal G}$ which complicates the matter quite a lot.
 - essentially computes the above non-reduced lexGB G', stops half-way, then withdraw linear combinations of other polynomials built "on-demand" to cancel unwanted monomials.
- Finding a separating basis: $\forall v \in V, p_v \in k[x_1, \dots, x_n]$, such that $p_v(w) = 0$ if $v \neq w$, and $p_v(v) = 1$ otherwise.
 - Lundqvist (2010): $O(D^2)$ But using subproduct tree $O(D \log(D))$.
 - Lei-Teng-Ren (2016): lexGB for vanishing polynomials of higher order (Hermite interpolation). $(O(\tau + 3)D^2)$ where τ is a dislacement rank. Vandermonde matrix, $\tau = 2 \rightarrow O(D^2)$

 Interpolation on the lextree
 Recycling

 00000
 00000
 00000

 The lextree: introduction and backgrounds
 00000

A key tool to study lexGB is a combinatorial decomposition of V: One-one correspondence between standard monomials of G and points of V.

- Macaulay? Lazard in two variables.
- Cerlienco-Muredu (1995 & 01), Marinari Mora (2003 & 06): linear algebra.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

 Interpolation on the lextree
 Recycling

 00000
 00000
 00000

 The lextree: introduction and backgrounds
 00000

A key tool to study lexGB is a combinatorial decomposition of V: One-one correspondence between standard monomials of G and points of V.

- Macaulay? Lazard in two variables.
- Cerlienco-Muredu (1995 & 01), Marinari Mora (2003 & 06): linear algebra.
- Lex game (Ronyai et al., 2006) Lextree: Major simplification by using a tree data structure.

 Interpolation on the lextree
 Recycling

 0000
 00000
 000

 The lextree: introduction and backgrounds
 00000

A key tool to study lexGB is a combinatorial decomposition of V: One-one correspondence between standard monomials of G and points of V.

- Macaulay? Lazard in two variables.
- Cerlienco-Muredu (1995 & 01), Marinari Mora (2003 & 06): linear algebra.
- Lex game (Ronyai et al., 2006) Lextree: Major simplification by using a tree data structure.
- Lederer (2008): Instead of lextree uses a "four-in-a-row"-like operation on the standard monomials.

 Interpolation on the lextree
 Recycling

 00000
 00000
 00000

 The lextree: introduction and backgrounds
 00000

A key tool to study lexGB is a combinatorial decomposition of V: One-one correspondence between standard monomials of G and points of V.

- Macaulay? Lazard in two variables.
- Cerlienco-Muredu (1995 & 01), Marinari Mora (2003 & 06): linear algebra.
- Lex game (Ronyai et al., 2006) Lextree: Major simplification by using a tree data structure.
- Lederer (2008): Instead of lextree uses a "four-in-a-row"-like operation on the standard monomials.
- Lundqvist (2010): complexity of building the lextree to find standard monomials.

 Interpolation on the lextree
 Recycling

 0000
 00000
 000

 The lextree: introduction and backgrounds
 00000

A key tool to study lexGB is a combinatorial decomposition of V: One-one correspondence between standard monomials of G and points of V.

- Macaulay? Lazard in two variables.
- Cerlienco-Muredu (1995 & 01), Marinari Mora (2003 & 06): linear algebra.
- Lex game (Ronyai et al., 2006) Lextree: Major simplification by using a tree data structure.
- Lederer (2008): Instead of lextree uses a "four-in-a-row"-like operation on the standard monomials.
- Lundqvist (2010): complexity of building the lextree to find standard monomials.

One-one correspondence between standard monomials and leaves

introduction	Lextree	Interpolation on the lextree	Recycling
0000	o●oooo		000
Lextree II			

More than standard monomials, we are interested in leading monomials of a lexGB.

We introduce a new variation of computing standard monomials to compute leading exponents:

Example interlude

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

introduction	Lextree	Interpolation on the lextree	Recycling
0000	00000		000
Lextree: co	nstruction		

root

introduction	Lextree	Interpolation on the lextree	Recycling
0000	00●000		000
Lextree: co	nstruction		

introduction	Lextree	Interpolation on the lextree	Recycling
0000	000000		000
Lextree: co	nstruction		

introduction	Lextree	Interpolation on the lextree	Recycling
0000	oo●ooo	00000	000
Lextree: co	onstruction		

introduction	Lextree	Interpolation on the lextree	Recycling
0000	00000		000
Lextree: co	nstruction		

C

introduction	Lextree	Interpolation on the lextree	Recycling
0000	00000		000
Lextree: co	nstruction		

introduction	Lextree	Interpolation on the lextree	Recycling
0000	00000		000
Lextree: co	nstruction		

introduction	Lextree	Interpolation on the lextree	Recycling
0000	00●000	00000	000
Lextree: co	nstruction		

 Introduction
 Lextree
 Interpolation on the lextree
 Recycling

 0000
 00000
 0000
 000

 Introduction
 Lextree
 Interpolation on the lextree
 Recycling

 0000
 00000
 0000
 000

 Introduction
 Lextree
 Interpolation on the lextree
 Recycling

 0000
 00000
 0000
 000

 Introduction
 Lextree
 Interpolation on the lextree
 Recycling

 0000
 00000
 0000
 000

introduction	Lextree	Interpolation on the lextree	Recycling		
0000	000●00		000		
Lextree: From leaves to exponents in the GB					

 Introduction
 Lextree
 Interpolation on the lextree
 Recycling

 0000
 00000
 0000
 000

 Introduction
 Lextree
 Interpolation on the lextree
 Recycling

 0000
 00000
 0000
 000

 Introduction
 Lextree
 Interpolation on the lextree
 Recycling

 0000
 0000
 0000
 0000

 $(z-z_A)(z-z_B)(z-z_C)$

 $(z - z_A)(z - z_B)(z - z_C) \frac{y - y_D}{y_A - y_D} + (z - z_D) \frac{y - y_A}{y_D - y_A}$

 Interpolation on the lextree
 Interpolation on the lextree
 Recycling ooo

 Lextree:
 From
 leaves to interpolation
 Performance

 $(z - z_A)(z - z_B)(z - z_C) \frac{y - y_D}{y_A - y_D} + (z - z_D) \frac{y - y_A}{y_D - y_A} \qquad \text{Lead. Mon.} \neq z^3$

C

 Interpolation on the lextree
 Interpolation on the lextree
 Recycling ooo

 Lextree:
 From
 leaves to interpolation
 Performance

 $(z - z_A)(z - z_B)(z - z_C) \frac{y - y_D}{y_A - y_D} + z^2(z - z_D) \frac{y - y_A}{y_D - y_A}$ Lead. Mon. = z^3

C

 $+ z(z - z_G)(z - z_H)$ $(z-z_F)(z-z_F) \mathbf{z}$ + $z^2(z-z_I)$

 Interpolation on the lextree
 Interpolation on the lextree
 Recycling ooo

 Coord
 Coord
 Coord
 Coord

 Lextree:
 From leaves to interpolation
 Coord
 Coord

$$(z - z_E)(z - z_F) z \frac{y - y_G}{y_E - y_G} \frac{y - y_I}{y_E - y_G} + z(z - z_G)(z - z_H) \frac{y - y_G}{y_E - y_G} \frac{y - y_I}{y_E - y_G} + z^2(z - z_I) \frac{y - y_G}{y_E - y_G} \frac{y - y_I}{y_E - y_G}$$
 Lead. Mon. is z^3

 Introduction
 Lextree
 Interpolation on the lextree
 Recycling

 0000
 0000
 0000
 0000

$$(z - z_A)(z - z_B)(z - z_C) \frac{y - y_D}{y_A - y_D} + z^2(z - z_D) \frac{y - y_A}{y_D - y_A}$$
 Lead. Mon. = z^3

$$(z - z_E)(z - z_F) z \frac{y - y_G}{y_E - y_G} \frac{y - y_I}{y_E - y_G} + z_G)(z - z_H) \frac{y - y_G}{y_E - y_G} \frac{y - y_I}{y_E - y_G} + z^2(z - z_I) \frac{y - y_G}{y_E - y_G} \frac{y - y_I}{y_E - y_I}$$

Lead. Mon. is z^3

Lextree. From leaves to interpolation						
introduction	Lextree	Interpolation on the lextree	Recycling			
0000	0000●0		000			

$$(z - z_A)(z - z_B)(z - z_C) \frac{y - y_D}{y_A - y_D} + z^2(z - z_D) \frac{y - y_A}{y_D - y_A}$$

Lead. Mon. is z^3

introduction	Lextree	Interpolation on the lextree	Recycling
0000	00000●		000
D. L. J.			

Relation with interpolation: account of the current status

All proofs of the correspondence $\{\text{leaves}\} \leftrightarrow \{\text{std. mononmials}\}$ rely on some sort of interpolation formulas, more or less explicit.

Relation with interpolation: account of the current status

All proofs of the correspondence {leaves} \leftrightarrow {std. mononmials} rely on some sort of interpolation formulas, more or less explicit.

 \rightarrow construct polynomials that vanish on some parts of V, and whose leading monomials are standard monomials.

• "Hidden" in case of purely linear algeba method (Cerlienco-Mureddu, Marinari-Mora, Lei-Teng-Ren)

Relation with interpolation: account of the current status

All proofs of the correspondence {leaves} \leftrightarrow {std. mononmials} rely on some sort of interpolation formulas, more or less explicit.

 \rightarrow construct polynomials that vanish on some parts of V, and whose leading monomials are standard monomials.

- "Hidden" in case of purely linear algeba method (Cerlienco-Mureddu, Marinari-Mora, Lei-Teng-Ren)
- Explicit: (Lederer,2008) recursive foormula. (Lexgame, 2006): quite coarse.

introduction Lextree Interpolation on the lextree Recycling 0000 00000 00000 0000 000

Relation with interpolation: account of the current status

All proofs of the correspondence {leaves} \leftrightarrow {std. mononmials} rely on some sort of interpolation formulas, more or less explicit.

 \rightarrow construct polynomials that vanish on some parts of V, and whose leading monomials are standard monomials.

- "Hidden" in case of purely linear algeba method (Cerlienco-Mureddu, Marinari-Mora, Lei-Teng-Ren)
- Explicit: (Lederer,2008) recursive foormula. (Lexgame, 2006): quite coarse.
- Here: expliciteness of the interpolation formula for polynomials in \mathcal{G}'
 - \rightarrow Exploit fully the simplcity supplied by the lextree.
 - \Rightarrow Prone to complexity analysis.

introduction Lextree Interpolation on the lextree Recycling 0000 00000 00000 0000 0000 000

Relation with interpolation: account of the current status

All proofs of the correspondence {leaves} \leftrightarrow {std. mononmials} rely on some sort of interpolation formulas, more or less explicit.

 \rightarrow construct polynomials that vanish on some parts of V, and whose leading monomials are standard monomials.

- "Hidden" in case of purely linear algeba method (Cerlienco-Mureddu, Marinari-Mora, Lei-Teng-Ren)
- Explicit: (Lederer,2008) recursive foormula. (Lexgame, 2006): quite coarse.
- Here: expliciteness of the interpolation formula for polynomials in \mathcal{G}^\prime
 - \rightarrow Exploit fully the simplcity supplied by the lextree.
 - \Rightarrow Prone to complexity analysis.

Easy Fact: algebraic complexity depends only on the shape of the tree (number of children of nodes) and not on labels at each node.

Interpolating & Discarding points in the lextree

Given an exponent at a leaf $\mathbf{x}^{\mathbf{e}}$, from (parent of the) leaf to the root, perform bottom-up test on siblings of the current node to identify:

I branches that must be interpolated:

Is branches that must be discarded:

the branch has a leaf of larger exponent than the current one.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Interpolating & Discarding points in the lextree

Given an exponent at a leaf $\mathbf{x}^{\mathbf{e}}$, from (parent of the) leaf to the root, perform bottom-up test on siblings of the current node to identify:

- I branches that must be interpolated:
 - Lagrange interpolation with eventually additional monomials to guarantee that the leading monomial is 1.

Ø branches that must be discarded:

the branch has a leaf of larger exponent than the current one.

• Remark: The exponent **x**^e comes from polynomials that discard some branches at each level.

Interpolating & Discarding points in the lextree

the polating & Discarding points in the lextree

Given an exponent at a leaf $\mathbf{x}^{\mathbf{e}}$, from (parent of the) leaf to the root, perform bottom-up test on siblings of the current node to identify:

- I branches that must be interpolated:
 - Lagrange interpolation with eventually additional monomials to guarantee that the leading monomial is 1.

Ø branches that must be discarded:

the branch has a leaf of larger exponent than the current one.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- simple product over the labels at those siblings.
- Remark: The exponent x^e comes from polynomials that discard some branches at each level.

Interpolating & Discarding points in the lextree

Given an exponent at a leaf x^e , from (parent of the) leaf to the root, perform bottom-up test on siblings of the current node to identify:

- I branches that must be interpolated:
 - Lagrange interpolation with eventually additional monomials to guarantee that the leading monomial is 1.

At a given level ℓ : $\leq O(A(D_1) + A(D_2) + \cdots + A(D_\ell))$

Ø branches that must be discarded:

the branch has a leaf of larger exponent than the current one.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- simple product over the labels at those siblings.
- Remark: The exponent x^e comes from polynomials that discard some branches at each level.

Interpolating & Discarding points in the lextree

Given an exponent at a leaf $\mathbf{x}^{\mathbf{e}}$, from (parent of the) leaf to the root, perform bottom-up test on siblings of the current node to identify:

- I branches that must be interpolated:
 - Lagrange interpolation with eventually additional monomials to guarantee that the leading monomial is 1.

At a given level ℓ : $\leq O(A(D_1) + A(D_2) + \cdots + A(D_\ell))$

Ø branches that must be discarded:

the branch has a leaf of larger exponent than the current one.

- simple product over the labels at those siblings.
- Remark: The exponent x^e comes from polynomials that discard some branches at each level.

At a given level ℓ :

 $\leq O(\mathsf{A}(D_\ell))$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• ... but minimal: $LM(\mathcal{G}) = \{LM(g) \mid g \in \mathcal{G}\} = LM(\mathcal{G}').$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• Bad: More coefficients ..., Good: Coefficients of smaller bit-size

- ... but minimal: $LM(\mathcal{G}) = \{LM(g) \mid g \in \mathcal{G}\} = LM(\mathcal{G}').$
- Bad: More coefficients ..., Good: Coefficients of smaller bit-size
- More precisely let h(g) be "roughly" the max bit-size among all coefficients on g ∈ GB':

$$h(g) \leq O(nD^2h_{pts}^2)$$

where h_{pts} is the max bit-size among coordinates of all points in V.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• all in all, this is not a bad choice. . . it has moreover good properties. . .

• Let $\phi_{\mathbf{a}} : \overline{\mathbf{k}}[x_1, \dots, x_n] \to \overline{\mathbf{k}}[x_{m+1}, \dots, x_n]$, m < n evaluation map at $\mathbf{a} = (a_1, \dots, a_m)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• an ideal I is stable under $\phi_{\mathbf{a}}$ if $LM(\phi(I)) = \phi_{\mathbf{a}}(LT_m(I))$.

Non-reduced Gröbner basis G'? Stability I

- Let $\phi_{\mathbf{a}} : \overline{\mathbf{k}}[x_1, \dots, x_n] \to \overline{\mathbf{k}}[x_{m+1}, \dots, x_n]$, m < n evaluation map at $\mathbf{a} = (a_1, \dots, a_m)$.
- an ideal I is stable under $\phi_{\mathbf{a}}$ if $LM(\phi(I)) = \phi_{\mathbf{a}}(LT_m(I))$.
- A Gröbner basis G of I for an m-elimination order ≺m specializes well at a:

$$\phi_{\mathbf{a}}(G)$$
 is a Gröbner basis of $\phi_{\mathbf{a}}(I)$.

Non-reduced Gröbner basis G'? Stability I

- Let $\phi_{\mathbf{a}} : \overline{\mathbf{k}}[x_1, \dots, x_n] \to \overline{\mathbf{k}}[x_{m+1}, \dots, x_n]$, m < n evaluation map at $\mathbf{a} = (a_1, \dots, a_m)$.
- an ideal I is stable under $\phi_{\mathbf{a}}$ if $LM(\phi(I)) = \phi_{\mathbf{a}}(LT_m(I))$.
- A Gröbner basis G of I for an m-elimination order ≺m specializes well at a:

$$\phi_{\mathbf{a}}(G)$$
 is a Gröbner basis of $\phi_{\mathbf{a}}(I)$.

• Stronger condition is: $LT(\phi_{\mathbf{a}}(g)) \prec_m \phi_{\mathbf{a}}(LT_m(g))$ then $\phi_{\mathbf{a}}(g) = 0$.

Non-reduced Gröbner basis G? Stability I

- Let $\phi_{\mathbf{a}} : \overline{\mathbf{k}}[x_1, \dots, x_n] \to \overline{\mathbf{k}}[x_{m+1}, \dots, x_n]$, m < n evaluation map at $\mathbf{a} = (a_1, \dots, a_m)$.
- an ideal I is stable under $\phi_{\mathbf{a}}$ if $LM(\phi(I)) = \phi_{\mathbf{a}}(LT_m(I))$.
- A Gröbner basis G of I for an m-elimination order ≺m specializes well at a:

$$\phi_{\mathbf{a}}(G)$$
 is a Gröbner basis of $\phi_{\mathbf{a}}(I)$.

- Stronger condition is: $LT(\phi_{\mathbf{a}}(g)) \prec_m \phi_{\mathbf{a}}(LT_m(g))$ then $\phi_{\mathbf{a}}(g) = 0$.
 - whereas stability is: $LT(\phi_{\mathbf{a}}(g)) \prec_{m} \phi_{\mathbf{a}}(LT_{m}(g)) \Rightarrow \phi_{\mathbf{a}}(g) \equiv 0 \mod \phi_{\mathbf{a}}(G \setminus \{g\}).$

 Interpolation on the lextree
 Interpolation on the lextree
 Recycling

 Non-reduced Gröbner basis G'?
 Stability II

Previous work: Stability for m-elimination order (includes lex order)

• Gianni (Kalkbrener): m = n - 1 for 0-dimensional ideals. Strong version of stability.

Previous work: Stability for *m*-elimination order (includes lex order)

- Gianni (Kalkbrener): m = n 1 for 0-dimensional ideals. Strong version of stability.
- Becker: Stability for radical *m*-elimination Gröbner bases. (not strong).

Previous work: Stability for *m*-elimination order (includes lex order)

- Gianni (Kalkbrener): m = n 1 for 0-dimensional ideals. Strong version of stability.
- Becker: Stability for radical *m*-elimination Gröbner bases. (not strong).
- Kalkbrener: extension and clarification to the notion of stability.

Previous work: Stability for *m*-elimination order (includes lex order)

- Gianni (Kalkbrener): m = n 1 for 0-dimensional ideals. Strong version of stability.
- Becker: Stability for radical *m*-elimination Gröbner bases. (not strong).
- Kalkbrener: extension and clarification to the notion of stability.
- Gröbner basis \mathcal{G}' of this talk: strong stability property.

Previous work: Stability for *m*-elimination order (includes lex order)

- Gianni (Kalkbrener): m = n 1 for 0-dimensional ideals. Strong version of stability.
- Becker: Stability for radical *m*-elimination Gröbner bases. (not strong).
- Kalkbrener: extension and clarification to the notion of stability.
- Gröbner basis \mathcal{G}' of this talk: strong stability property.

• Not the case of the reduced Gröbner basis \mathcal{G} .

Step 1. Identify leaves that yields a leading monomial in the Gröbner basis.

 \rightarrow purely combinatorial (complexity: only comparisons)

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

introduction 0000	Lextree 000000	Interpolation on	the lextree	Recycling 000
-		_		

Summary of the interpolation of one polynomial

Step 1. Identify leaves that yields a leading monomial in the Gröbner basis.

- \rightarrow purely combinatorial (complexity: only comparisons)
- Step 2. Bottom-up interpolation or discard sibling branches.
 - This creates an arithmetic circuit. It depends only on the shape of the tree.
 - In both case, subproduct tree can be used \rightarrow many times similar products must be perform.
 - About the upper bound an arithmetic complexity \rightarrow Can we do better ? Reuse already computed polynomials.

introduction Lextree Interpolation on the lextree Recycling 0000 00000 00000 00000 000

Recycling already computed components

The more polynomials in \mathcal{G}' , have been computed the more it is likely possible to recycle Two ways to recycle:

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Detect a product already computed in a subproduct

introduction Lextree Interpolation on the lextree Recycling

Recycling already computed components

The more polynomials in \mathcal{G}' , have been computed the more it is likely possible to recycle Two ways to recycle:

Detect a product already computed in a subproduct

Ise structure: some polynomials naturally divides other

introduction Lextree Interpolation on the lextree Recycling 0000 00000 0000 0000 000

Recycling already computed components

The more polynomials in \mathcal{G}' , have been computed the more it is likely possible to recycle Two ways to recycle:

- Detect a product already computed in a subproduct
 - Too much memory? Is it possible to know in advance which products to store ?

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

② Use structure: some polynomials naturally divides other

introduction Lextree Interpolation on the lextree Recycling 0000 00000 0000 0000 000

Recycling already computed components

The more polynomials in \mathcal{G}' , have been computed the more it is likely possible to recycle Two ways to recycle:

- Detect a product already computed in a subproduct
 - Too much memory? Is it possible to know in advance which products to store ?

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- **②** Use structure: some polynomials naturally divides other
 - Work in progress: structural results...

Work in progress – Structure

Assume that $f \in \mathcal{G}'$, with $LM(g) = x_1^{d_1} \cdots x_n^{d_n}$.

$$f = \sum_{\alpha \in A} \mathcal{L}_{\alpha}(x_1, \ldots, x_{n-1}) f_{1,\alpha}(x_1) \cdots f_{n,\alpha}(x_n) \cdot m_{\alpha}$$

- where $f_{i,\alpha}$ depends only on the i-1-th first coordinates $(\alpha_1, \ldots, \alpha_{i-1})$ of α ,
- \mathcal{L}_{α} is a multivariate Lagrange idempotent on a grid of points $A \subset V$.

•
$$m_{\alpha} = x_1^{d_1 - \delta_1(\alpha)} \cdots x_n^{d_n - \delta_n(\alpha)} (\delta_i(\alpha) = \deg_i(f_{i,\alpha}))$$

Work in progress – Structure

Assume that $f \in \mathcal{G}'$, with $LM(g) = x_1^{d_1} \cdots x_n^{d_n}$.

$$f = \sum_{\alpha \in A} \mathcal{L}_{\alpha}(x_1, \ldots, x_{n-1}) f_{1,\alpha}(x_1) \cdots f_{n,\alpha}(x_n) \cdot m_{\alpha}$$

- where $f_{i,\alpha}$ depends only on the i-1-th first coordinates $(\alpha_1, \ldots, \alpha_{i-1})$ of α ,
- \mathcal{L}_{α} is a multivariate Lagrange idempotent on a grid of points $A \subset V$.

•
$$m_{\alpha} = x_1^{d_1 - \delta_1(\alpha)} \cdots x_n^{d_n - \delta_n(\alpha)} (\delta_i(\alpha) = \deg_i(f_{i,\alpha}))$$

Kind of generalization of Lazard's structural theorem (1985) full result for lexGB in two variables.

introduction	Lextree	Interpolation on the lextree	Recycling
0000	000000	00000	00●
Perspective			

• Find a simple formulation of the previous problems.

introduction	Lextree	Interpolation on the lextree	Recycling
0000	000000		00●
Perspective			

- Find a simple formulation of the previous problems.
 - find a simple way, on the lextree, to address a (sharp) complexity analysis of the recycling phase.

introduction	Lextree	Interpolation on the lextree	Recycling
0000	000000	00000	00●
Perspective			

- Find a simple formulation of the previous problems.
 - find a simple way, on the lextree, to address a (sharp) complexity analysis of the recycling phase.

2 The ideal of vanishing polynomials is radical.

introduction	Lextree	Interpolation on the lextree	Recycling
0000	000000		00●
Perspective			

- Find a simple formulation of the previous problems.
 - find a simple way, on the lextree, to address a (sharp) complexity analysis of the recycling phase.
- Interideal of vanishing polynomials is radical.
 - Generalization to non-radical ideals: Hermite conditions attached to each point in *V*.

introduction	Lextree	Interpolation on the lextree	Recycling
0000	000000		00●
Perspective			

- Find a simple formulation of the previous problems.
 - find a simple way, on the lextree, to address a (sharp) complexity analysis of the recycling phase.
- Interideal of vanishing polynomials is radical.
 - Generalization to non-radical ideals: Hermite conditions attached to each point in *V*.
 - Lei-Zheng-Ruen 2014: investigated using Lederer formulation (four-in-a-row). From their own account, dautingly complicated to estimate complexity in this way.

introduction	Lextree	Interpolation on the lextree	Recycling
0000	000000		00●
Perspective			

- Find a simple formulation of the previous problems.
 - find a simple way, on the lextree, to address a (sharp) complexity analysis of the recycling phase.
- Interideal of vanishing polynomials is radical.
 - Generalization to non-radical ideals: Hermite conditions attached to each point in *V*.
 - Lei-Zheng-Ruen 2014: investigated using Lederer formulation (four-in-a-row). From their own account, dautingly complicated to estimate complexity in this way.
 - the key is simplicity. It is the case when the Hermite conditions are triangular: the highest order in the derivative of Taylor expansions appear to the largest (single) variable.