Fast construction of a lexicographic Gröbner basis of the vanishing ideal of a set of points

Dahan Xavier

Ochanomizu Univeristy, Faculty of General Educational Research
ACA 2017, July 17-21 — High-performance computing

Introduction

- Setting: Let $V \subset \overline{\mathbf{k}}^{n}$ a finite set of points V is Zariski-closed over \mathbf{k} : V is the set of solutions of a polynomial system over \mathbf{k}.
- Problem: Compute a lexicographic Gröbner basis of the vanishing polynomials on V.
- Classical problem: Buchberger-Möller (1982) for any monomial order
- ... and for the lex order, dedicated algorithms: 1995 to 2016.

Introduction

- Setting: Let $V \subset \overline{\mathbf{k}}^{n}$ a finite set of points V is Zariski-closed over \mathbf{k} : V is the set of solutions of a polynomial system over \mathbf{k}.
- Problem: Compute a lexicographic Gröbner basis of the vanishing polynomials on V.
- Classical problem: Buchberger-Möller (1982) for any monomial order
- ... and for the lex order, dedicated algorithms: 1995 to 2016.
- Yet, all those works are somewhat still "incomplete". Why ?
- research articles tend to address some aspects and ignoring some others.
- for example, fully explicit interpolation formulas have not appear clearly...
- ... it is a key for a sharp complexity study.

Non-generic LexGB of Dimension Zero

LexGB $=$ Lexicographic Gröbner Basis: $x_{1} \prec x_{2} \prec \cdots \prec x_{n}$.

$$
\begin{aligned}
& g_{\ell(n)}\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n-2}, x_{n-1}, x_{n}\right)=\quad x_{n}^{d_{\ell(n)}}+\cdots \\
& g_{\ell(n)-1}\left(x_{1}, x_{2}, \ldots, x_{n-2}, x_{n-1}\right)= \\
& l_{n-1}\left(g_{\ell(n)-1}\right) x_{n}^{d_{\ell(n)-1}}+\ldots \\
& \ddots \vdots \\
& \vdots \\
& g_{\ell(n-1)}\left(x_{1}, \ldots, x_{n-1}\right)= \\
& \ddots x_{n-1}^{d_{\ell(n-1)}}+\cdots \\
& \ddots \vdots \\
& g_{\ell(2)}\left(x_{1}, x_{2}\right)=x_{2}^{d_{\ell(2)}}+\cdots \\
& g_{\ell(2)-1}\left(x_{1}, x_{2}\right)= \\
& x_{1}^{n_{\ell(2)-1}} x_{2}^{d_{\ell(2)-1}}+\cdots \\
& \ddots \vdots
\end{aligned} \vdots .
$$

This work \rightarrow "Highly" non-generic lexGB: $|\mathcal{G}|>n$.

Non-generic LexGB of Dimension Zero

LexGB $=$ Lexicographic Gröbner Basis: $x_{1} \prec x_{2} \prec \cdots \prec x_{n}$.

$$
\begin{aligned}
& g_{\ell(n)}\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n-2}, x_{n-1}, x_{n}\right)=\quad x_{n}^{d_{\ell(n)}}+\cdots \\
& g_{\ell(n)-1}\left(x_{1}, x_{2}, \ldots, x_{n-2}, x_{n-1}\right)= \\
& l_{n-1}\left(g_{\ell(n)-1}\right) x_{n}^{d_{\ell(n)-1}}+\ldots \\
& \ddots \vdots \\
& \vdots \\
& g_{\ell(n-1)}\left(x_{1}, \ldots, x_{n-1}\right)= \\
& \ddots x_{n-1}^{d_{\ell(n-1)}}+\cdots \\
& \ddots \vdots \\
& g_{\ell(2)}\left(x_{1}, x_{2}\right)=x_{2}^{d_{\ell(2)}}+\cdots \\
& g_{\ell(2)-1}\left(x_{1}, x_{2}\right)= \\
& x_{1}^{n_{\ell(2)-1}} x_{2}^{d_{\ell(2)-1}}+\cdots \\
& \ddots \vdots
\end{aligned} \vdots .
$$

This work \rightarrow "Highly" non-generic lexGB: $|\mathcal{G}|>n$.
Non-generic: Shape Lemma, Triangular Set \rightarrow nothing new.

Results

$$
\begin{aligned}
& \text { Let } D_{i}:=\left|V_{\leq i}\right| \text { where } V_{\leq i}=\pi_{i}(V), \\
& \pi_{i}: \overline{\mathbf{k}}^{n} \rightarrow \overline{\mathbf{k}}^{i},\left(a_{1}, \ldots, a_{n}\right) \mapsto\left(a_{1}, \ldots, a_{i}\right)
\end{aligned}
$$

(1) There is a Gröbner basis \mathcal{G}^{\prime}, non-reduced in general, such that any polynomial $g \in \mathcal{G}^{\prime}$ can be computed in at most:

$$
O\left(\mathrm{~A}\left(D_{1}\right)+\mathrm{A}\left(D_{2}\right)+\cdots+\mathrm{A}\left(D_{n}\right)\right)<O\left(n D_{n}\right)
$$

arithmetic operations in \mathbf{k}.

- $A(d)$ cost to construct Lagrange idempotents of d points.
- $\mathrm{A}(d)=\mathrm{M}(d) \log (d)$, by the subproduct tree technique. $(\mathrm{M}(d)=O(d \log (d) \log \log (d))$ by Schönhage-Strassen, or naively d^{2}).

Results

$$
\begin{aligned}
& \text { Let } D_{i}:=\left|V_{\leq i}\right| \text { where } V_{\leq i}=\pi_{i}(V), \\
& \pi_{i}: \overline{\mathbf{k}}^{n} \rightarrow \overline{\mathbf{k}}^{i},\left(a_{1}, \ldots, a_{n}\right) \mapsto\left(a_{1}, \ldots, a_{i}\right)
\end{aligned}
$$

(1) There is a Gröbner basis \mathcal{G}^{\prime}, non-reduced in general, such that any polynomial $g \in \mathcal{G}^{\prime}$ can be computed in at most:

$$
O\left(\mathrm{~A}\left(D_{1}\right)+\mathrm{A}\left(D_{2}\right)+\cdots+\mathrm{A}\left(D_{n}\right)\right)<O\left(n D_{n}\right)
$$

arithmetic operations in \mathbf{k}.

- $\mathrm{A}(d)$ cost to construct Lagrange idempotents of d points.
- $\mathrm{A}(d)=\mathrm{M}(d) \log (d)$, by the subproduct tree technique. $(\mathrm{M}(d)=O(d \log (d) \log \log (d))$ by Schönhage-Strassen, or naively d^{2}).
(2) The structure of (non-generic) lexGB allows to recycle computations.
- But difficult to estimate in general. Simple strategy is still a work in progress.

Previous Work

- Buchberger-Möller (1982): linear algebra $O\left(n D_{n}^{3}\right)$ (but for any monomial order)

Previous Work

- Buchberger-Möller (1982): linear algebra $O\left(n D_{n}^{3}\right)$ (but for any monomial order)
- Lederer (2008): almost "fully" explicit formulas, no complexity at all.
- focuses on the reduced $\operatorname{lex} G B \mathcal{G}$ which complicates the matter quite a lot.
- essentially computes the above non-reduced lexGB \mathcal{G}^{\prime}, stops half-way, then withdraw linear combinations of other polynomials built "on-demand" to cancel unwanted monomials.

Previous Work

- Buchberger-Möller (1982): linear algebra $O\left(n D_{n}^{3}\right)$ (but for any monomial order)
- Lederer (2008): almost "fully" explicit formulas, no complexity at all.
- focuses on the reduced $\operatorname{lex} G B \mathcal{G}$ which complicates the matter quite a lot.
- essentially computes the above non-reduced lexGB \mathcal{G}^{\prime}, stops half-way, then withdraw linear combinations of other polynomials built "on-demand" to cancel unwanted monomials.
- Finding a separating basis: $\forall v \in V, p_{v} \in k\left[x_{1}, \ldots, x_{n}\right]$, such that $p_{v}(w)=0$ if $v \neq w$, and $p_{v}(v)=1$ otherwise.

Previous Work

- Buchberger-Möller (1982): linear algebra $O\left(n D_{n}^{3}\right)$ (but for any monomial order)
- Lederer (2008): almost "fully" explicit formulas, no complexity at all.
- focuses on the reduced lexGB \mathcal{G} which complicates the matter quite a lot.
- essentially computes the above non-reduced lexGB \mathcal{G}^{\prime}, stops half-way, then withdraw linear combinations of other polynomials built "on-demand" to cancel unwanted monomials.
- Finding a separating basis: $\forall v \in V, p_{v} \in k\left[x_{1}, \ldots, x_{n}\right]$, such that $p_{v}(w)=0$ if $v \neq w$, and $p_{v}(v)=1$ otherwise.
- Lundqvist (2010): $O\left(D^{2}\right)$ But using subproduct tree $O(D \log (D))$.

Previous Work

- Buchberger-Möller (1982): linear algebra $O\left(n D_{n}^{3}\right)$ (but for any monomial order)
- Lederer (2008): almost "fully" explicit formulas, no complexity at all.
- focuses on the reduced $\operatorname{lex} G B \mathcal{G}$ which complicates the matter quite a lot.
- essentially computes the above non-reduced lexGB \mathcal{G}^{\prime}, stops half-way, then withdraw linear combinations of other polynomials built "on-demand" to cancel unwanted monomials.
- Finding a separating basis: $\forall v \in V, p_{v} \in k\left[x_{1}, \ldots, x_{n}\right]$, such that $p_{v}(w)=0$ if $v \neq w$, and $p_{v}(v)=1$ otherwise.
- Lundqvist (2010): $O\left(D^{2}\right)$ But using subproduct tree $O(D \log (D))$.
- Lei-Teng-Ren (2016): lexGB for vanishing polynomials of higher order (Hermite interpolation). $\left(O(\tau+3) D^{2}\right)$ where τ is a dislacement rank.

Previous Work

- Buchberger-Möller (1982): linear algebra $O\left(n D_{n}^{3}\right)$ (but for any monomial order)
- Lederer (2008): almost "fully" explicit formulas, no complexity at all.
- focuses on the reduced $\operatorname{lex} G B \mathcal{G}$ which complicates the matter quite a lot.
- essentially computes the above non-reduced lexGB \mathcal{G}^{\prime}, stops half-way, then withdraw linear combinations of other polynomials built "on-demand" to cancel unwanted monomials.
- Finding a separating basis: $\forall v \in V, p_{v} \in k\left[x_{1}, \ldots, x_{n}\right]$, such that $p_{v}(w)=0$ if $v \neq w$, and $p_{v}(v)=1$ otherwise.
- Lundqvist (2010): $O\left(D^{2}\right)$ But using subproduct tree $O(D \log (D))$.
- Lei-Teng-Ren (2016): lexGB for vanishing polynomials of higher order (Hermite interpolation). $\left(O(\tau+3) D^{2}\right)$ where τ is a dislacement rank. Vandermonde matrix, $\tau=2 \rightarrow O\left(D^{2}\right)$

The lextree: introduction and backgrounds

A key tool to study lexGB is a combinatorial decomposition of V : One-one correspondence between standard monomials of \mathcal{G} and points of V.

- Macaulay? Lazard in two variables.
- Cerlienco-Muredu (1995 \& 01), Marinari Mora (2003 \& 06): linear algebra.

The lextree: introduction and backgrounds

A key tool to study lexGB is a combinatorial decomposition of V : One-one correspondence between standard monomials of \mathcal{G} and points of V.

- Macaulay? Lazard in two variables.
- Cerlienco-Muredu (1995 \& 01), Marinari Mora (2003 \& 06): linear algebra.
- Lex game (Ronyai et al., 2006) Lextree: Major simplification by using a tree data structure.

The lextree: introduction and backgrounds

A key tool to study lexGB is a combinatorial decomposition of V : One-one correspondence between standard monomials of \mathcal{G} and points of V.

- Macaulay? Lazard in two variables.
- Cerlienco-Muredu (1995 \& 01), Marinari Mora (2003 \& 06): linear algebra.
- Lex game (Ronyai et al., 2006) Lextree: Major simplification by using a tree data structure.
- Lederer (2008): Instead of lextree uses a "four-in-a-row"-like operation on the standard monomials.

The lextree: introduction and backgrounds

A key tool to study lexGB is a combinatorial decomposition of V : One-one correspondence between standard monomials of \mathcal{G} and points of V.

- Macaulay? Lazard in two variables.
- Cerlienco-Muredu (1995 \& 01), Marinari Mora (2003 \& 06): linear algebra.
- Lex game (Ronyai et al., 2006) Lextree: Major simplification by using a tree data structure.
- Lederer (2008): Instead of lextree uses a "four-in-a-row"-like operation on the standard monomials.
- Lundqvist (2010): complexity of building the lextree to find standard monomials.

The lextree: introduction and backgrounds

A key tool to study lexGB is a combinatorial decomposition of V : One-one correspondence between standard monomials of \mathcal{G} and points of V.

- Macaulay? Lazard in two variables.
- Cerlienco-Muredu (1995 \& 01), Marinari Mora (2003 \& 06): linear algebra.
- Lex game (Ronyai et al., 2006) Lextree: Major simplification by using a tree data structure.
- Lederer (2008): Instead of lextree uses a "four-in-a-row"-like operation on the standard monomials.
- Lundqvist (2010): complexity of building the lextree to find standard monomials.

One-one correspondence between standard monomials and leaves

Lextree II

More than standard monomials, we are interested in leading monomials of a lexGB.
We introduce a new variation of computing standard monomials to compute leading exponents:

Example interlude

Lextree: construction

Lextree: construction

Lextree: construction

Lextree: construction

Lextree: construction

Lextree: construction

Lextree: construction

Lextree: construction

Lextree: From leaves to exponents in the GB

Lextree: From leaves to exponents in the GB

Lextree: From leaves to exponents in the GB

Lextree: From leaves to exponents in the GB

3 How many siblings with
>3 children ?

Lextree: From leaves to exponents in the GB

Lextree: From leaves to exponents in the GB

Lextree: From leaves to exponents in the GB

Lextree: From leaves to exponents in the GB

Lextree: From leaves to exponents in the GB

Lextree: From leaves to exponents in the GB

Lextree: From leaves to exponents in the GB

Lextree: From leaves to exponents in the GB

Lextree: From leaves to exponents in the GB

Lextree: From leaves to exponents in the GB

Lextree: From leaves to exponents in the GB

Lextree: From leaves to exponents in the GB

How many siblings having:
>0 child(ren) having
>2 children ?

3
0
1
1
1

Lextree: From leaves to exponents in the GB

How many siblings having:
>0 child(ren) having
>2 children ?

3
1
2
0
1
0
0
1

1

Lextree: From leaves to exponents in the GB

Lextree: From leaves to exponents in the GB

Lextree: From leaves to exponents in the GB

Lextree: From leaves to exponents in the GB

Lextree: From leaves to exponents in the GB

Lextree: From leaves to exponents in the GB

Lextree: From leaves to exponents in the GB

Lextree: From leaves to exponents in the GB

Lextree: From leaves to exponents in the GB

Lextree: From leaves to exponents in the GB

Lextree: From leaves to exponents in the GB

Lextree: From leaves to exponents in the GB

Lextree: From leaves to interpolation

Lextree: From leaves to interpolation

$$
\left(z-z_{A}\right)\left(z-z_{B}\right)\left(z-z_{C}\right) \quad z^{3}
$$

Lextree: From leaves to interpolation

$$
\left(z-z_{A}\right)\left(z-z_{B}\right)\left(z-z_{C}\right) \frac{y-y_{D}}{y_{A}-y_{D}}+\left(z-z_{D}\right) \frac{y-y_{A}}{y_{D}-y_{A}}
$$

Lextree: From leaves to interpolation

$$
\left(z-z_{A}\right)\left(z-z_{B}\right)\left(z-z_{C}\right) \frac{y-y_{D}}{y_{A}-y_{D}}+\left(z-z_{D}\right) \frac{y-y_{A}}{y_{D}-y_{A}} \quad \text { Lead. Mon. } \neq z^{3}
$$

Lextree: From leaves to interpolation

$$
\left(z-z_{A}\right)\left(z-z_{B}\right)\left(z-z_{C}\right) \frac{y-y_{D}}{y_{A}-y_{D}}+z^{2}\left(z-z_{D}\right) \frac{y-y_{A}}{y_{D}-y_{A}} \quad \text { Lead. Mon. }=z^{3}
$$

Lextree: From leaves to interpolation

$$
\begin{array}{ll}
\left(z-z_{E}\right)\left(z-z_{F}\right) z & +z\left(z-z_{G}\right)\left(z-z_{H}\right) \\
z^{2}\left(z-z_{I}\right) & +
\end{array}
$$

Lextree: From leaves to interpolation

$$
\begin{aligned}
& \left(z-z_{E}\right)\left(z-z_{F}\right) z \frac{y-y_{G}}{y_{E}-y_{G}} \frac{y-y_{I}}{y_{E}-y_{I}}+z\left(z-z_{G}\right)\left(z-z_{H}\right) \frac{y-y_{G}}{y_{E}-y_{G}} \frac{y-y_{I}}{y_{E}-y_{I}}+ \\
& z^{2}\left(z-z_{I}\right) \frac{y-y_{G}}{y_{E}-y_{G}} \frac{y-y_{I}}{y_{E}-y_{I}} \quad \times \frac{x-x_{A}}{x_{E}-x_{A}}
\end{aligned}
$$

$\left(z-z_{A}\right)\left(z-z_{B}\right)\left(z-z_{C}\right) \frac{y-y_{D}}{y_{A}-y_{D}}+z^{2}\left(z-z_{D}\right) \frac{y-y_{A}}{y_{D}-y_{A}} \times \frac{x-x_{E}}{x_{A}-x_{E}}$
Lead. Mon. is z^{3}

Relation with interpolation: account of the current status

All proofs of the correspondence \{leaves $\} \leftrightarrow\{$ std. mononmials $\}$ rely on some sort of interpolation formulas, more or less explicit.

Relation with interpolation: account of the current status

All proofs of the correspondence \{leaves\} $\leftrightarrow\{$ std. mononmials $\}$ rely on some sort of interpolation formulas, more or less explicit.
\rightarrow construct polynomials that vanish on some parts of V, and whose leading monomials are standard monomials.

- "Hidden" in case of purely linear algeba method (Cerlienco-Mureddu, Marinari-Mora, Lei-Teng-Ren)

Relation with interpolation: account of the current status

All proofs of the correspondence \{leaves $\} \leftrightarrow\{$ std. mononmials $\}$ rely on some sort of interpolation formulas, more or less explicit.
\rightarrow construct polynomials that vanish on some parts of V, and whose leading monomials are standard monomials.

- "Hidden" in case of purely linear algeba method (Cerlienco-Mureddu, Marinari-Mora, Lei-Teng-Ren)
- Explicit: $($ Lederer,2008) recursive foormula. (Lexgame, 2006): quite coarse.

Relation with interpolation: account of the current status

All proofs of the correspondence \{leaves\} $\leftrightarrow\{$ std. mononmials $\}$ rely on some sort of interpolation formulas, more or less explicit.
\rightarrow construct polynomials that vanish on some parts of V, and whose leading monomials are standard monomials.

- "Hidden" in case of purely linear algeba method (Cerlienco-Mureddu, Marinari-Mora, Lei-Teng-Ren)
- Explicit: (Lederer,2008) recursive foormula. (Lexgame, 2006): quite coarse.
- Here: expliciteness of the interpolation formula for polynomials in \mathcal{G}^{\prime}
\rightarrow Exploit fully the simplcity supplied by the lextree.
\Rightarrow Prone to complexity analysis.

Relation with interpolation: account of the current status

All proofs of the correspondence \{leaves $\} \leftrightarrow\{$ std. mononmials $\}$ rely on some sort of interpolation formulas, more or less explicit.
\rightarrow construct polynomials that vanish on some parts of V, and whose leading monomials are standard monomials.

- "Hidden" in case of purely linear algeba method (Cerlienco-Mureddu, Marinari-Mora, Lei-Teng-Ren)
- Explicit: (Lederer,2008) recursive foormula. (Lexgame, 2006): quite coarse.
- Here: expliciteness of the interpolation formula for polynomials in \mathcal{G}^{\prime}
\rightarrow Exploit fully the simplcity supplied by the lextree.
\Rightarrow Prone to complexity analysis.
Easy Fact: algebraic complexity depends only on the shape of the tree (number of children of nodes) and not on labels at each node.

Interpolating \& Discarding points in the lextree

Given an exponent at a leaf $\mathbf{x}^{\mathbf{e}}$, from (parent of the) leaf to the root, perform bottom-up test on siblings of the current node to identify:
(1) branches that must be interpolated:
(2) branches that must be discarded:
the branch has a leaf of larger exponent than the current one.

Interpolating \& Discarding points in the lextree

Given an exponent at a leaf $\mathbf{x}^{\mathbf{e}}$, from (parent of the) leaf to the root, perform bottom-up test on siblings of the current node to identify:
(1) branches that must be interpolated:

- Lagrange interpolation with eventually additional monomials to guarantee that the leading monomial is 1 .
(2) branches that must be discarded: the branch has a leaf of larger exponent than the current one.
- Remark: The exponent $\mathbf{x}^{\mathbf{e}}$ comes from polynomials that discard some branches at each level.

Interpolating \& Discarding points in the lextree

Given an exponent at a leaf $\mathbf{x}^{\mathbf{e}}$, from (parent of the) leaf to the root, perform bottom-up test on siblings of the current node to identify:
(1) branches that must be interpolated:

- Lagrange interpolation with eventually additional monomials to guarantee that the leading monomial is 1 .
(2) branches that must be discarded: the branch has a leaf of larger exponent than the current one.
- simple product over the labels at those siblings.
- Remark: The exponent $\mathbf{x}^{\mathbf{e}}$ comes from polynomials that discard some branches at each level.

Interpolating \& Discarding points in the lextree

Given an exponent at a leaf $\mathbf{x}^{\mathbf{e}}$, from (parent of the) leaf to the root, perform bottom-up test on siblings of the current node to identify:
(1) branches that must be interpolated:

- Lagrange interpolation with eventually additional monomials to guarantee that the leading monomial is 1 .

At a given level ℓ :

$$
\leq O\left(\mathrm{~A}\left(D_{1}\right)+\mathrm{A}\left(D_{2}\right)+\cdots+\mathrm{A}\left(D_{\ell}\right)\right)
$$

(2) branches that must be discarded: the branch has a leaf of larger exponent than the current one.

- simple product over the labels at those siblings.
- Remark: The exponent $\mathbf{x}^{\mathbf{e}}$ comes from polynomials that discard some branches at each level.

Interpolating \& Discarding points in the lextree

Given an exponent at a leaf $\mathbf{x}^{\mathbf{e}}$, from (parent of the) leaf to the root, perform bottom-up test on siblings of the current node to identify:
(1) branches that must be interpolated:

- Lagrange interpolation with eventually additional monomials to guarantee that the leading monomial is 1 .

At a given level ℓ :

$$
\leq O\left(\mathrm{~A}\left(D_{1}\right)+\mathrm{A}\left(D_{2}\right)+\cdots+\mathrm{A}\left(D_{\ell}\right)\right)
$$

(2) branches that must be discarded: the branch has a leaf of larger exponent than the current one.

- simple product over the labels at those siblings.
- Remark: The exponent $\mathbf{x}^{\mathbf{e}}$ comes from polynomials that discard some branches at each level.
At a given level ℓ :

Non-reduced Gröbner basis ? Bit-size

- ... but minimal:

$$
\operatorname{LM}(\mathcal{G})=\{\operatorname{LM}(g) \mid g \in \mathcal{G}\}=\operatorname{LM}\left(\mathcal{G}^{\prime}\right)
$$

- Bad: More coefficients ..., Good: Coefficients of smaller bit-size

Non-reduced Gröbner basis ? Bit-size

- ... but minimal: $\mathrm{LM}(\mathcal{G})=\{\operatorname{LM}(g) \mid g \in \mathcal{G}\}=\operatorname{LM}\left(\mathcal{G}^{\prime}\right)$.
- Bad: More coefficients ..., Good: Coefficients of smaller bit-size
- More precisely let $h(g)$ be "roughly" the max bit-size among all coefficients on $g \in G B^{\prime}$:

$$
h(g) \leq O\left(n D^{2} h_{p t s}^{2}\right)
$$

where $h_{p t s}$ is the max bit-size among coordinates of all points in V.

- all in all, this is not a bad choice. . . it has moreover good properties...

Non-reduced Gröbner basis ${ }^{\text {P }}$? Stability I

- Let $\phi_{\mathbf{a}}: \overline{\mathbf{k}}\left[x_{1}, \ldots, x_{n}\right] \rightarrow \overline{\mathbf{k}}\left[x_{m+1}, \ldots, x_{n}\right], m<n$ evaluation map at $\mathbf{a}=\left(a_{1}, \ldots, a_{m}\right)$.
- an ideal I is stable under $\phi_{\mathbf{a}}$ if $\operatorname{LM}(\phi(I))=\phi_{\mathbf{a}}\left(\operatorname{LT}_{m}(I)\right)$.

Non-reduced Gröbner basis ${ }^{\text {P }}$? Stability I

- Let $\phi_{\mathbf{a}}: \overline{\mathbf{k}}\left[x_{1}, \ldots, x_{n}\right] \rightarrow \overline{\mathbf{k}}\left[x_{m+1}, \ldots, x_{n}\right], m<n$ evaluation map at $\mathbf{a}=\left(a_{1}, \ldots, a_{m}\right)$.
- an ideal I is stable under $\phi_{\mathbf{a}}$ if $\mathrm{LM}(\phi(I))=\phi_{\mathbf{a}}\left(\mathrm{LT}_{m}(I)\right)$.
- A Gröbner basis G of I for an m-elimination order \prec_{m} specializes well at a:

$$
\phi_{\mathbf{a}}(G) \text { is a Gröbner basis of } \quad \phi_{\mathbf{a}}(I)
$$

Non-reduced Gröbner basis ? Stability I

- Let $\phi_{\mathbf{a}}: \overline{\mathbf{k}}\left[x_{1}, \ldots, x_{n}\right] \rightarrow \overline{\mathbf{k}}\left[x_{m+1}, \ldots, x_{n}\right], m<n$ evaluation map at $\mathbf{a}=\left(a_{1}, \ldots, a_{m}\right)$.
- an ideal I is stable under $\phi_{\mathbf{a}}$ if $\operatorname{LM}(\phi(I))=\phi_{\mathbf{a}}\left(\operatorname{LT}_{m}(I)\right)$.
- A Gröbner basis G of I for an m-elimination order \prec_{m} specializes well at a:

$$
\phi_{\mathbf{a}}(G) \text { is a Gröbner basis of } \quad \phi_{\mathbf{a}}(I)
$$

- Stronger condition is: $\operatorname{LT}\left(\phi_{\mathbf{a}}(g)\right) \prec_{m} \phi_{\mathbf{a}}\left(\operatorname{LT}_{m}(g)\right)$ then $\phi_{\mathbf{a}}(g)=0$.

Non-reduced Gröbner basis

? Stability I

- Let $\phi_{\mathbf{a}}: \overline{\mathbf{k}}\left[x_{1}, \ldots, x_{n}\right] \rightarrow \overline{\mathbf{k}}\left[x_{m+1}, \ldots, x_{n}\right], m<n$ evaluation map at $\mathbf{a}=\left(a_{1}, \ldots, a_{m}\right)$.
- an ideal I is stable under $\phi_{\mathbf{a}}$ if $\operatorname{LM}(\phi(I))=\phi_{\mathbf{a}}\left(\operatorname{LT}_{m}(I)\right)$.
- A Gröbner basis G of I for an m-elimination order \prec_{m} specializes well at a:

$$
\phi_{\mathbf{a}}(G) \text { is a Gröbner basis of } \quad \phi_{\mathbf{a}}(I) .
$$

- Stronger condition is: $\operatorname{LT}\left(\phi_{\mathbf{a}}(g)\right) \prec_{m} \phi_{\mathbf{a}}\left(\operatorname{LT}_{m}(g)\right)$ then $\phi_{\mathbf{a}}(g)=0$.
- whereas stability is:

$$
\operatorname{LT}\left(\phi_{\mathbf{a}}(g)\right) \prec_{m} \phi_{\mathbf{a}}\left(\operatorname{LT}_{m}(g)\right) \Rightarrow \phi_{\mathbf{a}}(g) \equiv 0 \bmod \phi_{\mathbf{a}}(G \backslash\{g\}) .
$$

Non-reduced Gröbner basis ? Stability II

Previous work: Stability for m-elimination order (includes lex order)

- Gianni (Kalkbrener): $m=n-1$ for 0-dimensional ideals. Strong version of stability.

Non-reduced Gröbner basis ? Stability II

Previous work: Stability for m-elimination order (includes lex order)

- Gianni (Kalkbrener): $m=n-1$ for 0-dimensional ideals. Strong version of stability.
- Becker: Stability for radical m-elimination Gröbner bases. (not strong).

Non-reduced Gröbner basis ? Stability II

Previous work: Stability for m-elimination order (includes lex order)

- Gianni (Kalkbrener): $m=n-1$ for 0-dimensional ideals. Strong version of stability.
- Becker: Stability for radical m-elimination Gröbner bases. (not strong).
- Kalkbrener: extension and clarification to the notion of stability.

Non-reduced Gröbner basis 9 ? Stability II

Previous work: Stability for m-elimination order (includes lex order)

- Gianni (Kalkbrener): $m=n-1$ for 0-dimensional ideals. Strong version of stability.
- Becker: Stability for radical m-elimination Gröbner bases. (not strong).
- Kalkbrener: extension and clarification to the notion of stability.
- Gröbner basis \mathcal{G}^{\prime} of this talk: strong stability property.

Non-reduced Gröbner basis 9 ? Stability II

Previous work: Stability for m-elimination order (includes lex order)

- Gianni (Kalkbrener): $m=n-1$ for 0-dimensional ideals. Strong version of stability.
- Becker: Stability for radical m-elimination Gröbner bases. (not strong).
- Kalkbrener: extension and clarification to the notion of stability.
- Gröbner basis \mathcal{G}^{\prime} of this talk: strong stability property.
- Not the case of the reduced Gröbner basis \mathcal{G}.

Summary of the interpolation of one polynomial

Step 1. Identify leaves that yields a leading monomial in the Gröbner basis.
\rightarrow purely combinatorial
(complexity: only comparisons)

Summary of the interpolation of one polynomial

Step 1. Identify leaves that yields a leading monomial in the Gröbner basis.
\rightarrow purely combinatorial (complexity: only comparisons)
Step 2. Bottom-up interpolation or discard sibling branches.

- This creates an arithmetic circuit. It depends only on the shape of the tree.
- In both case, subproduct tree can be used \rightarrow many times similar products must be perform.
- About the upper bound an arithmetic complexity \rightarrow Can we do better ? Reuse already computed polynomials.

Recycling already computed components

The more polynomials in \mathcal{G}^{\prime}, have been computed the more it is likely possible to recycle
Two ways to recycle:
(1) Detect a product already computed in a subproduct

Recycling already computed components

The more polynomials in \mathcal{G}^{\prime}, have been computed the more it is likely possible to recycle
Two ways to recycle:
(1) Detect a product already computed in a subproduct
(2) Use structure: some polynomials naturally divides other

Recycling already computed components

The more polynomials in \mathcal{G}^{\prime}, have been computed the more it is likely possible to recycle
Two ways to recycle:
(1) Detect a product already computed in a subproduct

- Too much memory? Is it possible to know in advance which products to store ?
(2) Use structure: some polynomials naturally divides other

Recycling already computed components

The more polynomials in \mathcal{G}^{\prime}, have been computed the more it is likely possible to recycle
Two ways to recycle:
(1) Detect a product already computed in a subproduct

- Too much memory? Is it possible to know in advance which products to store?
(2) Use structure: some polynomials naturally divides other
- Work in progress: structural results. . .

Work in progress - Structure

Assume that $f \in \mathcal{G}^{\prime}$, with $\operatorname{LM}(g)=x_{1}^{d_{1}} \cdots x_{n}^{d_{n}}$.

$$
f=\sum_{\alpha \in A} \mathcal{L}_{\alpha}\left(x_{1}, \ldots, x_{n-1}\right) f_{1, \alpha}\left(x_{1}\right) \cdots f_{n, \alpha}\left(x_{n}\right) \cdot m_{\alpha}
$$

- where $f_{i, \alpha}$ depends only on the i - 1 -th first coordinates $\left(\alpha_{1}, \ldots, \alpha_{i-1}\right)$ of α,
- \mathcal{L}_{α} is a multivariate Lagrange idempotent on a grid of points $A \subset V$.
- $m_{\alpha}=x_{1}^{d_{1}-\delta_{1}(\alpha)} \cdots x_{n}^{d_{n}-\delta_{n}(\alpha)}\left(\delta_{i}(\alpha)=\operatorname{deg}_{i}\left(f_{i, \alpha}\right)\right)$

Work in progress - Structure

Assume that $f \in \mathcal{G}^{\prime}$, with $\operatorname{LM}(g)=x_{1}^{d_{1}} \cdots x_{n}^{d_{n}}$.

$$
f=\sum_{\alpha \in A} \mathcal{L}_{\alpha}\left(x_{1}, \ldots, x_{n-1}\right) f_{1, \alpha}\left(x_{1}\right) \cdots f_{n, \alpha}\left(x_{n}\right) \cdot m_{\alpha}
$$

- where $f_{i, \alpha}$ depends only on the i - 1-th first coordinates $\left(\alpha_{1}, \ldots, \alpha_{i-1}\right)$ of α,
- \mathcal{L}_{α} is a multivariate Lagrange idempotent on a grid of points $A \subset V$.
- $m_{\alpha}=x_{1}^{d_{1}-\delta_{1}(\alpha)} \cdots x_{n}^{d_{n}-\delta_{n}(\alpha)}\left(\delta_{i}(\alpha)=\operatorname{deg}_{i}\left(f_{i, \alpha}\right)\right)$

Kind of generalization of Lazard's structural theorem (1985) full result for lexGB in two variables.

Perspective

(1) Find a simple formulation of the previous problems.

Perspective

(1) Find a simple formulation of the previous problems.

- find a simple way, on the lextree, to address a (sharp) complexity analysis of the recycling phase.

Perspective

(1) Find a simple formulation of the previous problems.

- find a simple way, on the lextree, to address a (sharp) complexity analysis of the recycling phase.
(2) The ideal of vanishing polynomials is radical.

Perspective

(1) Find a simple formulation of the previous problems.

- find a simple way, on the lextree, to address a (sharp) complexity analysis of the recycling phase.
(2) The ideal of vanishing polynomials is radical.
- Generalization to non-radical ideals: Hermite conditions attached to each point in V.

Perspective

(1) Find a simple formulation of the previous problems.

- find a simple way, on the lextree, to address a (sharp) complexity analysis of the recycling phase.
(2) The ideal of vanishing polynomials is radical.
- Generalization to non-radical ideals: Hermite conditions attached to each point in V.
- Lei-Zheng-Ruen 2014: investigated using Lederer formulation (four-in-a-row). From their own account, dautingly complicated to estimate complexity in this way.

Perspective

(1) Find a simple formulation of the previous problems.

- find a simple way, on the lextree, to address a (sharp) complexity analysis of the recycling phase.
(2) The ideal of vanishing polynomials is radical.
- Generalization to non-radical ideals: Hermite conditions attached to each point in V.
- Lei-Zheng-Ruen 2014: investigated using Lederer formulation (four-in-a-row). From their own account, dautingly complicated to estimate complexity in this way.
- the key is simplicity. It is the case when the Hermite conditions are triangular: the highest order in the derivative of Taylor expansions appear to the largest (single) variable.

