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Ramanujan graph of degee d : undirected, connected graph G ,

such that: for all λ 6= ±d eigenvalue, |λ| ≤ 2
√
d − 1.

→ very good certified expander graphs

Many applications in Computer Science, Mathematics etc.

Large girth No small cycle (actual record)

a classical problem in extremal graph theoery,

with several applications: LDPC error-correcting codes

metric embeddings etc



Introduction Octonions Cayley graphs on octonions Numerical experiments

LPS Ramanujan graphs and quaternions

These remarkable graphs are Cayley graphs on some groups of
quaternions over finite fields.
What happens with octonions?



Introduction Octonions Cayley graphs on octonions Numerical experiments

LPS Ramanujan graphs and quaternions

These remarkable graphs are Cayley graphs on some groups of
quaternions over finite fields.
What happens with octonions?

Construction possible (and not trivial)

But very unlikely to be Ramanujan graphs or having large
girth.

→ Implementation in Magma, check on “small” parameters the
second eigenvalue and the girth of these graphs.



Introduction Octonions Cayley graphs on octonions Numerical experiments

LPS Ramanujan graphs and quaternions

These remarkable graphs are Cayley graphs on some groups of
quaternions over finite fields.
What happens with octonions?

Construction possible (and not trivial)

But very unlikely to be Ramanujan graphs or having large
girth.

→ Implementation in Magma, check on “small” parameters the
second eigenvalue and the girth of these graphs.

So any interesting porperties?

Conjecture: they are non-vertex transitive

Difficulty: How to describe a non-trivial automorphism?
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(Undirected) Cayley graphs

Let H be a group and S ⊂ H a symmetric subset : S−1 = S .
(S is called the Cayley set).

C ay(H,S) has for vertices V the elements of H.
And for edges (h, sh) for h ∈ H an s ∈ S .

C ay(H,S) is |S |-regular.
If H is a free group on d elements S , then C ay(H,S) is the
d -regular infinite tree.

C ay(H,S) is connected ⇐⇒ S generates H.

G := C ay(H,S) is undirected. Let n := |H| be its order:

adjacency matrix A(G) is symmetric: its eigenvalues are
denoted: λ0 ≥ λ1 ≥ · · · ≥ λn−1.
let d = |S |. G is d-regular: λ0 = d .
|connnected components of G | = multiplicity of λ0
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LPS Ramanujan graphs(quaternions): regular tree

Let A be a commutative ring with units:

H(A) = {α = a0 + a1i + a2j + a3ij, ai ∈ A},

with i2 = j2 = (ij)2 = −1.
Conjugate of α: α = a0 − a1i− a2j− a3ij.

Norm of α is N(α) = αα = a20 + a21 + a22 + a23.

Let q be a prime q 6= 2,

H(Fq) ≃ Mat2(Fq) ⇒ H(Fq)
×/Z ≃ PGL2(Fq).

There is a “nice” family P(p) ⊂ H(Z) of p + 1-quaternions
of norm p such that:

C ay(〈P(p)〉 , P(p)) is the p + 1-regular tree.
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p + 1 regular tree

C ay(〈P(p)〉 , P(p)) is the p + 1-regular tree.

P(p) = {π1, . . . , πp+1}
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LPS Ramanujan graphs: finite quotient of the tree

P(p) ⊂ H(Z) nice family of p + 1 quaternions of norm p.
C ay(〈P(p)〉 , P(p)) is the p + 1-regular infinite tree.

Let q > p be another prime.

Let S (p, q) ≡P(p) mod q

(S (p, q) →֒ H(Fq)
⋆/Z ≃ PGL2(Fq)).

LPS Graphs: C ay(PGL2(Fq) , S (p, q)) if
(

p
q

)

= −1.
C ay(PSL2(Fq) , S (p, q)) if

(

p
q

)

= 1.

If we fix p, then this provides infinite families of Ramanujan graphs
of degree p.

To prove the remarkable properties: vertex-transitivity is essential
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Outline of the new construction

Step 1 Infinite p3 + 1-regular tree: used unique factorization of
integral octonions in O(Z).

generators ↔ some integral octonions P(p) of norm p

Step 2 Finite regular quotients of the tree: reduction mod q of the
integral ocotnions family P(p).

vertices ↔ O(Fq)
⋆/center

For each prime p > 2, we get an infinite family Xp = {Xp,q}q>p

of degree p3 + 1-regular graphs.
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Generalities on octonions

Let O(R) a free R-module of rank 8 with basis:

1 , i , j , k , t , it , jt , kt,

such that O(R) = H(R)⊕H(R)t, and t2 = −1.
Conjugation: Let a, b ∈ H(R), a+ bt ∈ O(R). a + bt := a− bt

Mutliplication in O(K ): (Cayley-Dickson doubling process)
Let a, b, c , d ∈ H(K ). Then a + bt and c + dt ∈ O(K ).

∀ a, b, c , d ∈ H(K ) (a + bt)(c + dt) = (ac + λdb) + (da + bc)t.
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N(α0 + α1i + · · · + α7(ij)t) = α2
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Consequence: O(Fq)
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Generalities on octonions II

Norm: non-degenerate quadratic form : N(x) := xx̄ on O(R) that
extends the one of H(R). With our settings,

N(i) = N(j) = N(t) = 1 .

N(α0 + α1i + · · · + α7(ij)t) = α2
0 + · · · + α2

7

Alternative algebra: (αα)β = α(αβ) and (αβ)α = α(βα).

Consequence: O(Fq)
⋆ is a Moufang loop.

Consequence: Two elements generate an associative subalgebra:

(αβ)β̄ = α(ββ̄) = αN(β)

Multiplicativity of the norm: N(αβ) = N(α)N(β)
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Gauss integers Z[i ]: x = ±ǫπe1
1 · · · πes

s ǫ = 1 or i .
The sequence order [π1, · · · , πs ] does not matter.

Quaternions H(Z): α = α0 + α1i + α2j + α3k ∈ H(Z),
gcd(α0, α1, α2, α3) = 1.
N(α) = p1 · · · ps (pi ≡ 1 mod 4, primes not necessarily disctinct).

Existence: There exists πi ∈ H(Z), N(πi ) = pi , such that:
α = π1 · · · πs .
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The unique factorization problem

Rational integers Z: x = ±pe11 · · · pess
The sequence order [p1, · · · , ps ] does not matter.

Gauss integers Z[i ]: x = ±ǫπe1
1 · · · πes

s ǫ = 1 or i .
The sequence order [π1, · · · , πs ] does not matter.

Quaternions H(Z): α = α0 + α1i + α2j + α3k ∈ H(Z),
gcd(α0, α1, α2, α3) = 1.
N(α) = p1 · · · ps (pi ≡ 1 mod 4, primes not necessarily disctinct).

Existence: There exists πi ∈ H(Z), N(πi ) = pi , such that:
α = π1 · · · πs .
Uniqueness ? Impose that πi ,0 > 0 and that πi ,0 is odd.
There exists a unique ǫ ∈ H(Z)⋆ = {±1,±i,±j,±ij},

α = ǫπ1 · · · πs .

The sequence order [π1, . . . , πs ] matters.
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The unique factorization problem for octonions

1st step: Euclidean division: Given α, β ∈ O(Z), N(α) > N(β),
find γ, δ ∈ O(Z) such that:

α = γβ + δ, N(δ) < N(β).

Equivalently: Given v ∈ Q8, is there w ∈ Z8 such that
||v − w ||2 < 1.

Not clear because ||(1
2
, · · · , 1

2
)||2 =

√
2.
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The unique factorization problem for octonions

1st step: Euclidean division: Given α, β ∈ O(Z), N(α) > N(β),
find γ, δ ∈ O(Z) such that:

α = γβ + δ, N(δ) < N(β).

Equivalently: Given v ∈ Q8, is there w ∈ Z8 such that
||v − w ||2 < 1.

Not clear because ||(1
2
, · · · , 1

2
)||2 =

√
2.

Does not work because O(Z) is not a maximal “order” (in analogy
with algebraic integers: Z[α] ⊂ OK , where K = Q(α)).
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X 2 − (α+ ᾱ)X + N(α) ≡ 0 in K [X ]

Integral octonions: Given K = Q, in analogy with algebraic
integers: N(α) ∈ Z and if α+ ᾱ ∈ Z
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Integral octonions

Characteristic equation: ∀α ∈ O(K ), holds:

X 2 − (α+ ᾱ)X + N(α) ≡ 0 in K [X ]

Integral octonions: Given K = Q, in analogy with algebraic
integers: N(α) ∈ Z and if α+ ᾱ ∈ Z

New difficulty: The integral octonions is a Z-algebra of O(Q), but
is not a lattice (no Z-basis).

Coxeter, 1946 The integral octonions contains 7 distinct
sub-algebras that are also maximal orders (lattices).

The 7 associative triads: Let k := ij. Each of the following 7
triplets generate a quaternion sub-algebra.

k, jt, it , j, it, kt , i, kt, jt , i, j, k , i, t, it , j, t, jt , k, t, kt
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Coxeter algebra (E8 lattice)

Coxeter’s algebra CO: This is one of the 7 maximal orders,
associated to the associative triplet i, j, k:

h :=
1

2
(i+j+k+t), CO := Z+iZ+jZ+kZ+hZ+ihZ+jhZ+khZ.
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1
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(i+j+k+t), CO := Z+iZ+jZ+kZ+hZ+ihZ+jhZ+khZ.

Theorem. In CO, the Euclidean division holds.

No associativity ⇒ No induction possible to deduce existence of a
factorization.
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Coxeter algebra (E8 lattice)

Coxeter’s algebra CO: This is one of the 7 maximal orders,
associated to the associative triplet i, j, k:

h :=
1

2
(i+j+k+t), CO := Z+iZ+jZ+kZ+hZ+ihZ+jhZ+khZ.

Theorem. In CO, the Euclidean division holds.

No associativity ⇒ No induction possible to deduce existence of a
factorization.

Rehm (1993) Deduce a distortion of the Euclidean algorithm.
Existence of factorization.
Uniqueness of factorization: counting argument
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Unique factorization: H. P. Rehm (1993)

Special case: α ∈ O(Z), N(α) = pk , p ≡ 1 mod 8 .
α = α0 + α1i + α2j + α3k + α4t + α5it + α6jt + α7kt

α is primitive ⇔ gcd(α0, . . . , α7) = 1.

Existence: there are prime octonions π1, . . . , πk , N(πi ) = p, such
that:

α = (· · · (π1π2) . . .)πk .
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Unique factorization: H. P. Rehm (1993)

Special case: α ∈ O(Z), N(α) = pk , p ≡ 1 mod 8 .
α = α0 + α1i + α2j + α3k + α4t + α5it + α6jt + α7kt

α is primitive ⇔ gcd(α0, . . . , α7) = 1.

Existence: there are prime octonions π1, . . . , πk , N(πi ) = p, such
that:

α = (· · · (π1π2) . . .)πk .
Uniqueness: Restrict the set of octonions of norm p to:

P(p) := {α ∈ O(Z) : N(α) = p , α0 is odd , α0 > 0}

There exists a unique sequence [µ1, . . . , µk ] in P(p) such that :

α = ±(· · · (µ1µ2) . . .)µk (µi+1 6= µi )
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p3 + 1-regular infinite tree Tp

C ay(〈P(p)〉 , P(p)) is the p3 + 1-regular inifinite tree.

P(p) = {π1, . . . , πp3+1}

1
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p3 + 1-regular infinite tree Tp

C ay(〈P(p)〉 , P(p)) is the p3 + 1-regular inifinite tree.

P(p) = {π1, . . . , πp3+1}
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π2 πp3+1
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p3 + 1-regular infinite tree Tp

C ay(〈P(p)〉 , P(p)) is the p3 + 1-regular inifinite tree.

P(p) = {π1, . . . , πp3+1}

1

π1

π2 πp3+1

π3

π1π2
π
2
1

π1πp3+1

π1π1
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p3 + 1-regular infinite tree Tp

C ay(〈P(p)〉 , P(p)) is the p3 + 1-regular inifinite tree.

P(p) = {π1, . . . , πp3+1}

1

π1

π2 πp3+1

π3

π1π2
π
2
1

π1πp3+1

π1π1

(π1π2)π1
π1π

2
2(π1π2)πp3+1

(π1π2)π2
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p3 + 1-regular infinite tree Tp

P(p) := {α ∈ O(Z) : N(α) = p , α0 is odd , α0 > 0}
P(p) := {π1, π2, . . . , πp3+1}
Stable by conjugation: For πi ∈P(p), the conjugate
πi = πi ′ ∈P(p)

Alternative algebra rules . . . (αβ)β̄ = α(ββ̄) = αN(β)
This implies that for ℓ 6= i , i ′, (πℓπi)πi = pπℓ is not primitive.
. . . in the unique factorization: α primitive in O(Z), N(α) = pk :

α = ±(· · · (µ1µ2) . . .)µk , µi ∈P(p) with µi 6= µi+1.
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p3 + 1-regular infinite tree Tp

P(p) := {α ∈ O(Z) : N(α) = p , α0 is odd , α0 > 0}
P(p) := {π1, π2, . . . , πp3+1}
Stable by conjugation: For πi ∈P(p), the conjugate
πi = πi ′ ∈P(p)

Alternative algebra rules . . . (αβ)β̄ = α(ββ̄) = αN(β)
This implies that for ℓ 6= i , i ′, (πℓπi)πi = pπℓ is not primitive.
. . . in the unique factorization: α primitive in O(Z), N(α) = pk :

α = ±(· · · (µ1µ2) . . .)µk , µi ∈P(p) with µi 6= µi+1.

Walking on the tree: vertice v ↔ α = (· · · (πi1πi2) . . .)πis ,
with πiℓ 6= πiℓ .

Go forward (from the root) at v : right multiply α by
π ∈P(p)− {πis}.

Go backward (from the root) at v : right multiply α by πis .
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Finite regular quotients of the tree

τq : O(Z)→ O(Fq)
Equivalence relation on the vertices: v1, v2 ∈ V (Tp)
v1 ↔ α1 = (· · · (πi1πi2)πi3 · · · )πis with πik 6= πik−1

.
v2 ↔ α2 = (· · · (πj1πj2)πj3 · · · )πjt with πjk 6= πjk−1

.

v1 ∼ v2 ⇐⇒ τq(α1) = λτq(α2) for some λ ∈ F⋆
q.
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Finite regular quotients of the tree

τq : O(Z)→ O(Fq)
Equivalence relation on the vertices: v1, v2 ∈ V (Tp)
v1 ↔ α1 = (· · · (πi1πi2)πi3 · · · )πis with πik 6= πik−1

.
v2 ↔ α2 = (· · · (πj1πj2)πj3 · · · )πjt with πjk 6= πjk−1

.

v1 ∼ v2 ⇐⇒ τq(α1) = λτq(α2) for some λ ∈ F⋆
q.

⇐⇒ τq(α1) ≡ τq(α2) in O(Fq)
⋆/Z,

where Z = {x | xy = yx , ∀y ∈ O(Fq)
⋆} ≃ F⋆

q

is the center of O(Fq)
⋆.
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Finite regular quotients of the tree

τq : O(Z)→ O(Fq)
Equivalence relation on the vertices: v1, v2 ∈ V (Tp)
v1 ↔ α1 = (· · · (πi1πi2)πi3 · · · )πis with πik 6= πik−1

.
v2 ↔ α2 = (· · · (πj1πj2)πj3 · · · )πjt with πjk 6= πjk−1

.

v1 ∼ v2 ⇐⇒ τq(α1) = λτq(α2) for some λ ∈ F⋆
q.

⇐⇒ τq(α1) ≡ τq(α2) in O(Fq)
⋆/Z,

where Z = {x | xy = yx , ∀y ∈ O(Fq)
⋆} ≃ F⋆

q

is the center of O(Fq)
⋆.

Theorem: The relation ∼ preserves the adjacency.
Xp,q := Tp/ ∼ , finite p3 + 1-regular quotient of Tp .
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Algebraic interpretation in terms of Cayley graphs

τq : O(Z)→ O(Fq) p ≡ 1 mod 8 and
(

p
q

)

= −1
Definition: Let
Λ := {α ∈ O(Z), s.t. α = (· · · (πi1πi2) . . .)πis ,with πiℓ−1

6= πiℓ}.
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Algebraic interpretation in terms of Cayley graphs

τq : O(Z)→ O(Fq) p ≡ 1 mod 8 and
(

p
q

)

= −1
Definition: Let
Λ := {α ∈ O(Z), s.t. α = (· · · (πi1πi2) . . .)πis ,with πiℓ−1

6= πiℓ}.
Λ←→ V (Tp).
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Algebraic interpretation in terms of Cayley graphs

τq : O(Z)→ O(Fq) p ≡ 1 mod 8 and
(

p
q

)

= −1
Definition: Let
Λ := {α ∈ O(Z), s.t. α = (· · · (πi1πi2) . . .)πis ,with πiℓ−1

6= πiℓ}.
Λ←→ V (Tp).

Λ := {α ∈ O(Z) | α is primitive, N(α) = pk and α0 > 0}
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Algebraic interpretation in terms of Cayley graphs

τq : O(Z)→ O(Fq) p ≡ 1 mod 8 and
(

p
q

)

= −1
Definition: Let
Λ := {α ∈ O(Z), s.t. α = (· · · (πi1πi2) . . .)πis ,with πiℓ−1

6= πiℓ}.
Λ←→ V (Tp).

Λ := {α ∈ O(Z) | α is primitive, N(α) = pk and α0 > 0}
τq(Λ) ⊂ O(Fq)

⋆.
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Algebraic interpretation in terms of Cayley graphs

τq : O(Z)→ O(Fq) p ≡ 1 mod 8 and
(

p
q

)

= −1
Definition: Let
Λ := {α ∈ O(Z), s.t. α = (· · · (πi1πi2) . . .)πis ,with πiℓ−1

6= πiℓ}.
Λ←→ V (Tp).

Λ := {α ∈ O(Z) | α is primitive, N(α) = pk and α0 > 0}
τq(Λ) ⊂ O(Fq)

⋆.

Defining Z as the center of O(Fq)
⋆,

µq : Λ→ O(Fq)
⋆/Z is onto.
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Algebraic interpretation in terms of Cayley graphs

τq : O(Z)→ O(Fq) p ≡ 1 mod 8 and
(

p
q

)

= −1
Definition: Let
Λ := {α ∈ O(Z), s.t. α = (· · · (πi1πi2) . . .)πis ,with πiℓ−1

6= πiℓ}.
Λ←→ V (Tp).

Λ := {α ∈ O(Z) | α is primitive, N(α) = pk and α0 > 0}
τq(Λ) ⊂ O(Fq)

⋆.

Defining Z as the center of O(Fq)
⋆,

µq : Λ→ O(Fq)
⋆/Z is onto.

Let S (p, q) := µq(P(p)), Xp,q = C ay( O(Fq)
⋆/Z , S (p, q) )
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Some Numerical Experiments

Implementation in Magma. ← More than 2000 lines of codes.

Computation of λ1 the 2nd largest eigenvalue: Power
Method.

Computation of the girth: classical breadth-first search in the
“mother” p3 + 1-regular tree,
until a “collision” is found when reducing mod q.



Introduction Octonions Cayley graphs on octonions Numerical experiments

Results: 2nd eigenvalue for various degree 38 LPS graphs
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Results: 2nd eigenvalue for various degree 48 LPS graphs
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Results: 2nd eigenvalue for smallest degree 28 octo. graphs

31,373,160 vertices Y3,13 required 24Go and 5h40 (one iteration
450s)
Failed for 410,333,760 vertices graph X3,17 (after 30Go and 59hurs)
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Results: 2nd eigenvalue for smallest degree 126 octo.
graphs

Y5,11 has 9,742,920 vertices. Required 11Go and 10hours (500s by
iterations).
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Implementation in MAGMA

Representation of Moufang loops O(Fq)
×/Z (and of H(Fq)

⋆/Z)

Construction of the doubling Cayley Dickson porocess
(R→ C→ H→ O→ · · · ) to generate automatically the
multiplication tables on free modules of rank 2, 4, 8, . . ..
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Implementation in MAGMA

Representation of Moufang loops O(Fq)
×/Z (and of H(Fq)

⋆/Z)

Construction of the doubling Cayley Dickson porocess
(R→ C→ H→ O→ · · · ) to generate automatically the
multiplication tables on free modules of rank 2, 4, 8, . . ..

Coefficients ring can be changed from Z to Fp using
ChangeRing.
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Implementation in MAGMA

Representation of Moufang loops O(Fq)
×/Z (and of H(Fq)

⋆/Z)

Construction of the doubling Cayley Dickson porocess
(R→ C→ H→ O→ · · · ) to generate automatically the
multiplication tables on free modules of rank 2, 4, 8, . . ..

Coefficients ring can be changed from Z to Fp using
ChangeRing.

Use a “normal form” to represent quater/octo-nions in
H(Fq)

×/Z or O(Fq)
×/Z:

a = (α0, . . . , α7)
Normal form−−−−−−−→ α−1

firsta,

where αfirst is the first coordinate 6= 0.
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Power method

Aim: Approximate largest eigenvalues of (symmetric) matrices.

If x0 /∈ Eλ0
, lim

ℓ→∞

‖Aℓx0‖2
‖Aℓ−1x0‖2

= |λ0|,
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Aim: Approximate largest eigenvalues of (symmetric) matrices.

If x0 /∈ Eλ0
, lim

ℓ→∞
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= |λ0|,

Now we know that λ0 = d and Eλ0
= 〈(1, . . . , 1)t〉.
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Power method

Aim: Approximate largest eigenvalues of (symmetric) matrices.

If x0 /∈ Eλ0
, lim

ℓ→∞

‖Aℓx0‖2
‖Aℓ−1x0‖2

= |λ0|,

Now we know that λ0 = d and Eλ0
= 〈(1, . . . , 1)t〉.

Choose randomly x0 ∈ E⊥

λ0
(easy). With high probability

x0 /∈ Eλ1
also, so

lim
ℓ→∞

‖Aℓx0‖2
‖Aℓ−1x0‖2

= |λ1|,
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Power method

Aim: Approximate largest eigenvalues of (symmetric) matrices.

If x0 /∈ Eλ0
, lim

ℓ→∞

‖Aℓx0‖2
‖Aℓ−1x0‖2

= |λ0|,

Now we know that λ0 = d and Eλ0
= 〈(1, . . . , 1)t〉.

Choose randomly x0 ∈ E⊥

λ0
(easy). With high probability

x0 /∈ Eλ1
also, so

lim
ℓ→∞

‖Aℓx0‖2
‖Aℓ−1x0‖2

= |λ1|,

It suffices to compute successively Ax0, A2x0, · · · ,Aℓx0, . . ..
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Power method

Aim: Approximate largest eigenvalues of (symmetric) matrices.

If x0 /∈ Eλ0
, lim

ℓ→∞

‖Aℓx0‖2
‖Aℓ−1x0‖2

= |λ0|,

Now we know that λ0 = d and Eλ0
= 〈(1, . . . , 1)t〉.

Choose randomly x0 ∈ E⊥

λ0
(easy). With high probability

x0 /∈ Eλ1
also, so

lim
ℓ→∞

‖Aℓx0‖2
‖Aℓ−1x0‖2

= |λ1|,

It suffices to compute successively Ax0, A2x0, · · · ,Aℓx0, . . ..

The product Ay can be done in case of Cayley graphs:
O(nd) = Õ(n) (if all elements are pre-computed and stored in
an array).
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Perspective

Uneveness of the girth: separate .pdf file
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Perspective

Uneveness of the girth: separate .pdf file

Magma has some functionalities to compute automorphisms.
Unlikley to work on large graphs, but is it possible to use
these to guess at least some automorphism on smallest
octonion graphs ?
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Perspective

Uneveness of the girth: separate .pdf file

Magma has some functionalities to compute automorphisms.
Unlikley to work on large graphs, but is it possible to use
these to guess at least some automorphism on smallest
octonion graphs ?

THANK YOU FOR YOUR ATTENTION !
COMMENTS?

file:///C:/Program Files (x86)/Magma/htmlhelp/text1804.htm
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