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Combinatorica 8:261-277, 1988
G. Margulis “Explicit group-theoretic constructions of combinatorial

schemes and their applications for the construction of expanders and
concentrators

Journal of Problems of Information Transmission 24(1):51-60, 1988.

Ramanujan graph of degee d: undirected, connected graph G,
such that: for all A # £d eigenvalue, |A| < 2v/d — 1.
— very good certified expander graphs
@ Many applications in Computer Science, Mathematics etc.

Large girth No small cycle (actual record)
@ a classical problem in extremal graph theoery,
@ with several applications: LDPC error-correcting codes
@ metric embeddings etc
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LPS Ramanujan graphs and quaternions

These remarkable graphs are Cayley graphs on some groups of
quaternions over finite fields.
What happens with octonions?
@ Construction possible (and not trivial)
@ But very unlikely to be Ramanujan graphs or having large
girth.
— Implementation in Magma, check on “small” parameters the
second eigenvalue and the girth of these graphs.
So any interesting porperties?

@ Conjecture: they are non-vertex transitive

o Difficulty: How to describe a non-trivial automorphism?
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(Undirected) Cayley graphs

@ Let H be a group and S C H a symmetric subset : S™1 =S,
(S is called the Cayley set).

@ %ay(H,S) has for vertices V the elements of H.
And for edges (h,sh) for h€ Hans € S.

e %ay(H,S) is |S|-regular.

o If H is a free group on d elements S, then €ay(H, S) is the
d-regular infinite tree.

@ %ay(H,S) is connected <= S generates H.

@ G :=%ay(H,S) is undirected. Let n:= |H| be its order:

@ adjacency matrix A(G) is symmetric: its eigenvalues are
denoted: Ao AL > > Al

o let d =|S|. G is d-regular: Ao = d.

o |connnected components of G| = multiplicity of Ao
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LPS Ramanujan graphs(quaternions): regular tree

@ Let A be a commutative ring with units:
H(A) = {a = a0 + a1i + a2j + asij, a; € A},
with i = j? = (ij)®> = —1.
o Conjugate of a: @ = ag — a1i — apj — asij.
@ Norm of ais N(a) = a@ = a3 + a3 + a3 + a3.
@ Let g be a prime g # 2,

H(F,) ~ Maty(Fq) = H(F,)* /2 ~ PGLy(F,).
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LPS Ramanujan graphs(quaternions): regular tree

@ Let A be a commutative ring with units:
H(A) = {a = ap + a1i + aoj + azij, a; € A},

with i = j? = (ij)®> = —1.
Conjugate of a: @ = ag — a1i — apj — asij.

(]

Norm of v is N(a) = o = a3 + a3 + a3 + a3.

Let g be a prime g # 2,
H(F,) ~ Mato(Fy) = H(Fq)*/Z ~ PGLy(Fg).

(]

There is a "nice” family &(p) C H(Z) of p + 1-quaternions
of norm p such that:

Cay((Z(p)) , Z(p)) s the p+ l-regular tree.



Introduction
[ee]ele] Tele]

p + 1 regular tree

Cay((Z(p)) , Z(p)) isthe p+ l-regular tree.
P(p) ={m1,..., Tpt1}

o1



Introduction
[ee]ele] Tele]

p + 1 regular tree

Cay((Z(p)) , Z(p)) isthe p+ l-regular tree.
P(p) ={m1,..., Tpt1}

T

3



Introduction
[ee]ele] Tele]

p + 1 regular tree

Cay((Z(p)) , Z(p)) isthe p+ l-regular tree.
P(p) ={m1,..., Tpt1}




Introduction
[ee]ele] Tele]

p + 1 regular tree

Cay((Z(p)) , Z(p)) isthe p+ l-regular tree.
P(p) ={m1,..., Tpt1}

(mama) s

3
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P(p) C H(Z) nice family of p + 1 quaternions of norm p.
Cay((Z2(p)) , Z(p)) is the p + 1-regular infinite tree.

@ Let g > p be another prime.
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LPS Ramanujan graphs: finite quotient of the tree

P(p) C H(Z) nice family of p + 1 quaternions of norm p.
Cay((Z2(p)) , Z(p)) is the p + 1-regular infinite tree.

@ Let g > p be another prime.

o Let .¥(p,q) = Z(p) mod q
(7 (p,q) = H(Fq)*/Z = PGLy(Fq))-

LPS Graphs{ ¢ ay(PGLa(Fy) , 7 (p,q))]if () = ~1.

©ay(PSLy(Fy), .7 (p, q)) ] if (g) ~ 1

If we fix p, then this provides infinite families of Ramanujan graphs
of degree p.

To prove the remarkable properties: vertex-transitivity is essential
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Outline of the new construction

Step 1 Infinite p® + 1-regular tree: used unique factorization of
integral octonions in O(Z).

generators <> some integral octonions Z(p) of norm p

Step 2 Finite regular quotients of the tree: reduction mod g of the
integral ocotnions family Z2(p).

vertices <> O(IFq)* /center

For each prime p > 2, we get an infinite family 2, = {2, ¢}q>p
of degree p> + 1-regular graphs.
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such that O(R) = H(R) @ H(R)t, and t* = —1.
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Generalities on octonions

Let O(R) a free R-module of rank 8 with basis:
17i7j7 k7 t’it7jt7 kt7

such that O(R) = H(R) @ H(R)t, and t* = —1.
Conjugation: Let a,b € H(R), a+ bt € O(R). a+ bt:=3a3— bt

Mutliplication in O(K): (Cayley-Dickson doubling process)
Let a, b, c,d € H(K). Then a+ bt and ¢ + dt € O(K).

V a,b,c,d € H(K) (a+ bt)(c+ dt) = (ac+ Adb) + (da + bec)t.



Octonions
[e] lele]ele]e}

Generalities on octonions |l

Norm: non-degenerate quadratic form : N(x) := xx on O(R) that
extends the one of H(R). With our settings,

N(i) = N(j) = N(t) = 1.

N(ag + ari+ -+ az(ij)t) =ad + - + a2
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Generalities on octonions |l

Norm: non-degenerate quadratic form : N(x) := xx on O(R) that
extends the one of H(R). With our settings,

N(i) = N(j) = N(t) = 1.

N(ag + ari+ -+ az(ij)t) =ad + - + a2

Alternative algebra: (aa)B = a(apf) and (af)a = a(fa).

Consequence: O(Fq4)* is a Moufang loop.

Consequence: Two elements generate an associative subalgebra:
(@B)B = a(B3) = aN(p)

Multiplicativity of the norm: N(aB) = N(a)N(B)
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ged(ag, a1, ap, a3) = 1.
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The unique factorization problem

Rational integers Z: x = £p;* - - - pg®

The sequence order [p1,--- , ps|] does not matter.
Gauss integers Z[i]: x = enjt--- w8 e=1ori.
The sequence order [m1, -+ , 75| does not matter.

Quaternions H(Z): a = ap + a1i + agj + ask € H(Z),
ged(ag, a1, ap, a3) = 1.
N(a) = p1---ps (pi =1 mod 4, primes not necessarily disctinct).
Existence: There exists m; € H(Z), N(7;) = p;, such that:
o=y Ts.
Uniqueness 7 Impose that 7; o > 0 and that ;o is odd.
There exists a unique € € H(Z)* = {£1, i, £j, £ij},

= €My - Ts.

The sequence order [m1, ..., 7s] matters.
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The unique factorization problem for octonions

1st step: Euclidean division: Given «, 8 € O(Z), N(a) > N(pB),
find 7,0 € O(Z) such that:

a=y6+06  N©) < N(B).

Equivalently: Given v € Q8, is there w € Z8 such that
[lv—wl|lp <1.

Not clear because ||(3,--, 3)|[> = V2.
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The unique factorization problem for octonions

1st step: Euclidean division: Given «, 8 € O(Z), N(a) > N(pB),
find 7,0 € O(Z) such that:

a=y6+06  N©) < N(B).

Equivalently: Given v € Q8, is there w € Z8 such that
llv — w2 < 1.
Not clear because ||(3,--, 3)|[> = V2.

Does not work because @(Z) is not a maximal “order” (in analogy
with algebraic integers: Z[a] C Ok, where K = Q(«)).
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X2 —(a+a)X+Na)=0 in  K[X]

Integral octonions: Given K = Q, in analogy with algebraic
integers: Na)eZ andifa+acZ
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Integral octonions

Characteristic equation: Ya € O(K), holds:
X2 —(a+a)X+Na)=0 in  K[X]
Integral octonions: Given K = Q, in analogy with algebraic

integers: Na)eZ andifa+acZ

New difficulty: The integral octonions is a Z-algebra of O(Q), but
is not a lattice (no Z-basis).

Coxeter, 1946 The integral octonions contains 7 distinct
sub-algebras that are also maximal orders (lattices).

The 7 associative triads: Let k :=ij. Each of the following 7
triplets generate a quaternion sub-algebra.

k’jt7 It ) .j?it7 kt ) i7 kt?.Jt ) I‘.J‘k ) i7t7 It ) J7t7Jt ) k7t7 kt
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Coxeter algebra (Eg lattice)

Coxeter's algebra Cg: This is one of the 7 maximal orders,
associated to the associative triplet i, j, k:

1
h:= §(i—|-j+k—i—t), Co := ZH1L~+jZ+4-KZ~+-hZ~+ihZ+jhZ +-khZ.
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Coxeter's algebra Cg: This is one of the 7 maximal orders,
associated to the associative triplet i, j, k:

1
h:= §(i—i—j+k+t), Co := ZH1L~+jZ+4-KZ~+-hZ~+ihZ+jhZ +-khZ.

Theorem. In Cg, the Euclidean division holds.

No associativity = No induction possible to deduce existence of a
factorization.
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Coxeter algebra (Eg lattice)

Coxeter's algebra Cg: This is one of the 7 maximal orders,
associated to the associative triplet i, j, k:

1
h:= §(i—i—j+k+t), Co := ZH1L~+jZ+4-KZ~+-hZ~+ihZ+jhZ +-khZ.

Theorem. In Cg, the Euclidean division holds.

No associativity = No induction possible to deduce existence of a
factorization.

Rehm (1993) Deduce a distortion of the Euclidean algorithm.
Existence of factorization.
Uniqueness of factorization: counting argument
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Unique factorization: H. P. Rehm (1993)

Special case: a € O(Z), N(a) = p*, p=1mod 8.
a = ag + aii + asj + azk + agt + asit + agjt + arzkt

« is primitive < ged(ag, ..., a7) = 1.
Existence: there are prime octonions 71, ..., 7, N(m;) = p, such
that:

o = ( (7T17T2)...)7Tk.
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Unique factorization: H. P. Rehm (1993)

Special case: a € O(Z), N(a) = p*, p=1mod 8.
a = ag + aii + asj + azk + agt + asit + agjt + arzkt

« is primitive < ged(ag, ..., a7) = 1.
Existence: there are prime octonions 71, ..., 7, N(m;) = p, such
that:

o = ( . (7‘('17'('2) .. .)7Tk.
Uniqueness: Restrict the set of octonions of norm p to:

P(p) ={aecO(Z) : N(o)=p,apisodd , ap >0}
There exists a unique sequence [u1, ..., uk] in Z(p) such that :

a==£(-(prp2) ... )k (tiv1 # 1)
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p® + 1l-regular infinite tree T,

P(p) ={aecO(Z) : N(o)=p,apisodd , ap >0}
P(p) = {m1, 72, ..., Tpsi1}
Stable by conjugation: For m; € £(p), the conjugate

mi =mp € Z(p)
Alternative algebra rules . .. (aB)f = a(BB) = aN(B)
This implies that for £ # i, /, (i)W = pmy is not primitive.

_..in the unique factorization: « primitive in O(Z), N(a) = p*:

a==x(-(urp2).. Yk, i € 2(p) with Wi 7 i1
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p® + 1l-regular infinite tree T,

P(p) ={aecO(Z) : N(o)=p,apisodd , ap >0}
P(p) = {m1, 72, ..., Tpsi1}
Stable by conjugation: For m; € £(p), the conjugate

mi =mp € Z(p)
Alternative algebra rules . .. (aB)f = a(BB) = aN(B)
This implies that for £ # i, /, (i)W = pmy is not primitive.

_..in the unique factorization: « primitive in O(Z), N(a) = p*:

a==x(-(urp2).. Yk, i € 2(p) with Wi 7 i1

Walking on the tree: vertice v <» o = (- - (mj,7},) - . )i,
with m;, # 7,
Go forward (from the root) at v: right multiply a by
re 2(p) - (7).
Go backward (from the root) at v: right multiply « by 7.
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Finite regular quotients of the tree

7q : O(Z) — O(Fq)
Equivalence relation on the vertices: vi,vo € V(Tp)
V1<—>Oél:(~~~(7‘(','17'(','2)7'1','3"')7'(','s with 7T,'k7é7'(','k71.
vo e ap = (o (M mp)myy - )y, with 7, £ TG

vi~ v = T4(ar1) = Arg(an) for some A € Fg.
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Finite regular quotients of the tree

7q : O(Z) — O(Fq)
Equivalence relation on the vertices: vi,vo € V(Tp)
V1<—>Oél:(~~~(7‘(','17'(','2)7'1','3"')7'(','s with 7T,'k7é7'(','k71.
vo e ap = (o (M mp)myy - )y, with 7, £ TG

vi~ v = T4(ar1) = Arg(an) for some A € Fg.
= Tg(a1) = 1g(a2) in O(Fy)*/Z,
where Z = {x | xy = yx, Yy € O(Fq)*} ~ T}
is the center of O(Fg)*.
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Finite regular quotients of the tree

7q : O(Z) — O(Fq)
Equivalence relation on the vertices: vi,vo € V(Tp)
V1<—>Oél:(~~~(7‘(','17'(','2)7'1','3"')7'(','s with 7T,'k7é7'(','k71.
vo e ap = (o (M mp)myy - )y, with 7, £ TG

vi~ v = T4(ar1) = Arg(an) for some A € Fg.
= Tg(a1) = 1g(a2) in O(Fy)*/Z,
where Z = {x | xy = yx, Yy € O(Fq)*} ~ T}
is the center of O(Fg)*.

Theorem: The relation ~ preserves the adjacency.
Zp.q = Tp/ ~, finite p> + l-regular quotient of Tp.
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Algebraic interpretation in terms of Cayley graphs

T4 : O(Z) — O(Fy) p=1mod8 and (3) =-1
Definition: Let
A= {Oé S @(Z), s.t. a= ( .- (7T,'17T,'2) .. .)7T,'S,With Ti,_, #* 7'('_,[}
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Algebraic interpretation in terms of Cayley graphs

7q 1 O(Z) — O(Fq) p=1mod8 and (B) =1
Definition: Let
N={aecOZ), st.a=(---(mymj)...)m,, with m;,_, #7,}.
o N«— V(T,).
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Algebraic interpretation in terms of Cayley graphs

7q 1 O(Z) — O(Fq) p=1mod8 and (B) =1
Definition: Let
A:={aeQZ), st.a=(---(mym,)...)m, with m, | # 77 }.
o N«— V(T,).
o N:={a € O(Z) | ais primitive, N(a) = p¥ and o > 0}
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Algebraic interpretation in terms of Cayley graphs

7q 1 O(Z) — O(Fq) p=1mod8 and (B) =1
Definition: Let
A:={aeQZ), st.a=(---(mym,)...)m, with m, | # 77 }.
o N«— V(T,).
o N:={a € O(Z) | ais primitive, N(a) = p¥ and o > 0}
° 74(A) C O(F,)"
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Algebraic interpretation in terms of Cayley graphs

T4 : O(Z) — O(Fy) p=1mod8 and (3) =-1
Definition: Let
A= {Oé S @(Z), s.t. a= ( .- (7T,'17T,'2) .. .)7T,'S,With Ti,_, #* 7'('_,[}

o N«— V(T,).
o A:i={a € O(Z) | ais primitive, N(a) = p¥ and ag > 0}
° Tq(N) C O(Fq)*.

@ Defining Z as the center of O(FF,)*,

pg: N — O(Fq)*/Z is onto.
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Algebraic interpretation in terms of Cayley graphs

T4 : O(Z) — O(Fy) p=1mod8 and (3) =-1
Definition: Let
A= {Oé S @(Z), s.t. a= ( .- (7T,'17T,'2) .. .)7T,'S,With Ti,_, #* 7'('_,[}

o N«— V(T,).
o A:i={a € O(Z) | ais primitive, N(a) = p¥ and ag > 0}
° Tq(N) C O(Fq)*.

@ Defining Z as the center of O(FF,)*,

pg: N — O(Fq)*/Z is onto.

Let #(p,q) = pg(F(p)), Zpq=Cay(OFq)*/Z2, F(p,q))
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Some Numerical Experiments

@ Implementation in Magma. < More than 2000 lines of codes.

@ Computation of A1 the 2nd largest eigenvalue: Power
Method.

@ Computation of the girth: classical breadth-first search in the
“mother” p3 + 1-regular tree,
until a “collision” is found when reducing mod gq.
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Results: 2nd eigenvalue for various degree 38 LPS graphs

DEGREE 37 RAMANUJAN GRAPHS (QUAT)

——Ramanujan bound 12.165 ——X37,100 Y37,71 —Y37,41
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Results: 2nd eigenvalue for various degree 48 LPS graphs

2ND EIGENVALUE

——Ramanujan bond=13.711 ——Y48,53 ——Y48,113 Y48,83
14
135
13
w 125
s
=
Z
s
1
105
10
0 10 20 30 20 50 60

NBR OF ITERATIONS
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Results: 2nd eigenvalue for smallest degree 28 octo. graphs

DEGREE 28 (OCT, P=3)

——Ramanujanbound 10392 ——X3,5 —X3,7 ¥3,11 —Y3,13
125
12
15
1
105
10
a5
9
85
8
o 10 20 30 40 50 60 70 B0 g0 100

NBR OF [TERATIONS

31,373,160 vertices Y313 required 24Go and 5h40 (one iteration
450s)
Failed for 410,333,760 vertices graph X3 17 (after 30Go and 59hurs)
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Results: 2nd eigenvalue for smallest degree 126 octo.

graphs

DEGREE 126 (OCT,P=5)

—Ramanujan bound 22.36  —X5,7 ¥5,11
a1

36

31

26

+ 7

16
1] 5 10 15 20 25 30 35 40 45

Y511 has 9,742,920 vertices. Required 11Go and 10hours (500s by
iterations).
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Implementation in MAGMA

Representation of Moufang loops O(F4)*/Z (and of H(F4)*/2)

@ Construction of the doubling Cayley Dickson porocess
(R—-C—H— O — ---) to generate automatically the
multiplication tables on free modules of rank 2,48, . ...
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Implementation in MAGMA

Representation of Moufang loops O(F4)*/Z (and of H(F4)*/2)

@ Construction of the doubling Cayley Dickson porocess
(R—-C—H— O — ---) to generate automatically the
multiplication tables on free modules of rank 2,48, . ...

@ Coefficients ring can be changed from Z to IF,, using
ChangeRing.
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Implementation in MAGMA

Representation of Moufang loops O(F4)*/Z (and of H(F4)*/2)

@ Construction of the doubling Cayley Dickson porocess
(R—-C—H— O — ---) to generate automatically the
multiplication tables on free modules of rank 2,48, . ...

@ Coefficients ring can be changed from Z to IF,, using
ChangeRing.

@ Use a “"normal form” to represent quater/octo-nions in
H(Fg)*/Z or O(Fq)*/2:

Normal form —1
a=(ag,...,a7) ————— ag,A,

where asfe is the first coordinate # 0.
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Power method

Aim: Approximate largest eigenvalues of (symmetric) matrices.

| Aol

If X0 ¢ E)\m Iim HAe 1, H

= [Xol,
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@ Now we know that \g = d and E), = {((1,...,1)").
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Aim: Approximate largest eigenvalues of (symmetric) matrices.

| Aol

If X0 ¢ E)\m Iim HAe 1, H

= [Xol,

@ Now we know that \g = d and E), = {((1,...,1)").
@ Choose randomly xg € E)\l0 (easy). With high probability
xo ¢ Ey, also, so
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Power method

Aim: Approximate largest eigenvalues of (symmetric) matrices.

. Alx
Ifx0 ¢ Erg,  Jim ||l\f 10”""' = ol,

@ Now we know that \g = d and E), = {((1,...,1)").
@ Choose randomly xg € E)\l0 (easy). With high probability

xo ¢ Ey, also, so

o It suffices to compute successively Axg, A%xg,--- ,Alxp, .. ..
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Power method

Aim: Approximate largest eigenvalues of (symmetric) matrices.

| Aol

If X0 ¢ E)\m Iim HAe 1, H

= [Xol,

@ Now we know that \g = d and E), = {((1,...,1)").
@ Choose randomly xg € E)\l0 (easy). With high probability
xo ¢ Ey, also, so

Alx
10 TA Tl
o It suffices to compute successively Axg, A%xg,--- ,Alxp, .. ..

@ The product Ay can be done in case of Cayley graphs:
O(nd) = O(n) (if all elements are pre-computed and stored in
an array).
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Perspective

@ Uneveness of the girth: separate .pdf file
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@ MAGMA has some functionalities to compute automorphisms.
Unlikley to work on large graphs, but is it possible to use
these to guess at least some automorphism on smallest
octonion graphs 7
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Perspective

@ Uneveness of the girth: separate .pdf file

@ MAGMA has some functionalities to compute automorphisms.
Unlikley to work on large graphs, but is it possible to use
these to guess at least some automorphism on smallest
octonion graphs 7

o THANK YOU FOR YOUR ATTENTION !
COMMENTS?

file:///C:/Program_Files_(x86)/Magma/htmlhelp /text1804.htm
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