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Abstract

Let I ⊂ k[x1, . . . , xn] be a polynomial ideal of dimension zero. Assume that each of its primary
components has a minimal lexicographic Gröbner basis (lexGb) in a purely triangular form, that
is is a triangular set. This article presents:

1) An algorithm that finds the leading monomials of minimal lexGbs of I (or, it equivalently
can find the standard monomials).

2) a Chinese Remainder-like reconstruction algorithm that computes a minimal but not reduced
in general, lexGb of I from that of its primary components (no linear algebra, nor Gröbner basis
computation are used).

3) a factorization pattern of the polynomials in minimal lexGb’s of I, to as “Generalized Lazard’s
theorem”.

4) a proof that the conservation property of the Gröbner basis (sometimes coined “stability”)
hold under specialization maps in this context (sometimes referred to as “Generalized Gianni’s
theorem”)

These results generalize and improve in several directions previous works, most of which are
under the assumption that primary ideals are ideals of points. The complexity analysis of 2) is
new even in that case. The proposed framework not only allows to treat all four aspects above
uniformly with a complexity analysis, but is simple enough to implement easily. One is proposed
in Maple.

Keywords: Groebner basis, Lexicographic order, Primary ideals, Idempotent, Triangular set,
Henselian ring

1. Introduction

Notations and preliminaries. All along this article I denotes an ideal of dimension zero of a
polynomial ring R := k[x1, . . . , xn] over a field k of characteristic 0 or larger than the degree
D := D(I) := dimk R/I. All Gröbner bases, normal form computations are with respect to
the lexicographic monomial order denoted ≺lex where x1 ≺lex x2 ≺ · · · ≺lex xn. The nota-
tion “mod 〈g1, . . . , gs〉” is the same as “normal form” in the sense of Gröbner basis, that is
nf( . , [g1, . . . , gs]). The semi-order on the monomials induced by the divisibility relation is de-
noted ≤mon. By an abuse of notation it will also refer to the semi-order on the n-uplets seen as
exponents of monomials.
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Given a subset F of a Cartesian product En, the notation F≤` ⊂ E` refers to the projection on
the first ` coordinates of elements in F . Then a subset A ⊂ F is said to extend an element a ∈ F≤`
if A≤` = {a} (if A = {a′} is a single element, we may simply write a′ extends a). For example, with
E = Z≥0, F = Z2

≥0, A = {(1, 2), (1, 3), (1, 0)}, we remark that A extends a = (1) ∈ F≤1 = Z≥0.
Let a′ = (1, 2) ∈ A and A ⊃ A′ = {(1, 2)} = {a′}; then A′ or simply a′ extends a.

It will be convenient to adopt a similar notation for polynomials, although the meaning is not
exactly the same as for sets: as above let R = k[x1, . . . , xn] and F ⊂ R be a subset of polynomials.
Denote F≤` := F ∩ k[x1, . . . , x`] ⊂ F . In particular R≤` := k[x1, . . . , x`].

A family of triangular sets (see definition Eq (1) below)A = {t(i)}, with t(i) = (t
(i)
1 (x1), . . . , t

(i)
n (x1, . . . , xn))

pairwise distinct is said to extend a triangular set σ = (s1(x1), . . . , s`(x1, . . . , x`)) ∈ R≤` =

k[x1, . . . , x`], if for all i, t
(i)
≤` = (t

(i)
1 (x1), . . . , t

(i)
` (x1, . . . , x`)) = σ.

Given an algebraic extension K of k, the set of associated primes of I ⊂ K[x1, . . . , xn] is
written AssK(I). Since I is zero dimensional, Assk̄(I) consists of ideals of points, which are:
〈x1−ρ1, . . . , xn−ρn〉 := mρ for a point ρ := (ρ1, . . . , ρn) ∈ k̄n. This set of points is written V (I); it
is the set of common zeros in k̄n of the polynomials in I. The number of points in V (I) is written
D. In general D ≤ d(I) with equality if and only if I is radical (degenerate situations which may
occur in non-separable extensions in characteristic > 0 do not hold here since we have assumed
that char(k) > d(I)).

The primary decomposition (unique) over the base field k is written I =
∏t
i=1 qi, where the

associated prime to qi is denoted mi. This work assumes that the ideal I verifies:

(H) each primary ideal qi possesses a lexGb that is a triangular set t(i), as defined in (1) below.

The terminology of triangular set comes from the Wu-Ritt (Lazard, Kalkbrener, Wang, Moreno-
Maza etc.) method to decompose polynomial systems. In this article this refers to a lexGb that is
also a regular sequence, with as many polynomials of variables; hence is of dimension zero, and has
the following shape:

t


tn(x1, x2, . . . , xn−1, xn) = xdn

n + · · ·
tn−1(x1, . . . , xn−1) = x

dn−1

n−1 + · · ·
. . .

...

t1(x1) = xd1
1 + · · ·

(1)

Note that general primary ideals have a lexGb that is not necessarily triangular (see Prop. 1).

Contributions. Under the assumption (H), this article presents the following four related contri-
butions:

Contribution 1 ( Corollary 3). The input data of the lexGb’s of the primary ideals are arranged
in a tree T with one polynomial at each node.

To each node of this tree, except the leaves, Algorithm 1 (Section 2) assigns an exponent tree
constructed by using only comparison tests of nonnegative integers smaller than the degree of the
ideal < D(I).

The exponent trees at nodes at depth ` in the primdec tree T encodes the monomials at the
`+ 1-border monomials of I (see Definition 3), which contains the minimal exponents of the lexGb
in k[x1, . . . , x`+1] \ k[x1, . . . , x`].

Contribution 2 (4). Given the input data arranged into trees and exponent trees, and a minimal
exponent (σ1, . . . , σn) as Contribution 1) allows to find, Algorithm 4 computes an element of G (I)
of leading monomial xσ11 · · ·xσnn .

2



From the recursive nature of the algorithms, it is easy to unveil the following structure theorem,
sometimes referred to as the “generalized” Lazard’s theorem in the literature.

Contribution 3 (Theorem 2). If g ∈ G not in G≤n−1,

lm(g) = xi11 · · ·x
in
n ⇒ g ≡ χ1 · · ·χn mod 〈G≤n−1〉, (2)

for some polynomials χ1, . . . , χn verifying χj ∈ k[x1, . . . , xj ] and lm(χj) = x
ij
j .

The fourth contribution below is a generalization of Gianni-Kalkbrener’s specialization theorem.
To state this result, we first restate [1, Theorem 3.1] below. Let G be a Gröbner basis (not necessar-
ily a lexGb) of I, for an elimination order on the variables x1, . . . , x` � x`+1, . . . , xn, write lc`(f) ∈
k[x1, . . . , x`] the leading coefficient of f seen as a polynomial in k[x1, . . . , x`][x`+1, . . . , xn]. A spe-
cialization map φa at a point a ∈ k̄`, splits G into two disjoint sets: G0

a := {g ∈ G | φa(lc`(g)) = 0},
and Ga := G \G0

a. Then, lm(φa(I)) = φa(lm`(I)) holds if and only if, for all g ∈ G:

nf(φa(g), φa(Ga \ {g}) ) = 0⇔ φa(lc`(g)) = 0. (3)

Contribution 4 (Corollary 2). The specialization property (3) holds for lexGb of ideals I veri-
fying Assumption (H).

1.1. Previous work

Remark about Assumption (H). Thus Assumption (H)does not fully cover the setting of [2]: the
〈x1 − α,x2 − α2〉-primary ideal 〈(x1 − α)2, (x1 − α1)(x2 − α2), (x2 − α2)2〉 does not verify Assump-
tion (H). However 〈x1−α,x2−α2〉-primary ideals such as 〈(x1−α1)2, (x2−α2)2 + 2(x2−α2)(x1−
α1) + 3(x1 − α1)〉 which falls into Assumption (H) are not covered in [2]. For primary triangular
ideals more general than monomial ones, or translations of thereof, Contribution 1 is new.

These are given by the intersection of cancellation identities of higher differential operators of
polynomials evaluated at a point. Like the work [2] it includes cases not covered by Assumption (H):
the 〈x1, x2〉-primary ideal: (g1(x1) = x2

1, g2,1(x1, x2) = x1x2, g2,2(x1, x2) = x2
2, is associated the two

linear operators: ∂ .
∂x1
|0,0 and ∂ .

∂x2
|0,0.

Example 1. Consider the triangular set: t1(x) := x2, t2(x, y) := y2 +y(2x)−x. Let I := 〈t1, t2〉 ⊂
Q[x, y] for x < y, be the primary ideal of radical the maximal ideal 〈x, y〉.

Then ∂t1
∂x (0, 0) = 0 while ∂t2

∂x (0, 0) = 2y− 1|0,0 = −1. This contradicts the fact that polynomials
in I can be determined by Hermite conditions.

About contribution 1). Given an input polynomial system and a monomial order, computing the
minimal exponents of a minimal Gröbner basis is believed in general to be as hard as computing
the Gröbner basis itself. In general, there is no other way than computing a Gröbner basis. Now
given the Gröbner basis of the primary components of an ideal I, the problem can be easier. For
the lexicographic order, Contribution 1) affirms that computing these minimal exponents require
no arithmetic operations, at least when I is zero-dimensional and verifies Assumption (H).

An early instance of this fact (see Introduction of [3] for more historical details) is due to
Cerlienco-Mureddu [2]. The main result is a combinatorial algorithm, based on Ferrer diagrams,
which outputs the standard monomials from the data of points. Minimal exponents can be thus
deduced from the standard monomials. Besides the case of ideals of points [2, § 3] mentions the
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case of shifted monomial ideals; it sketches the possibility set up a similar combinatorial algorithm,
but left unproved and accompanied by the comment “it is possible (but by no mean trivial) to prove
that. . . is a linear basis of K[X]/I(P ) which is minimal” (p.82, end of § 3 in [4]).

The two works of Marinari-Mora [3, 5] are somewhat affiliated to the Cerlienco-Mureddu ap-
proach, so are mentioned here, even though their core claimed results are more related to Contri-
butions 3) & 4). For shifted monomial ideals (called “CeMu-ideal” therein) the unproved in [2]
result is taken for granted. Moreover it is claimed in [5, Section 5] an algorithm that generalizes
Cerlienco-Mureddu’s one to any zero-dimensional ideals. But this Section 5 is just a sketch, with-
out any proof. Most new claimed results in [5, Sections 6-7] build up crucially on these purpotted
generalizations.

The lex game [6] treats of ideals of points only, but provides a fresh viewpoint to the problem.
While necessitating no arithmetic operations, its complexity analysis in terms of number of equality
tests have been analyzed (see Theorem 14 yielding O(Dnr) where r is the maximal degree of the
“point trie”, similar to our primdec tree defined in Section 2,) and further improved by in [7,
Thm. 4.2]. This is better than a straightforward implementation of Cerlienco-Mureddu’s algorithm,
running in O(D2n2) (see [6, p.62]). Our complexity claim in Contribution 1) is a direct and simple
generalization of the results in [6, 7] from “point trie” to the primdec tree.

The article of Lederer [8] does not focus on the problem of finding standard monomials, but
implicitly an algorithm can be deduced easily. The approach is based on an operation on standard
monomials called four-in-a-row in reference to the the famous board game where players must align
four pieces of the same color.

Our proposal encompasses this four-in-a-row without reference to an operation on standard
monomials, but translates the problem to a tree data structure amenable to implementation and
complexity analysis. This point of view is inspired by the lex trie introduced in [6] (see also [7,
Ex. 5.12]) but with some subtleties; our aim is indeed to compute directly the minimal exponents,
and not the standard monomials. It happens that what the exponent trees compute are the `-
border monomials (see Def. 3) for ` = 1, . . . , n. This sum is always smaller than the number of
standard monomials. In the process of computing the exponent trees, it also naturally gathers data
necessary to carry out the computation of the lexGb itself in Algorithm 4. Thus, this variation of
the lex trie is significant.

As for implementations, the lex game algorithm of [6] is implemented in Singular, and we are
not aware of any implementation related to the works [8, 2, 3, 5].

The recent paper [9] reports on a generalization of the four-in-a-row operation to points with
a “multiplicity structure” (equivalent to a shifted monomial ideals). The article has several draw-
backs. First there is the misconception that any primary ideal is as defined in the paper, hence is
monomial. In Lemma 1 therein, the claim is indeed made for any ideal I, but the article treats only
shifted monomial ideals. Hence the proof is not correct. Similarly, Section 7 uses this Lemma 1
to decompose along the smallest variable a polynomial in the lexGb. Even under this strong as-
sumption, it must furthermore be restricted to shifted monomial ideals only, and not to any ideal
as written therein.

Another feature that appears to be a drawback is that it attempts to generalize to the geometric
four-in-a-row operation of Lederer on standard monomials. The presentation is sometimes very
hard to follow, and the algorihtms proposed ressemble more sketches than ready to implement
routines. The managmenent of data appears indeed crucial both for the clarity of the proofs
and the presentaion of the algorithms. The geometric viewpoint of the four-in-a-row operation is
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probably not the most suitable, although it is visually appealing. Besides, the authors themselves
acknowledge of this (page 277, third paragraph):

. . . and a full complexity analysis would be infeasible. Our method may not be partic-
ularly efficient. . . .

About contribution 2). This can largely be viewed as interpolation, or the recombination part
of the isomorphism in the Chinese Remainder theorem. The earliest, let us say “post-Gröbner”,
instance of reconstructing a Gröbner basis from points dates back to the famous Buchberger-Möller
algorithm (often written BM-algorithm). For related earlier works, consult e.g. the introduction
of Marinari-Mora’s [3]. This family of BM-algorithms is far more general in that it deals with
any monomial order, not only the lexicographic one. It computes a “normal form” matrix for the
target monomial order, and is very comparable to the famous FGLM matrix. However, it does
not allow to find the minimal exponents without arithmetic operations as in this work, nor does
it unveil the structure (Contributions 1), 2) and 3) here). The generalization from ideals of points
to primary ideals was undertaken in [10]. Algorirhtm GBM therein has some limitations, but since
under our setting the inputs are Gröbner bases, they are endowed with the required “normal form
vector maps”. The algebraic complexity is therefore O(d(I)2(`G + d(I)) + d(I)2n2), where `G is
the number of elements in a minimal Gröbner basis. Remark that the authors of [10] also present
a modular version of Agloriothm GBM, wich they also analysze in term of bit-complexity. Main
Algorithm 4 can also be made modular, but we will restrict to the algebraic complexity for now;
the analysis is already enough complicated.

In a slightly different direction, Marinari-Mora [3] have exploited the earlier combinatorial
approach on monomials of Cerlienco-Mureddu [2], combined with BM-like linear algebra, to deduce
an interpolation algorithm; the main purpose of this work is to compute the factorization pattern
of Contribution 3) though. In term of method and complexity, it is thus affiliated with the BM-
algorithm. (again the generelization to shifted monomial ideals in [5] relies on the largely unproved
Cerlienco-Mureddu [2, § 3] correspondence in this case).

The present work is not affiliated with the BM-algorithms but to [11, 8, 3, 6, 5, 9, 4, 2], for
which we provide hereunder a comparison. The lex game [6] implicitly, and especially Lederer [8],
Gao-Stroomer-Rodriguez [11] provides explicit algorithms for constructing the Gröbner basis in the
case of ideal of points. None provides a complexity analysis, and only [11] has been implemented.
Only the construction of Lederer [8] computes the reduced lexGb without additional normal form
computations. It does complicate the description of the algorithm though, which indeed has not
been implemented, and is not amenable to complexity analysis; yet alone the attempt of general-
ization [9], as have the pointed out drawbacks suggested.

We have concluded that the above approach of Cerlienco-Mureddu pursued by Marinari-Mora,
and the four-in-a-row approach of Lederer, seem less prone to generalizations/improvements than
the lex game [6]. The primdec tree introduced in [12] and used here coincide with the “point trie”
introduced in [6, § 3] in case of ideal of points. The procedure that fills these trees, Algorithm 1,
is reminiscent of thow the “lex tries” of the lex game are filled [7, Ex. 5.12].

About contribution 3). Lazard’s structural theorem [13] is certainly the starting point of the study
of structure of lexGb’s. It is constrained to polynomials in two variables, but without assumption
on the ideal I. A generalization is proposed by Marinari-Mora [3, Theorem 11.4 (M)] to zero-
dimensional radical ideals. Assuming the unproved result of Cerlienco-Mureddu concerning ideals
given by Hermite conditions, they show in [5, bottom of p.2] that the factorization property hold
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also in this case. We recall that in both cases a necessary interpolation part is not fully presented,
but shown to exist. In the present work, the factorization patterns is a simple by-product of the
recursive nature of the recombination Algorithm 4.

About contribution 4). The first “post-Gröbner” instance of a specialization result like Contribu-
tion 4) is due to the famous Gianni’s paper [14], also known as Gianni-Kalkbrener theorem but
Gianni’s paper is more complete. It says that the theorem that follows Eq. (3) holds whenever I
is zero-dimensional and all variables but the largest one are specialized, that is when ` = n − 1.
Becker [15] proves that the specialization property for any ` under the additional assumption that
I must be radical. Kalkbrener [1] has provided necessary and sufficient conditions for the Gröbner
property to be preserved by specialization.

In the non-radical case, in [5] is reported that “at least in the radical ideal case, this combina-
torial description subsumes Gianni-Kalkbrener Theorem as a corollary and gives a combinatorial
justification of their algorithm.” This refers explicitly to conservation of the Gröbner property
under specialization. But from the factorization pattern written therein, namely,

fi =
∏
m

∏
δ

γmδi mod 〈f1, . . . , fi−1〉

it appears not obvious, and no proof is given. The one given here is indeed a corollary of the
factorization pattern (Corollary 2) but it relies crucially on the more precise factorization

fi =
∏
m

∏
δ

γmδi mod I≤n−1.

1.2. Organization of the paper

Section 2 sets the input data: the lexGb’s of the primary ideals qi (which are triangular sets
according to (H)) into a labeled tree, coined “prim-dec tree” in [12] generalizing the “poin tree”
of [6]. Later algorithms will deal directly with this tree. To each node N of this tree, not a leaf,
is associated in Section 3 another tree EI(N), called “exponent tree”, which encodes the leading
exponents of some polynomials in I. Two other related trees, the “discard” and “interpolate” trees
denoted RI(N) and NI(N) are also introduced. They have the same shape and carry information
used in the “recombination” (generalizing interpolation) algorithm 4 “computePoly” in Section 4.
These exponent trees are trivial (made of one branch) in the case of ideal of points, but complications
occur otherwise that we have convenient to carefully record in trees. Section 4 presents the algorithm
“computePoly” that constructs some polynomials of leading exponent prescribed by the exponent
trees E(N), and are shown to belong to I. Section 5 proves that they form indeed polynomials in
the lexGb. The last section 6 is made of comments: what happens when Assumption (H) is lifted
? Can we compute the reduced Gröbner basis without a posteriori normal forms ? and so on.

2. The primary decomposition tree

We recall the construction of the prim-dec tree explicitly introduced in [6] (but already implicitly
used in [16] to define the equiprojectable decomposition) and generalized in [12] to primary ideals
which are triangular sets. This requires only equality testing on coefficients of the input triangular
sets t(α) and comparisons in Z≥0. Its construction involves no arithmetic operations hence is cheap
compared to the computation of the polynomials.
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Then in § 3 to each parent of leaves (called preleaf thereafter) N of this labeled tree, an algorithm
that assigns an “exponent tree” E(N), in which paths from the root to the leaves encodes n-uplet
of non-negative integers. These will happen to be leading exponents of some polynomials in I (see
section 4), who form a Gröbner basis of I (see section 5).

Tree’s terminology. We recall some common definitions and wordings in trees. Everything is stan-
dard, intuitive and presents no difficulty.

(root) The root is a special determined node.

(path) A path of length `− 1 is a sequence of successively connected vertices (v1, . . . , v`) such that
vi+1 6= vi−1 (a.k.a walk without backtracking).

(depth) A node N is said to be at depth ` iff there is a path of length ` connecting root to N . The
path is then unique (because there is no cycle in a tree by definition). Write it (M0,M1, . . . ,M`−1,M`),
with M` = N and M0 = root. Note that the depth of Mi is i, in particular the depth of root is
zero.

(parent) If ` > 0, the parent of N is the unique node M`−1. The root has no parent. We write
P1(N) = M`−1.

(ancestor) More generally if k ≤ `, the k-th ancestor of N is the node M`−k. It is written Pk(N) =
M`−k, hence the 1-st ancestor is the parent. By convention the 0-th ancestor of N is N itself
denoted P0(N) = N . A node M is an ancestor of N iff there is a k ≤ ` such that Mk = M . Note
that the root is an ancestor of all nodes, including itself.

(descendant) A node N is a descendant of a node M if M is an ancestor of N .

(child, leaf) If N has other neighbors than its parent, then these nodes are called the children of
N , denoted Child(N). Else N has no child and is a leaf.

(preleaf) In this work parents of leaves will play an important role, they will be called preleaves.
Moreover, all leaves will be at the same depth, which is the depth of the tree.
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(sibling) Given a node N not the root, sibling(N) denotes the set Child(P1(N)) \ {N}.

(branches cut) Given a tree T of depth n, and 0 ≤ ` ≤ n, T≤` is the tree where all nodes at depth
> ` and edges connecting them are deleted. In particular, T≤0 = [root], T≤n = T .

(rooted subtree) Given a node N of a T , the subtree rooted at N denotes the tree TN whose root is
N , and descendants are the descendants of N in T . If N is at depth ` in T and M is a descendant
of N at depth k ≥ ` in T , then M is at depth `− k in TN . In particular the (depth of TN ) is equal
to (the depth of T ) −`.

2.1. Gröbner basis of a primary ideal

An ideal of dimension zero I admits a unique minimal primary decomposition, I = q1 . . . qt.
The radical decomposition (also unique) is then

√
I = m1 · · ·mt where mi =

√
qi. The lemma below

gathers basic well-known facts about lexGb.

Lemma 1. Let Ass(I) := {mi, i = 1, . . . , t}. The lexGb of mi is a triangular set (p
(i)
1 , . . . , p

(i)
n ),

where p
(i)
j+1 is an irreducible polynomial over the field Kj := k[x1, . . . , xj ]/〈p(i)

1 , . . . , p
(i)
j 〉.

Ass(I≤`) = {m(i)
≤`, i ∈ subset of {1, . . . , t}}, and m

(i)
≤` = (p

(i)
1 , . . . , p

(i)
` ). The m

(i)
≤`-primary

component of I≤` is the triangular set t
(i)
≤` = (t

(i)
1 , . . . , t

(i)
` ).

Proof. That maximal ideals m(i) have a basis made of a triangular set is classical see e.g. [17,
Section 5]. Other properties are direct consequences of the elimination property hold by the lexi-
cographical order.

The result below is derived from [17, Prop. 5.2]. Comparing to the statement therein (recalled
in Remark 1 (b) hereudner), it emphasizes the structure with respect to the irreducible polynomials
pi of Lemma 1, and helps understand why the specialization property may fail for non-triangular
primary ideals (see the example in § 6).

Proposition 1 (2.2 of [12]). The reduced lexGb of a primary ideal q ⊂ k[x1, . . . , xn] of associ-
ated prime p = 〈p1, . . . , pn〉 of dimension zero can be written as follows:

g1,1(x1) = pe11

g2,s2(x1, x2) = pe22 +

e1−1∑
i1=0

e2−1∑
i2=0

c[i1, i2]pi11 p
i2
2

...
. . .

gn,sn(x1, . . . , xn) = penn +

e1−1∑
i1=0

· · ·
en−1−1∑
in−1=0

en−1∑
in=0

c[i1, . . . , in]

n∏
j=1

p
ij
j
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where: (i) c[i1, . . . , in] ∈ k̄
(ii) c[0, . . . , 0, i`] = 0 for all i` < e` and for ` = 2, . . . , n.

As for h = gi,j with 1 ≤ j < sj, w.l.o.g. assuming that h /∈ k̄[x1, . . . , xn−1]:

h = p`11 · · · p`nn +

`1−1∑
i1=0

· · ·
`n−1−1∑
in−1=0

`n−1∑
in=0

c[i1, . . . , in]

n∏
j=1

p
ij
j

where (ii) also holds for h, and moreover
(iii) `u < eu for 1 ≤ u ≤ n and at least one `v 6= 0 for v < n.

Remark 1. (a) When pi = xi − αi (tis is always the case when k is algebraically closed), t is
related to multivariate Taylor expansion, viz:

c[i1, . . . , in] = 1
i1!i2!···in−1!in!

∂i1+···+ingn,sn
∂x
i1
1 ···∂x

in
n

(α1, . . . , αn).

(b) The characterizations (i)-(iii) are equivalent to: h(α1, . . . , αn−1, xn) = 0 and gi,si(α1, . . . , αi−1, xi) =
(xi − αi)ei for all points (α1, . . . , αn) ∈ k̄n solutions of the polynomial system (p1, . . . , pn).

Assumption (H) asserts that the lexGb of all qi is triangular that is there is no polynomial h
as above, only polynomials gi,si for i = 1, . . . , n, denoted gi,si = ti. The following Lemma is critical
for the definition of the prim-dec tree in the next paragraph 2.2.

Lemma 2. Given two triangular sets t(i) and t(j) generating primary components of I, their level

is the unique integer 0 ≤ ` < n such that t
(i)
k = t

(j)
k for k = 1, . . . , ` − 1 and t

(i)
` 6= t

(j)
` . Then

〈t(i)` 〉+ 〈t(j)` 〉 = 〈1〉 modulo 〈t(i)
≤`−1〉.

Proof. This is a standard consequence of Krull’s theorem: the ideal p := q
(i)
≤`+q

(j)
≤` is not contained

is any maximal ideal of k[x1, . . . , x`]/I hence is equal to I itself.

2.2. The primary decomposition prim-dec tree

Write {t(i), i = 1, . . . , t} the triangular sets generating the primary ideals of I, thereby
Ass(I) := {

√
〈t(i)〉} is the set of associated primes to I over k. We organize the data into a

labeled tree T (I), which makes really sense only when several lexGb’s of input primary triangular
sets have a level larger than zero. As the results of this section shows a general lexGb has many more
polynomials than the number of variables only when this is the case (under the Assumption (H)).

(1) The root of T (I) is denoted “root” and is unlabeled.

(2) depth 1 children are the distinct polynomials {t(i)1 , i ∈ {1, . . . , t}}. We index this set by children

nodes of root and write it {t(N)
1 , N ∈ Child(root)}.

(3) To a depth 1 node N , the label δ1(N) is the degree in x1 of t
(N)
1 .

(4) (Recursion) Assume the tree is defined up to depth ` < n and let N be a node at depth `,

with its labels t
(N)
` and δ`(N) = degx`(t

(N)
` ).

Let N0 = root, N` = N and (N0, N1, . . . , N`) the unique path from the root to N .

The children of N are the distinct (` + 1)-th polynomial t
(i)
`+1 of a triangular set t(i) in the

family of all triangular sets generating the primary ideals of I, for which (t
(i)
1 , . . . , t

(i)
` ) =

(t
(N1)
1 , . . . , t

(N`)
` ).

This set of polynomial is now indexed by Child(N) and for P ∈ Child(N), we denote unam-

biguously the polynomial at P by t
(P )
`+1.
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(5) Consider a child P ∈ Child(N). The label δ`+1(P ) is degx`+1
(t

(P )
`+1).

The correctness of the construction is justified by Lemma 2. From now on we will refer to
triangular sets as elements organized in this tree, with the following notations.

Remark 2. (Notation update)

1
• (Abuse of notation) If A is the ancestor at depth ` of a node B at depth r > `, then we tolerate

the notation of the labels δ`(A) and t
(A)
` by δ`(B) and t

(B)
` instead, since the uniqueness of A

(being an ancestor) leaves no ambiguity.
2
• By extension the unique path B0, . . . , Br from the root B0 = root to B = B` is uniquely

determined by B. Hence B uniquely determines the polynomials at the nodes Bi in the path.

Thus B uniquely determines the triangular set (t
(B1)
1 , . . . , t

(B`−1)
`−1 ), which can be denoted t

(B)
≤`−1 =

(t
(B)
1 , . . . , t

(B)
`−1).

3
• There is a one-one correspondence between the leaves of the tree T (I) and the primary ideals

qi = 〈t(i)〉, i = 1, . . . , t. According to the remarks above, from now on we will denote the primary
decomposition of I as I =

∏
L∈Leaves(T (I))〈t(L)〉.

Example 2. Consider I ⊂ C[x1, x2, x3] having nine primary components whose associated primes
are ideals of points in C3, displayed on the figure below

The coordinates of points are in red, and a point is given by the paths from depth 1 nodes to depth
3 nodes: for example from left to right we read: (0, 0, 0) (0, 0,−1) (0, 1, 0) (0, 1, 1) etc. (1, 2, 0).

The shape of the tree depends only on the configuration of the points. On top of the coordinates
are added the degree labels δi( . ) at each node. The first triangular set is given below, associated
to the point p = (0, 0, 0) is (for example):

t
(p)
1 (x1) = x3

1 (δ1(G) = 3)

t
(p)
2 (x1, x2) = x2

2 + (2x2
1 − x1)x2 (δ2(A) = 2)

t
(p)
3 (x1, x2, x3) = x5

3 + x4
3(x2

2 − x1 + x1x2)− x3 (δ3 = 5)

Remark 3. With the notation 2 of § 2, and by definition of I≤` = I ∩ k[x1, . . . , x`], one has
T (I≤`) = T (I)≤`.

Algorithms and proofs are recursive on this tree and to handle these conveniently some properties
are useful:
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Proposition 1. Given a node R not a leaf of T (I) at depth `, write AR := k[x1, . . . , x`]/〈t
(R)
≤` 〉

and
IR := I ⊗ AR. The ring AR is Henselian and IR ⊂ AR is zero-dimensional. The prim-dec tree
T (IR) is identified with the subtree of T whose root is R (see 2 in § 2).

If R = root, that is ` = 0, then by convention AR = k, IR = I and T (IR) = T (I).

Proof. That AR is Henselian is well-known see e.g. [12, Theorem 3.1]. According to Lemma 2,
the irredundant primary decomposition of I≤` is∏

node R at depth ` in T (I)
〈t(R)
≤` 〉.

Then for all sibling node L or R (if there are) , 〈t(L)
≤` 〉 + 〈t(R)

≤` 〉 = 1 (see Lemma 2), therefore the

canonical map ψR : k[x1, . . . , xn]→ AR[x`+1, . . . , xn] sends 〈t(L)
≤` 〉 to AR, given that ψR(〈t(L)

≤` 〉) con-
tains a unit. It follows that the image of the primary decomposition of I by ψR in AR[x`+1, . . . , xn]
consists of the product of these primary ideals ψR(〈t(L)〉), where L is a leaf descendant of R.
Therefore ψR sends the subtree of T (I) rooted at R to T (IR) in a one-one fashion, preserving all
labels.

Finally a corollary ends this section.

Corollary 1. With the same notation as in Prop.1, one has

IR '
(∏

C∈Child(R) t
(C)
`+1

)
mod 〈t(R)

≤` 〉.

Proof. Results from: Leaves(T (IR)) = ∪C∈Child(R)Leaves(T (IC)), according to the previous
proposition.

3. The exponent trees and other trees

3.1. Some specifications

Exponent trees. To each node not a leaf N of T (I), say at depth ` < n in T (I), Algorithm 1
computes an “exponent tree1” denoted EI(N) or simply E(N) if the dependence to I or T (I) is
unambiguous from the context. It encodes the exponents of leading exponents, and has the following
specificities, clear from the definition but precising them here makes them more transparent.

(i) it has depth ` = depth(N) (with the convention that the depth of root(T (I)) is zero).

(ii) each node is labeled by a nonnegative integer.

(iii) unlike the tree T (I) the root of E(N) is labeled. It is equal to
∑

L∈Child(N) δ`+1(L) (L is a
node in T (I) at depth `+ 1).

(iv) all nodes of E(N) (except leaves) at a same depth 1 ≤ d ≤ ` have the same number of
children whose labels are consecutive nonnegative integers like [a, a+ 1, . . . , a+ δ`−d(N)− 1]
(see Specification 5 thereafter for the definition of a).

1and actually two other trees, one called the discard tree, and the other the interpolate tree, denoted respectively
N (I) and R(I)
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(v) in particular, if the triangular sets all have degree 1, whence δ`−d(N) = 1 (when I is radical
and the primary ideals are ideal of points) then the tree E(N) is made of one branch joining
the root to the leaf. It is then not necessary to define these trees in the case of ideal of points.
This is a novelty compared to [11, 8, 6].

Remark 4. The n-uplet of integers (ν`+1, . . . , ν`+d−1) is identified as the labels at each node in
the path from the root to ν. This sequence of integers hereby obtained is unique in the tree
E(N). Therefore, nodes of E(I) can be identified unambiguously with this sequence of nonnegative
integers. In particular, writing (ν`+1, . . . , ν`+d−1) ∈ E(N) carries the following information:

1) N is at depth ` ∈ T (I)
2) the node ν pointed by the path is at depth d in E(N).
3) the node pointed by (ν`+1, . . . , ν`+d−1−j) is at depth d− j in E(N) and is the j-th ancestor

of ν.

Each path from the root to a leaf in such an exponent tree encodes an `-uplet that will be shown in
the next section to be a leading exponent of a polynomial in I. Those polynomials corresponding
to minimal exponent for the semi-order ≤mon will be polynomials in a minimal lexGb of I, as
described in Section 5.

Algorithms 1, 2, 3 show how these exponent trees (as well as their cousins the discard and
interpolate trees) have their labels filled by nonnegative integers.

Two other trees or TRIE. While the exponent trees encode the leading exponents, it is necessary
to record more data if one wants to reconstruct the polynomials in the lexGb (Section 4). It is
realized by two other trees, similar to exponent trees, attached to each node except leaves of T (I).

They are denoted NI(N) and RI(N) called “discard” and “interpolate” trees respectively. The
definition of these trees is naturally related to how are defined the nodes of EI(N). In particular
the same algorithms that compute EI(N) also compute NI(N) and RI(N). We gather in this
paragraph some properties that are convenient to understand what these trees are:

1. For each N ∈ T (I) not a leaf, the three trees EI(N), NI(N) and RI(N) have the same tree
shape (depth, number of children etc.).

2. In particular the unique path from the root to a node in EI(N) also uniquely determines a
path in NI(N) and RI(N).

3. Let N be a node at depth ` in T (I).
To a path σ = (σ`+1, . . . , σ`+1−d) from the root to a node at depth d in the exponent tree
EI(N) the corresponding labels in NI(N) and in RI(N) are denoted by NI(N,σ) and by
RI(N,σ), respectively.

4. The label NI(N,σ) of a node of the discard tree NI(N) is a set of nodes of T (I) at depth
`− d; more precisely a subset of sibling nodes of C = Pd−1(N) ∈ T (I), the d− 1-th ancestor
of C.

5. the labels of the children (at depth d+ 1) of the path σ in EI(N) are [a, . . . , a+ δ`−d(N)− 1]
(See (iv)), where:

a =
∑

A∈NI(N,σ)

δ`−d(A).

(Note that according to the identification of Remark 4 (or inherent to a trie) the set of
nonnegative integers {(ν`+1, . . . , ν`+1−d, i) : i = 1, . . . , a + δ`−d(A) − 1} can be identified
with these children).
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6. RI(N,σ) is an array. Each S ∈ Child(Pd(N)), S /∈ N (N,σ), is a key for the array RI(N,σ)
for which the stored label is denoted RI(N,σ)[S]. For example if

RI(N,σ)[S] := [C, τ ],

then C is a descendant of S, say at depth `C ≤ ` = depth(N), as well as a path τ =
(τ`C+1, . . . , τ`−d+1) ∈ E(S). It also verifies:

(τ`C+1, . . . , τ`−d+1) ≤mon (σ`C+1, . . . , σ`−d+1).

7. Note that in particular

NI(N,σ) ∪ {keys of the array RI(N,σ)} = Child(Pd(N))

where the union is disjoint, and the r.h.s. is the set of children nodes of the d-th ancestor of
N in T (I).

3.2. Algorithm

The main routine is Algo. 1 below. It fills the nodes of the exponent, discard and interpolate
trees, hence do not return anything.

It is recursive on the children of the root of tree T (I). If C is such a child, then one recursive
call at Line 6 fills all exponent, discard, interpolate trees of the tree T (IC). Since this tree has
depth n−1 and by Proposition 2 it is identified with the subtree TR of T (I) rooted at C, it fills the
exponent, discard and interpolate trees E(N),N (N), R(N) entirely except the leaves, for any node
N descendant of C. The missing values at leaves are completed by the “lastExpAssign” routine at
Line 7.

This “lastExpAssign” routine is the hard part since these values depend on the whole tree.
This must be done “globally” on the tree T (I), and captures the “lex game” of [6], or the “four-
in-a-row” operations on standard monomials in [8]. We have put significant effort to put Algo. 2
into a framework that is easy to implement. For comparison, this is less the case for the “four-in-a-
row” operation of [8] where no implementation has been reported (and even more for the attempt of
generalization [9]). A simple implementation of the routine “isDivided” is proposed in Algorithm 3,

Correctness of Algo. 1 “assignExp”: If the ideal I is in k[x1] then the prim-dec tree T (I) is of
depth one and the algorithm ends at Line 3. In this case the only preleaf of T (I) is the root, whence
only one exponent, discard and interpolate tree (the ones attached to root(T (I))), with one path
limited to the root value of E(root) or N (root) or R(root). This value is computed at Lines 1-2-3.
It fulfills the specification (iii). The specifications (5)-(7) related to the discard and interpolate
trees are trivially satisfied (the other ones (1)-(4) are descriptive and need not be verified).

If the ideal I is in a polynomial ring of more than one variable, then the subtrees T (IC) rooted
at the child C of root are of depth n − 1 ≥ 1 and recursive calls are possible. Thus by induction
hypothesis, after Line 6 of Algo 1, each node (not leaves) of the tree T (I) have their exponent,
discard and interpolate trees filled completely except the labels at their leaves. Filling these missing
values at the leaves is the role of the routine lastExpAssign at Line 7.

Remark 5. One could blink eyes at seeing that each node in the discard and interpolate trees
NJ( . ) RJ( . ) have the same children. This is not optimal. However, this makes these trees have
the same shape as the exponent trees; their label can be easily accessed by paths of the exponent
tree (see specifications 1 3). Besides simplicity and convenience, this does not impact the efficiency.
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Algorithm 1: assignExp(T (I)) ( recursively)

Input: prim-dec tree T (I) of depth n
Output: None: assigns labels of exponent, discard and interpolate trees

E(N), N (N), R(N) at each node N (not leaves) of T (I)

1 root of E(root)←
∑

L∈Child(root(T (I))) δ1(L)

2 root of N (root)← Child(root)
3 root of R(root)← [] // empty array

4 if n > 1 then // depth of T is > 1
5 for all children C of root do

// T (IC) is the subtree of depth n− 1 of T rooted at C
6 assignExp(T (IC))

7 lastExpAssign(T )

Correctness of Algo. 2 “lastExpAssign”: Step 1, termination: The exponent tree E(root), discard
tree N (root) and interpolate treeR(root) attached to the root of T are already filled by Lines 1- 2- 3
of Algo. 1. This algorithm then processes one subtree rooted at a child C of root after another:
the “pop” operation at Line 3 removes one arbitrarily child C from the list of nodes “toProcess”
after one, until “toProcess” is empty (insuring termination).

Step 2, any node N not a leaf of T (I) is treated: Inside the While Loop (Line 2 till the end),
the algorithm fills the values of leaves of each exponent, discard and interpolate trees of all nodes
that are descendant of C (currently popped node from “toProcess′′). These descendant nodes are
precisely the nodes of the tree T (IC) (Proposition 1), as explained hereunder.

The two For loops of Lines 4-5 run through all the preleaves K (breadth-first depth-first) of
the trees T ((IC)≤`) (seen as embedded in T (I≤`+1) by Proposition 1), for ` = 1, . . . , n− 1. In this
way, all nodes (not leaves) of the subtree T (IC) (embedded in T (I)) are covered. The algorithm
is processing all the children C of root one after another (While Loop 2), therefore all nodes (not
leaves) of T (I) are covered by Algo. ”lastExpAssign”.

Step 3: Now that we have proved that all nodes (except unnecessary leaves) are treated
by the algorithm, it remains to check that all paths in the exponent, discard, interpolate trees
E(K), N (K), R(K), for a preleaf K of the tree T ((IC)≤`), have a value assigned to their leaves
in accordance with the Specifications (5)-(7) and (iv) This is addressed by the For Loop of Line 6.
The value ν1 is incremented according to a “division test” over all siblings of C, described in Defi-
nition 2 hereafter, and realized by Algo. 3 isDivided(C,ν, `, L, boolL,c, T (J)) (here L ∈ sibling(C),
boolL,C is defind hereunder).

The children of the node ν in E(K), N (K) and R(K) are defined at Lines 15, 17,18 respectively.
It is immediate to verify the specifications (iv), (1), and (5) above.

Remark 6. Let E(K) be an exponent tree as being filled in the for loop of Line 5. It follows from
Line 15 that two different paths from the root to two different leaves never have the all same labels.
By induction, one can assume that this is is the case for paths from the root to preleaves. Let
ν = (ν`+1, . . . , ν2) be such a path. Then the children have all different lables as one can check in
Line 15.
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Algorithm 2: lastExpAssign( T )

Input: prim-dec tree T (J) of depth m ≥ 2
Assumption: if K is any node at depth 1 ≤ ` < m, EJ(K), NJ(K), RJ(K) are filled
entirely except at the leaves.
(implying EJ(K)≤`−1, NJ(K)≤`−1,RJ(K)≤`−1 are filled entirely)
Output: None: assign the values at the leaves of the exponent, discard and interpolate

trees EJ(K), NJ(K), RJ(K), respectively; and for all nodes K of T at depth `,
for all ` < m

1 toProcess← Child(root)
2 while toProcess is not empty do
3 C ← pop(toProcess) // depth(C) = 1
4 for ` = 1, . . . ,m− 1 do // top-down in T (J)
5 for all preleaves K of T (J)≤`+1, descendant of C do // depth(K) = `. Left to

right

6 for all paths ν = (ν`+1, . . . , ν2) in EJ(K)≤`−1 do
7 ν1 ← 0; nodes← []; recursives← []
8 for L ∈ sibling(C) do // depth(L) = 1
9 bool , S , σ ← isDivided(C, ν, `, L, L ∈ toProcess ?, T (J) )

10 if bool then
11 recursives← recursives cat [(S,σ)]

// depth(K) ≤ depth(S) ≤ m− 1

12 else
13 ν1 ← ν1 + δ1(L)
14 nodes← nodes cat [L]

15 Assign the children of the path ν = (ν`+1, . . . , ν2) in EJ(K)≤`−1:
[ν1, ν1 + 1, . . . , ν1 + δ1(C)− 1]

16 for i = 0, . . . , δ1(C)− 1 do
17 NJ(K, (ν`+1, . . . , ν2, ν1 + i))← nodes

18 RJ(K, (ν`+1, . . . , ν2, ν1 + i))← recursives
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Definition 1. At Line 3 of Algo. 2, denote by toProcessC the content of the list toProcess after
C was popped from it.

In relation, boolA,C denotes the boolean A ∈ toProcessC ?.

Definition 2. Given a tree S of depth t ≥ 2, a preleaf K, let C = Pt−2(K) be the ancestor of
K being a child of root(S). Assume that C has a sibling L. Write toProcessC ⊂ sibling(C) ⊂
Child(root(S)).

For a path ν = (νt, . . . , ν2) found at the exponent tree E(K) define the predicate isDivided(C,ν, t−
1, L, boolL,C ,S) equal to: {

bool, a node S, τ if bool = True

bool, , if bool = False

where S is a node descendant of L, say at depth 1 ≤ d ≤ t − 1 in S (hence not a leaf) such that
there is a path τ = (τd+1, . . . , τ2) found at E(S)≤d+1 verifying one of the following two conditions:

(c.1) boolL,C == True and (0, . . . , 0, τd+1, . . . , τ2) ≤mon (νt, . . . , ν2), where d+1 = t is possible.
(c.2) boolL,C == False and (0, . . . , 0, τd+1, . . . , τ2) <mon (νt, . . . , ν2) (d + 1 = t is possible),

and there is no preleaf M descendant of L carrying an exponent ν ∈ E(M) such that ν = σ.

Lemma 3. In Algorithm 3 “isDivided”, denote toProcess , C , `, K and ν = (ν`+1, . . . , ν2) the
parameters at Line 1, Line 3, Line 4, Line 5 and Line 6. After the for loop of Line 6, we have

ν1 =
∑

L∈NI(K,ν)

δ1(L). (4)

Proof. According to the definition 2 of the predicate isDivided, and to Line 14 and 17 of Algo. 2,
L ∈ N (K,ν) iff bool == False. Now from Lines 10-13 this happens exactly when δ1(L) contributes
to ν1, whence Formula (4).

Correctness of Algo. 3 “isDivided”: We must prove that the output of the algorithm is in
accordance with Definition 2.

If it exits at Line 7 then bool == True and k = ` and boolL,C == False meaning that the
node S is a preleaf, and that L /∈ toProcessC . Thus Condition (c.1) is not satisfied. But we have
ν = σ; this precisely means that Condition (c.2) of Def 2 is not met neither.

If it ends at Line 9, then k < ` meaning that when k was equal to ` (see the for loop at Line 1) the
equality ν = σ if L /∈ toProcessC(⇔ boolL,C == False) was not detected. Therefore, Condition
(c.2) is met. If L ∈ toProcess, and bool == True as Line 8 insures, then this is Condition (c.1)
that is met.

Finally, if it exits at the return of Line 10, then no exponent smaller or equal to ν was found,
thus none of Conditions (c.1) and (c.2) is verified and it returns bool = False, as required.

Example 3. The figure below shows a prim-dec tree T (I) of depth 3, as in Example 2. The
nodes at depth 3 are not displayed, neither are the edges connecting them to their parents, the
preleaves. Below each preleaf A,B,C,D,E,F there is the exponent tree E(A), . . . , E(F ) as output by
Algo. 1. The numbers in red correspond to the number computed at Line 1 in the recursive call to
T (IA), . . . , T (IF ) respectively.

It is easy to isolate the minimal exponents for the semi-order ≤mon, they are:
(5, 0, 0) at depth 0 (monomial in x1 only), then (8, 0, 0), (7, 2, 0) at depth 1 (monomials in x1, x2).
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Algorithm 3: isDivided(C, (ν`+1, . . . , ν2), `, L, boolL,C , T )

Input: C ∈ Child(root(T )) (in Algo. 2 it is popped from toProcess at Line 3)
`-uplet (ν`+1, . . . , ν2).
L ∈ Child(root(T )), L 6= C.
boolL,C == L ∈ toProcessC? is the boolean defined in Def. 1
The prim-dec tree T (I)
Assumption: For all node K ′ descendant of L in T (J), the trees EJ(K ′),NJ(K ′),RJ(K ′)
are filled, except at their leaves if K ′ is not passed through the for Loop 5 of Algo. 2
Output: As specified by Definition 2

1 for k = `, . . . , 1 do // bottom-up from depth ` to 1
2 for all nodes S at depth k of T , descendant of L do
3 for all paths (σk+1, . . . , σ2) in EI≤k(S)≤k−1 do

4 bool← (σk+1, . . . , σ2) ≤mon (νk+1, . . . , ν2) ?
5 if k = ` and not boolL,C and bool then
6 if σ == ν then
7 return False , ,

8 if k < ` and bool then
9 return True , S , (σk+1, . . . , σ2)

10 return False , ,

At depth 3, from left to right: (0, 0, 10), (0, 2, 8), (2, 5, 1), (3, 0, 7), (3, 4, 5), (0, 5, 5), (0, 6, 3).
It will therefore be sufficient to compute only polynomials (next section) for these leading

exponents.
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Let us run the algorithm 1 “assignExp” on this example:
Line 1: E(root(T (I))) = [δ1(G) + δ1(H)] = [5]. This exponent tree has depth 0, therefore it is

already fully filled.
Line 5: Child(root(T (I))) = {G,H}. First C = G. Enter
assignExp(T (IG)) ==

Line 1: EIG(root(T (IG))) = EIG(G)≤0 (See. Prop. 2). root(E(G)) = [δ2(A) + δ2(B) + δ2(C)] =
[7].

Enter recursive call on Child(G) = {A,B,C}. First with A:
assignExp(T (IA)) ==

Line 1: EIA(root(T (IA))) = EIA(A) = E(A)0 (See. Prop. 2).
root(E(A)) = [

∑
a∈Child(A) δ3(a)] = [10]. Exit assignExp(T (IA)).

Next child of G is B.
assignExp(T (IB)) ==

Line 1: EIB (root(T (IB))) = EIB (B) = E(B)0 (See. Prop. 2).
root(E(B)) = [

∑
b∈Child(B) δ3(b)] = [8]. Exit assignExp(T (IB)).

Next child of G is C.
assignExp(T (IC)) ==

Line 1: EIC (root(T (IC))) = EIC (C) = E(C)0 (See. Prop. 2).
root(E(C)) = [

∑
c∈Child(C) δ3(c)] = [1]. Exit assignExp(T (IC)).

Back to assignExp(T (IG)) at Line 7 of Algo. 1.
Enter lastExpAssign(T (IG)) ==

Line 1: toProcess ← Child(root(T (IG))) = Child(G) = {A,B,C}. Enter While loop
(Line 2), and assume that the node A is popped first:

Line 4: ` = 1. Line 5: since T ((IG)≤2) = T (IG), preleaves are A,B,C. The only descendant
of A is A.

Enter Line 6 with node A. Note that E(IG)≤2(A) = EIG(A) = EI(A)≤1. At this stage only
EI(A)≤0 is filled with (10).

Line 8: sibling(A) = {B,C}. isDivided(A, 1, (10), B, toProcess, T (IG)) == True, B, (8),
similarly isDivided(A, 1, (10), C, toProcess, T (IG)) == True, C, (1). Therefore ν1 = 0 and the
children of [10] [0, 1] since δ2(A, T (I)) = δ1(A, T (IG)) = 2. Exit For loops 6 , 5, 4 (because
depth(T (IG)− 1 = 1).

Line 1 Next child is B. Line 4, ` = 1. Enter For loop 5 with B (only preleaf of T (IG),
descendant of B).

Line 8: sibling(B) = {A,C}. isDivided(B, 1, (8), A, toProcess, T (IG)) == False, , ,
and isDivided(B, 1, (8), C, toProcess, T (IG)) == True, C, (1). Therefore ν1 = δ1(A, T (Ig)) =
δ2(A, T (I)) = 2 and Child((8)) in E(B)≤1 are [2, 3, 4], since δ1(B, T (IG)) = δ2(B, T (I)) = 3.

Exit for loops 6, 5 , 4 (because depth(T (IG)− 1 = 1).
Line 1: Next child is C. Line 4, ` = 1. Enter For loop 5 with C (only preleaf of T (IG),

descendant of C).
Line 8: sibling(C) = {A,B}. isDivided(C, 1, (1), A, toProcess, T (IG)) == False, , , and

isDivided(C, 1, (1), B, toProcess, T (IG)) == False, , . Therefore ν1 = δ2(A) + δ2(B) = 5 and
Child((1) in E(C) are [5, 6] since δ2(C) = 2.

Exit for loops 6, 5 , 4 (because depth(T (IG)− 1 = 1), exit while loop 1.
Exit lastExpAssign(T (IG)). Exit assignExp(T (G)).

Back to assignExp(T ). Next child of root is H.
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Enter assignExp(T (IH)) ==
Line 1: EIH (root(T (IH))) = EIH (H) = E(H)≤1 (See. Prop. 2). root(E(H)) = [δ2(D) +

δ2(E) + δ2(F )] = [8].
Enter recursive call on Child(H) = {D,E, F}. First with D:
assignExp(T (ID)) ==

Line 1: EID(root(T (ID))) = EID(D) = E(D)0 (See. Prop. 2).
root(E(D)) = [

∑
d∈Child(D) δ3(d)] = [7]. Exit assignExp(T (ID)).

Next child of H is E. assignExp(T (IE)) ==
Line 1: EIE (root(T (IE))) = EIE (E) = E(E)0 (See. Prop. 2).
root(E(E)) = [

∑
e∈Child(E) δ3(e)] = [5]. Exit assignExp(T (IE)).

Next child of H is F . assignExp(T (IF )) ==
Line 1: EIF (root(T (IF ))) = EIF (F ) = E(F )0 (See. Prop. 2).
root(E(F )) = [

∑
f∈Child(F ) δ3(F )] = [3]. Exit assignExp(T (IF )).

Back to assignExp(T (IH)) at Line 7.
Enter lastExpAssign(T (IH)) ==

Line 1: Child(root(T (IH))) = Child(H) = {D,E, F}. Enter while loop 2 Assume that the
first element popped a Line 3 is the node D:

Line 4: ` = 1. Line 5: since T ((IH)≤2) = T (IH), preleaves are D,E, F . The only one
descendant of D is D.

Enter Line 6 with the partial path (7) ∈ EIH≤2
(D) = EIH (D) = EI(D)≤1. At Line 8,

sibling(D) = {E,F}. isDivided(D, 1, (7), E, toProcess, T (IH)) == True, E, (5), similarly isDivided(D, 1, (7), F, toProcess, T (IH)) ==
True, F, (3). Therefore ν1 = 0 and Child((7)) in E(D)) are [0, 1, 2, 3] since δ2(D) = 4. Exit for
loops 8, 5 , 6, 4 (because depth(T (IH))− 1 = 1).

Line 3 Next child is E. Line 4, ` = 1. Enter For loop 5 with E (only preleaf of T (IH),
descendant of E).

Enter Line 6 with the partial path (5) ∈ EIH≤2
(E) = EIH (E) = EI(E)≤1. At Line 8,

sibling(E) = {D,F}.
isDivided(E, 1, (5), D, toProcess, T (IH)) == False, , , and isDivided(E, 1(5), F, toProcess, T (IH)) ==

True, F, (3). Therefore ν1 = δ2(D) = 4 and Child((8)) in E(E)) are [4, 5] since δ2(E) = 2.
Exit for loops 8, 6,= 5 , 4 (because depth(T (IH))− 1 = 1).
Line 3: Next child is F . Line 4, ` = 1. Enter For loop 5 with F (only preleaf of T (IH),

descent of F ).
Enter Line 6 with the partial path (3) ∈ EIH≤2

(F ) = EIH (F ) = EI(F )≤1. At Line 8,
sibling(F ) = {D,E}.

isDivided(F, 1, (3), D, toProcess, T (IH)) == False, , , and isDivided(F, 1, (3), E, toProcess, T (IH)) ==
False, , . Therefore ν1 = δ2(D) + δ2(E) = 6 and Child((3)) in E(F )) are [6, 7] since δ2(F ) = 2.

Exit for loops 8, 6, 5 , 4 (because depth(T (IH)− 1 = 1), exit while loop 1.
Exit lastExpAssign(T (IH)). Exit assignExp(T (IH)).

Back to assignExp(T ), Line 7. Enter lastExpAssign(T ) ==.
Line 3: toProcess← Child(root) = {G,H}. Assume that G is popped first.
Line 4: ` = 1
Line 5. Preleaves of T (I≤2) = {G,H}, therefore the only preleaf descendant of G is G.
Enter Line 6 with the partial path (7) ∈ EI≤2

(G) = EI(G). At Line 8, sibling(F ) = {H}.
isDivided(G, 1, (7), H, toProcess, T (I)) == False, , . ν1 = δ1(H) = 2 and the children of

(7) in E(G) are [2, 3, 4] since δ1(G) = 3.
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Exit for loops 8, 6, 5.
For loop 4: ` = 2.
Line 5: prelaves of T (I≤3) = T (I) descendant of G are A,B,C. First take node A.
Enter Line 6 with the partial path (10, 0) ∈ EI≤3

(A) = EI(A). At Line 8, sibling(G) = {H}.
isDivided(A, 2, (10, 0), H, toProcess, T (I)) == True, D, (7, 0). Thus ν1 = 0 and the children

of the path (10, 0) in E(A) are [0, 1, 2] since δ1(G) = 3.
Exit for loops 8. Enter Line 6 with the partial path (10, 1) in EI(A). We obtain isDivided(A, 2, (10, 1), H, toProcess, T (I)) ==

True, D, (7, 1). Thus ν1 = 0 and the children of the path (10, 1) in E(A) are [0, 1, 2] since δ1(G) = 3.
Exit for loops 8, 6.

From now, all the steps are given with a fewer details since it always the same thing repeated

Next node in For loop 5 is B. isDivided(B, 2, (8, 2), H, toProcess, T (I)) == True, D, (7, 0).
ν1 = 0 and thus the children of (8, 2) in E(B) are [0, 1, 2] since δ1(G) = 3.

isDivided(B, 2, (8, 3), H, toProcess, T (I)) == True, D, (7, 0). ν1 = 0 and the children of (8, 3)
in E(B) are [0, 1, 2] since δ1(G) = 3.

isDivided(B, 2, (8, 4), H, toProcess, T (I)) == True, D, (7, 0). ν1 = 0 and the children of (8, 4)
in E(B) are [0, 1, 2] since δ1(G) = 3.

Next node in For loop 5 is C.
isDivided(C, 2, (1, 5), H, toProcess, T (I)) == False, , . ν1 = δ1(H) = 2 and the children

of (1, 5) in E(C) are [2, 3, 4] since δ1(G) = 3.
isDivided(C, 2, (1, 6), H, toProcess, T (I)) == False, , . ν1 = δ1(H) = 2 and the children

of (1, 6) in E(C) are [2, 3, 4] since δ1(G) = 3.
Exit For loops 5, 4.

In For loop 3, next child of Child(root) is H.
Line 4: ` = 1
Line 5. Preleaves of T (I≤2) = {G,H}, therefore the only preleaf descendant of H is H.
isDivided(H, 1, (8), G, toProcess, T (I)) == True, G, (7). ν1 = 0 and the children of (8) in

E(H) are [0, 1] since δ1(H) = 2.
Exit for loop 5.

` = 2 in For loop 4.
Line 5: preleaves of T (I≤3) = T (I) descendant of H are D,E, F . First enter node D.
isDivided(D, 2, (7, 0), G, toProcess, T (I)) == False, , . ν1 = δ1(G) = 3 and the children

of (7, 0) in E(D) are [3, 4] since δ1(H) = 2.
Similarly for paths of (7, 1), (7, 2), (7, 3) of E(D)≤2, the children are also [3, 4].
Next node in For loop 5 is E.
isDivided(2, (5, 4), H, toProcess, T (I)) == False, , . ν1 = δ1(H) = 3 and the children of

(5, 4) in E(E) are [3, 4] since δ1(H) = 2.
isDivided(2, (5, 5), H, toProcess, T (I)) == True, C, (1, 5). ν1 = 0 and the children of (5, 5) in

E(E) are [0, 1] since δ1(H) = 2.
Next node in For loop 5 is F .
isDivided(2, (3, 6), ,H, toProcess, T (I)) == True, C, (1, 5). ν1 = 0 and the children of (3, 6)

in E(F ) are [0, 1] since δ1(H) = 2.
Similarly the children of (3, 7) in E(F ) are [0, 1] since δ1(H) = 2.

Exit For loops 5, 4. Exit lastExpAssign(T ). Exit assignExp(T ).
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The main outcome of this construction is the following theorem:

Theorem 1. Let G (I) be a minimal lexGb of I. The exponents of the leading monomial of the
polynomials in G (I) are precisely the minimal (for the semi-order ≤mon) exponents found among
each exponent tree E(N), when N runs through all nodes not leaves of T (I).

The proof of the theorem is performed in two steps:

Step 1. For each node N not a leaf, and each leaf ν of E(N) construct explicitly a polynomial
fN,ν ∈ I, for which lm(fN,ν) = xν11 . . . xνnn (Algo. 4 “computePoly” and Theorem 2).

Step 2. The set of all such exponents ν contains the minimal exponents of the monomial ideal
lm(I) (Remark 9, Theorem 3, Corollary 3).

In order to achieve these two steps, the following Proposition is a basic but essential tool.

Proposition 2. According to Algo. 1 and 2, we have:

(i) Given a node R at depth ` ≤ n− 1 in T (I), the exponent tree E(R) (which by definition has
depth `) depends only on T (I≤`+1) = T (I)≤`+1:

EI≤`+1
(R) = EI(R).

(ii) Given a preleaf N of T (I) the exponent tree E(N)≤n−`−1 (where nodes at depth > n− `− 1
are cut, see Definition 2) depends only on the subtree TR of T (I) rooted at R, where R =
Pn−`−1(N) is the (n− `− 1)-th ancestor of N , at depth ` in T (I).

According to Proposition 1 the map

ψR : k[x1, . . . , xn]→ AR[x`+1, . . . , xn]

induces a canonical embedding of T (IR) into T (I) identified with the subtree TR rooted at R. A
consequence of (ii) is that ψR also yields the identification:

EIR(N) = EI(N)≤n−1−`.

Remark 7. Since the discard tree NI(R) and interpolate tree RI(R) have nodes labelled by those
of the exponent EI(R), a consequence of (i) is that:

NI≤`+1
(R) = NI(R) and RI≤`+1

(R) = RI(R).

Similary, a consequence of (ii) is that:

NIR(N) = NI(N)≤n−1−` and RIR(N) = RI(N)≤n−1−`.

Proof. (i) is proved by increasing induction on ` = 0, . . . , n− 1.
When ` = 0, R = root(T (I)) thus E(R) = E(root(T (I)) which has depth 0 hence is made up

of one node, its root written root(E(root(T (I)))). Recall that the root value of all trees E(R) are
computed at Line 1 of Algo. 1, by the formula: root(E(root)) =

∑
L∈Child(root(T (I))) δ1(L), which

depends only on T (I)≤1.
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Assume now ` > 0. Let C ∈ T (I) be the ancestor of R at depth 1. Algo. 1 “assignExp” makes
recursive calls at Line 6 with the rooted subtree TC = T (IC) of T (I). Note that R is at depth `−1
in TR allowing to use the induction hypothesis: EIC (R) depends only on (TC)≤` ↪→ T (I)≤`+1.

Next we prove that EIC (R) (×)
= EI(R)≤`−1. After the recursive call assignExp(T (IC)) (Line 6)

where trees EIC (R) are filled, and before entering “lastExpAssign” (Line 7), it is agreed (see As-
sumption: in Algo. 2) that all exponent trees EI(R) are filled entirely, except the labels at their
leaves. This is precisely what means Eq. (×) above, since the leaves of EI(R) are at depth `.

The labels of EI(R) at leaves are computed in Algo. 2, precisely at Lines 13 and 15. All nodes
manipulated within the outer loops 2, 4, 5, 6 belongs to T (I)≤`+1: this is clear for the parameters
of the loops; As for the nodes S returned by “isDivided” call at Line 9 when bool == True, they
also belong to T (I)≤`. This is because depth(S) ≤ depth(K) = ` (notations therein) from the
specification of the routine “isDivided′” defined in Definition 2. This achieves the proof of (i).

The proof of (ii) proceeds by (increasing) induction on the gap g := depth(S) − 1 − `R, over
all trees S = T (J) built from an ideal J that verifies Assumption (H), any node R at depth `R
in S, while N remains a preleaf in S. In the present statement we have depth(T (I)) = n hence
depth(N) = n− 1, depth(R) = ` thus g = n− 1− `.

The base case g = 0 occurs when ` = n − 1 and corresponds to E(N)≤n−`−1 = E(N)0 =
root(E(N)), and R = P0(N) = N . The value at root of E(N) is computed at Line 1 of Algo. 1 when
the stack of recursive calls reaches the input T (IN ) = TN . Then root(E(N)) =

∑
L∈Child(root(TN )) δ1(L)

viewed in TN , which is equal to
∑

L∈Child(N) δn−`(L) when viewed in T (I). Hence E(N)≤g =
E(N)0 = EIN (N).

Next assume that EJQ(N) = EJ(N)≤g for all ideal J verifying Assumption (H), for any node Q
at depth `Q in S := T (J) such that depth(S)− `Q ≤ g (here g = n− `− 1).

Let R′ = P1(R) = Pn−`(N). This node is at depth `R′ = `−1 in T . Let J = IR′ and S := T (J).
It has depth n− `+ 1 and R is at depth `Q := 1 in S. Therefore depth(S)− `Q = n− `+ 1− `Q =
n−`−1 ≤ g, the induction hypothesis applies to S, R and the preleaf N yielding EJR(N) = EJ(N)≤g.
On the other hand, JR = (IR′)R ' IR since R′ = P1(R), implying EIR(N) ' EIR′ (N)≤g. Besides,
induction hypothesis gives EIR(N) ' EI(N)≤g. Finally, EI(N)≤g ' EIR′ (N)≤g.

Consider the algorithm “assignExp” called with input T (IR′). The recursive call at Line 6
of Algo. 1 with the child R of node R′, fills the “missing” labels of the leaves, which are at
depth n − `, of the tree EIR′ (N). Because EI(N)≤g ' EIR′ (N)≤g as shown above, these values
are also assigned by construction to be the values at depth n − ` = g + 1 in EI(N). Hence
EI(N)≤g+1 ' EIR′ (N)≤g+1 = EIR′ (N), achieving the proof by induction.

4. Recombination polynomials

Given the prim-dec tree T (I) with at each of its nodes not leaf its associated exponent, discard,
interpolate trees, this section shows how to compute polynomials fN,ν introduced in Step 1. above.
An essential component of this construction is a “recombination” from the generators of the input
primary ideals, like in the (recombination part) of the Chinese Remainder Theorem (CRT). The
CRT can be restated in term of idempotents in a suitable algebra; We will use and present only
the minimal necessary properties of them, and externalize the algorithmic construction and proof
which is the purpose of [18].
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4.1. Idempotents

The case where input primary ideals are ideals of points, the problem reduces to classical
“multivariate” Lagrange interpolation. It is well-known in this case how to compute interpolating
polynomials: the “multivariate” ones are products of univariate Lagrange idempotents for which
explicit formula exists (this is classical: see Example in [18] below).

These idempotents are less obvious to define for general triangular ideals. This stems from two
difficulties. First that there is no explicit formula for more general ideals than that of points, even
in the radical case; For the latter this can be overcome by computing cofactors (Bézout coefficients)
with an Extended Remainder sequence over a field. Even in this radical case, previous works are
seldom, if inexistent, for more complicated triangular sets than (x1 − α1, . . . , xn − αn) ([8, 6] do
give explicit construction, but are constrained to ideal of points).

A second difficulty is when a triangular set defines a primary non-maximal ideals ([3, 5] do not
come with an explicit construction and relies on linear algebra to bypass the difficulty, and [9] has
some drawbacks pointed out in § 1.1). The realization that this case is not fundamentally different
than the radical one is apparently very recent: cofactors exist and can also be computed by an
Extended Remainder sequence. This is the outcome of the articles [12, 18]. The work [12] highlights
a unique factorization property of monic univariate polynomials defined over a primary ideal, and
how to compute gcds in some special cases, in which fall the settings of this work as shown in [18].
This latter article [18] computes explicitly cofactors and thus idempotents.

Let L be a leaf of the prim-dec tree T (I) and let R = Pn−`−1(L) be its ancestor at depth `.

Denote by t
(L)
` the `-th polynomial of the triangular set t(L) generating a primary component of

I. Proposition 1 shows that the ring AR := k[x1, . . . , x`]/〈t
(R)
≤` 〉 is Henselian. Let D ⊂ Child(R) and

T
(D)
`+1 :=

∏
C∈D t

(C)
`+1 mod 〈t(R)

≤` 〉. Write AD := AR[x`+1]/〈T (D)
`+1〉. We introduce a family of orthogonal

idempotents of the algebra AD.

Proposition 3 (Prop. 1 [18]). For each C ∈ D, define:

ẽ(C) ≡
∏
C′∈D,C′ 6=C t

(C′)
`+1 mod 〈t(R)

≤` 〉.

1. ẽ(C) is a polynomial in AR[x`+1]

2. Orthogonality: Given C 6= C ′ ∈ D, ẽ(C) · ẽ(C ′) = 0 in AD.

3. ẽ(C) ≡ 0 mod 〈t(C′)
≤`+1〉, if C ′ 6= C are in D.

4. Bézout identity provides cofactors u`+1(C) and v such that u`+1(C) ẽ(C) + v t
(C)
`+1 ≡ 1 mod

〈t(R)
≤` 〉. Denote

e(C) ≡ u`+1(C)ẽ(C) mod 〈t(R)
≤` 〉.

The family {e(C)}C∈D is a complete family of orthogonal idempotents of the algebra AD:∑
C∈D

e(C) = 1. (5)

5. e(C) ≡ 1 mod 〈t(C)
≤`+1〉, that is u`+1(C) is the inverse of ẽ(C) modulo t

(C)
≤`+1.

Before ending the section, let us emphasize an easy and “well-known” but fundamental property
of the lexicographic order, which appears crucial so that a short proof is provided.
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Lemma 4 (Property of lex order). With the notations above, let a family of monic polyno-
mials {f (C) ∈ AC [x`+2, . . . , xn] : C ∈ D}, seen as embedded in AR[x`+1, . . . , xn], thereby

degx`+1
(f (C)) < δ`+1(C) = degx`+1

(t
(C)
`+1). Assume that they all have the same leading monomial

lm(f (C)) = x
α`+1

`+1 · · ·x
αn
n = m. Because f (C) is monic over AC , α`+1 = 0 hence m = x

α`+2

`+2 · · ·x
αn
n .

Then the polynomial f :=
∑

C∈D f
(C)e(C) ∈ AR[x`+1, . . . , xn] has a leading monomial lm(f) =

m as well.

Proof. Let mC 6= m be a monomial occurring in f (C), hence mC �lex m, and acmC the corre-
sponding term, with aC ∈ AC ↪→ AR[x`+1], degx`+1

(aC) < δ`+1(C). Then

lm(
∑
C∈D

aCmCe(C)) �lex m.

Indeed, mC �lex m in AC [x`+2, . . . , xn] and both aC and e(C) are in AR[x`+1], therefore by the
property of the lexicographic monomial order, lm(aCmCe(C)) �lex m for all C. In particular
lm(

∑
C∈D aCmCe(C)) �lex m.

On the other hand, thanks to Eq. (5) of Prop. 3 (4),
∑

C∈Dme(C) = m
∑

C∈D e(C) = m. This
implies that m is a monomial occurring in f . And finally that lm(f) = m.

4.2. Computation of polynomials

The algorithm 4 “computePoly” constructs the polynomials mentioned in Step 1. (just after
Theorem 1). Its proof of correctness lies the ground for the following theorem. The factorization
pattern of Eq. (2), recalled in the theorem, is a byproduct of the algorithm, proved in Lemma 5.

Theorem 2. Let N be a preleaf of T (I), and σ = (σn . . . , σ1) be a path (from the root to a leaf)
of the exponent tree E(N). Algorithm 4 “computePoly” with input R = root outputs a polynomial
fN,σ ∈ I having for leading monomial lm(fN,σ) = xσ11 · · ·xσnn .

Moreover, it can also compute polynomials χj ∈ k[x1, . . . , xj ] for j = 1, . . . , n such that lm(χj) =
x
σj
j and

fN,σ ≡ χ1 · · ·χn mod I≤n−1.

The proof of Theorem 2 is entirely based on the correctness of Algorithm 4, proved hereunder.
The factorization pattern of the theorem is delayed to the next subsection 4.3, with the conclusion
of the proof of Theorem 2 as well.

Proposition 4 (Correctness of Algo. 4). The polynomial hR,σ = computePoly(N,σ, R) out-

put by Algo. 4 verifies the required specifications: it belongs to IR and lm(hR,σ) = x
σ`N+1

`N+1 · · ·x
σ`R+1

`R+1 .

Proof. Following the recursive nature of the algorithm, the proof proceeds by induction on the
gap `N − `R.

Step 1, the case `R = `N (Lines 10-4). By assumption in this case (see “Input” part in the
algorithm) R /∈ NI(N,σ). Thereofre R is a key of that array RI(N,σ) by Specification (7);
Write RI(N,σ)[R] = [C, τ ], C is a descendant of R with depth(C) ≤ depth(N) = `N = `R =
depth(R). Hence, C = R. Write τ = (τ`N+1). By definition in Specification 6 it verifies τ`N+1 ≤
σ`N+1. Moreover τ = (τ`N+1) ∈ E(R) = E(C), being the label at root(E(R)) it is computed at
Line 1 of Algo. 1, namely τ`N+1 =

∑
L∈Child(root(TR)) δ1(L) in the tree TR which corresponds to
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Algorithm 4: computePoly (Computation of polynomials)

Input: N node at depth `N
σ = (σ`N+1, . . . , σ`R+1) ∈ EI(N)≤`N−`R
R = P`R−`N (N); depth of R = `R ≤ `N
Assumption: if `R = `N then R /∈ NI(N,σ)
Output: hR,σ ∈ IR such that lm(hR,σ) = x

σ`N+1

`N+1 · · ·x
σ`R+1

`R+1

1 if `R = `N then // R and N are at the same depth

2 p(x`+1)←
∏
C∈Child(R) t

(C)
`R+1 mod 〈t(R)

≤`R〉
3 w`R+1 ← σ`R+1 − degx`R+1

(p)

4 return x
w`R+1

`R+1 · p

5 q ←
∏
S∈NI(N,σ) t

(S)
`R+1 mod 〈t(R)

≤`R〉 // `N > `R

6 w`R+1 ← σ`R+1 − degx`R+1
(q)

7 χ
(R)
`R+1 ← x

w`R+1

`R+1 · q
8 D ← Child(R) \ NI(N,σ)
9 Compute the family of idempotents {eD(S)}S∈D

10 for S ∈ D do
11 [C, τ ]← RI(N,σ)[S] // C is a descendant of S, write τ = (τ`C+1, . . . , τ`S+1)
12 hS,τ = computePoly(C, τ , S) // recursive call

13 σ′ ← (σ`N+1, . . . , σ`R+2) // last value of σ pruned

14 wj ← σj − τj for `S + 1 = `R + 2 ≤ j ≤ `C + 1

15 hS,σ′ ← x
σ`N+1

`N+1 · · ·x
σ`C+2

`C+2 · x
w`C+1

`C+1 · · ·x
w`R+2

`R+2 · hS,τ

16 return χ
(R)
`R+1

(∑
S∈D eD(S)hS,σ′

)
mod 〈t(R)

≤`R〉
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∑
C∈Child(R) degx`N+1

(t
(C)
`N+1) viewed in the tree T (I) via the embedding TR ↪→ T (I) of Prop. 2. It

follows that τ`N+1 = degx`N+1
(p) where p is the polynomial defined at Line 2, and in particular

that degx`N+1
(p) ≤ σ`N+1 making the definition of w`N+1 at Line 3 positive. And consequently,

degx`R+1
(χ

(R)
`R+1) = σ`R+1 as required.

Besides, Corollary 1 affirms that IR '
∏
S∈Child(R)〈t

(S)
≤`N+1〉. By construction at Line 2, p is in

the later product of ideals, hence χ
(R)
`R+1 being a multiple of p (line 4) is in IR, as required.

Step 2, general case (Line 5 and onward), proof that hR,σ′ ∈ IR: Write h :=
∑

S∈D eD(S)hS,σ′

and hR,σ
(◦)
:= h · χ

(R)
`R+1 the output polynomial at Line 16.

Let us justify the recursive calls at Line 12 first, for insuring termination and correction. Write
`C := depth(C). We have `S ≤ `C ≤ `N according to Sepcif. 6 ofthe interpolate tree RI(N,σ).
Besides note that depth(S) := `S = `R + 1. We obtain: `C − `S = `C − `R − 1 < `N − `R; The gap
`C − `S in the recursive call is smaller than in the main call, and thus it is valid to try a proof by
induction. Eventually the stack of recursive calls reaches inputs for which `C − `S = 0, reducing to
the case treated in Step 1.

By definition (Line 5) q is in 〈t(R)
1 , . . . , t

(R)
`R
, t

(S)
`R+1〉 for all S ∈ NI(N,σ). Therefore q ∈ 〈t(M)〉

for all leaves M of T descendant of an S ∈ NI(N,σ). Hence, χ
(R)
`R+1 also, as a multiple of q by

Line 7, as well as for hR,σ, multiple of χ
(R)
`R+1 by Eq. (◦) just above.

Let S ∈ D. By definition of idempotents Prop. 3, (3), (5), h (∗)
≡ c · hS,τ mod 〈t(S)

≤`R+1〉 for a

constant c ∈ AS . By induction hypothesis, hS,τ ∈ IS '
∏
M∈ Leaves of S〈t(M ′)〉 for all leaves M ′ of

T descendant of S. Thanks to the congruence (∗) above, h ∈
∏
M∈ Leaves of S〈t(M ′)〉 as well.

Therefore, hR,σ ∈ 〈t(M)〉 for all leaves M which are descendant of a node in NI(N,σ), thanks

to the factor χ
(R)
`R+1 of hR,σ. Moreover hR,σ ∈ 〈t(M ′)〉 and for all descendant leaves M ′ of a node S

in D, thanks to the factor h of hR,σ. Regarding that D = Child(R) \NI(N,σ) (Line 8), we obtain

that h ∈
∏
S∈Child(R)〈t

(S)
≤`R+1〉 ' IR, the latter isomorphism being due to Corollary 1.

Step 3, general case (Line 5 and onward), proof about lm(hR,σ): Write τ = (τ`C+1, . . . , τ`R+2).
By Condition (c.1) of Def. 2 that governs how the treeNI(N,σ) is built, (0, . . . , τ`C+1, . . . , τ`R+2) ≤mon
(σ`N+1, . . . , σ`R+2) therefore there are some integers wj such that τj+wj = σj for j = `R+2, . . . , `C+
1. Thus according to Line 15,

lm(x
σ`N+1

`N+1 · · ·x
σ`C+2

`C+2 · x
w`C+1

`C+1 · · ·x
w`R+2

`R+2 · hS,τ ) = x
σ`R+2

`R+2 · · ·x
σ`N+1

`N+1 .

By Lemma 4, we obtain that∑
S∈D

eD(S) = 1 ⇒ lm(
∑
S∈D

eD(S)hS,σ) = x
σ`R+2

`R+2 · · ·x
σ`N+1

`N+1

And thus lm(hR,σ) = lm(χ
(R)
`R+1)lm(h) = x

σ`R+1

`R+1 · x
σ`R+2

`R+2 · · ·x
σ`N+1

`N+1 as required.

Remark 8. The proof remains valid if:

1/ At Line 4 one replaces x
w`R+1

`R+1 in “x
w`R+1

`R+1 · p” by any monic polynomial a(x`R+1) ∈ AR[x`R+1]
of degee w`R+1

2/ Same at Line 7.
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3/ At Line 11 another way of filling the interpolate node R(N,σ) was done (remember that the
array R(N,σ) depends on some ways of going through the nodes in Algo. 2 “lastExpAssign”
and 3 “isDivided”).

4/ At Line 15 one replaces x
σ`N+1

`N+1 · · ·x
σ`C+2

`C+2 ·x
w`C+1

`C+1 · · ·x
w`R+2

`R+2 by any polynomial a inAS [x`R+1, . . . , x`N+1]

such that lm(a) = x
σ`N+1

`N+1 · · ·x
σ`C+2

`C+2 · x
w`C+1

`C+1 · · ·x
w`R+2

`R+2 .

In other words, the results of Prop. 4 are independent of these three choices. The computed
polynomials do though. One particular choice yields the reduced Gröbner basis, see Section 6.

4.3. Structure and specialization property

The proof of the factorization property in Theorem 2 builds upon the following Lemma. It uses
the same notation as Algo. 4 ”computePoly”.

Lemma 5. Write hR,σ = computePoly(N,σ, R). as in Prop. 4 and Algo. 4, and consider the
polynomials hS,τ := computePoly(S, τ , C) computed at Line 12. By induction hypothesis, there are

polynomials ρ
(S)
j such that:

lm(ρ
(S)
j ) = x

τj
j , hS,τ ≡ ρ(S)

`R+2 · · · ρ
(S)
`C+1 mod (IS)≤`N−1.

As in Line 14, define ρ̃
(S)
j = x

wj
j ρ

(S)
j if `R + 2 ≤ j ≤ `C + 1, or simply ρ̃

(S)
j := x

σj
j if `C + 2 ≤

j ≤ `N + 1. Let χ
(R)
j ≡

∑
S∈D eD(S)ρ̃

(S)
j mod 〈t(R)

≤`N 〉 for `R + 2 ≤ j ≤ `N + 1, and let χ
(R)
`R+1 be as

defined in Line 7. We have:

hR,σ ≡ χ(R)
`R+1 · · ·χ

(R)
`N+1 mod (IR)≤`N−1,

Proof. Thanks to the property (3)-(5) of Proposition 3 concerning idempotents, it is a simple
algebraic verification that for all S ∈ D, one has:

χ
(R)
`R+2 · · ·χ

(R)
`N+1 ≡ ρ̃

(S)
`R+2 · · · ρ̃

(S)
`N+1 mod (IS)≤`N . (6)

Recall the congruences (◦) and (∗) in the proof of Prop. 4, rewritten hereafter in the first two
congruences. The third one is the statement, satisfied for all S ∈ D:

hR,σ ≡ χ(R)
`R+1 · h ≡ c · hS,τ ≡ χ

(R)
`R+1 · x

w`R+2

`R+2 ρ
(S)
`R+2 · · ·x

w`N+1

`N+1 ρ
(S)
`N+1 mod (IS)≤`N (7)

and thus, by combining Eqs. (6), (7):

hR,σ ≡ χ(R)
`R+1 · ρ̃

(S)
`R+2 · · · ρ̃

(S)
`N+1 mod (IS)≤`N

Now both the l.h.s and the r.h.s. of Eq (7) are zero modulo IS for all S ∈ NI(N,σ) because the

factor χ
(R)
`R+1 ∈ IS by definition. Therefore hR,σ is thus equal to the r.h.s. of Eq (7) modulo IU for

all U ∈ Child(R) yielding

hR,σ ≡ χ(R)
`R+1 · · ·χ

(R)
`N+1 mod

∏
U∈Child(R)

(IU )≤`N (' (IR)≤`N ).

The latter isomorphism being due to Corollary 1.
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Thanks to Lemma 5 and Prop. 4, the proof of the theorem is easy:

Proof (Proof of Theorem 2). The algorithm 4 with R = root, N preleaf, outputs a polyno-
mial hroot,σ := computePoly(N,σ, root) that verifies all the requirements according to Proposition 4
and Lemma 5. It suffices thus to take fN,σ = hroot,σ.

As for the factorization pattern, note that `N = n − 1 and `R = 0 implying IR = I, whence
(IR)≤`N = I≤n−1. Thus the factorization stated in Prop. 4 with these partiular input rewrites:

hroot,σ ≡ χ(root)
1 · · ·χ(root)

n−1 mod I≤n−1,

which is the factorization stated in the theorem if one takes χj = χ
(root)
j .

The specialization property in Eq. (3) is a consequence of the factorization pattern:

Corollary 2. The specialization property holds for lexGb of ideals verifying Assumption (H), or,
equivalently, the property stated in Eq. (3) holds.

Proof. As mentioned, it suffices to prove Eq. (3), in which only the implication ⇐ is not trivial.
The notations from therein are reused here. It is possible to assume w.l.o.g. that g ∈ G not in
G≤n−1: if it is not the case, it suffices to take G≤m instead of G where m is the largest variable
occurring in g.

Let 1 ≤ ` ≤ n − 1 and a ∈ k̄`. If ` = n − 1 then the property is already known thanks to
Gianni’s theorem [14]. So we can assume w.l.o.g that ` ≤ n− 2.

Write Cg := lc`(g) so that g = Cg · x
σ`+1

`+1 · · ·x
σn
n + tail terms, and assume that φa(Cg) = 0. By

Theorem 2, and with the same notations,

g ≡ χ1 · · ·χn mod I≤n−1. (8)

This same theorem gives lm(χj) = x
σj
j , yielding lm(χ`+1 · · ·χn) = x

σ`+1

`+1 · · ·x
σn
n . Hence Cg ≡

χ1 · · ·χ` mod I≤n−1. Therefore if φa(Cg) = 0 then φa(χ1 · · ·χ`) ∈ φa(I≤n−1).
On the other hand, φa(χ1 · · ·χ`) ∈ k̄. If φa(χ1 · · ·χ`) 6= 0, then φa(I≤n−1) = 〈1〉, and thus

φa(g) ∈ φa(I≤n−1) necessarily. Now if φa(χ1 · · ·χ`) = 0, it also implies that φa(g) ∈ φa(I≤n−1) by
specializing the congruence in Eq. (8) by φa: φa(g) ≡ 0 mod φa(I≤n−1).

Regarding that 〈G≤n−1〉 = I≤n−1, in any case we have proved that nf(φa(g) , φa(G≤n−1)) = 0.
Moreover by definition of Ga, φa(G \ Ga) = {0}, thereby φa(G≤n−1) = φa((Ga)≤n−1). Hence
nf(φa(g) , φa((Ga)≤n−1)) = 0. But it was assumed that g ∈ G \ G≤n−1, therefore φa(g) /∈
φa(G≤n−1). And consequently φa((Ga)≤n−1) = φa((Ga\{g})≤n−1). In conclusion nf(φa(g) , φa((Ga\
{g})≤n−1)) = 0.

5. Checking the Gröbner property

5.1. Foreword

This section is made of preliminaries.
Given an ideal I, a standard monomial for I (and implicitly for the monomial order ≺lex) is a

monomial m /∈ 〈lm(I)〉. The set of standard monomials Sm(I) verifies:

xσ11 · · ·x
σn
n ∈ Sm(I)⇒ [∀i | σi > 0,⇒ xσ11 · · ·x

σi−1
i · · ·xσnn ∈ Sm(I) ].
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A monomial m := xµ11 · · ·x
µn
n is a minimal monomial for I iff:

m /∈ Sm(I), and ∀i, µi > 0 ⇒ m/xi ∈ Sm(I).

Definition 3. A monomial m := xβ11 · · ·x
βn
n is on the n-border of a set of standard monomials Sm,

denoted Bon(I)) iff:

Bon(I) := xnSm(I) \ Sm(I) where xnSm(I) := {xnm | m ∈ Sm(I)}.

Remark 9. Note that any minimal monomial xµ11 · · ·x
µn
n for I such that µn > 0 is in the n-border

for I.

Theorem 3. With the above notation, and denoting for E ⊂ Zn≥0 mon(E) = {xε11 · · ·xεnn | ε ∈ E},
we have Bon(I) = mon(A``n(I)) where:

A``n(I) := ∪preleavesN∈T (I) ∪σ∈Leaves((E(N))) {xσ11 · · ·x
σn
n }.

It is clear that this theorem implies Theorem 1. The proof of the theorem is postponed to § 5.3.

Corollary 3. The set of polynomials

∪n`=1 ∪N, preleaf of T (I≤`) ∪ν leaves of E(N){fN,ν}

is a lexGb of I.

Proof. Define ` as the integer such that f ∈ I≤` but f 6∈ I≤`−1. The theorem then guarantees the
existence of a preleaf Q of T (I≤`), and of a path ν = (ν`, ν`−1, . . . , ν1) in the exponent tree EI≤`(Q)
such that νi ≤ di(f) for i = `, . . . , 1. If fQ,ν denotes a polynomial as constructed in § 4.2 (hence
fQ,ν ∈ I≤`, lm(fQ,ν) = xν11 · · ·x

ν`
` ), this implies that lm(fQ,ν)|lm(f) which characterizes that a set

of elements of an ideal I is a Gröbner basis of that ideal.

5.2. Preliminaries on exponent tries

Lemma 6. Let N be a preleaf of T = T (I), σ = (σn, . . . , σ1) a leaf of the exponent tree E(N).
Write P = Pn−`−1(N) the ancestor at depth ` < n− 1 of N and consider a leaf τ = (τ`+1, . . . , τ1)
of E(P ). Then τ`+1 > σ`+1.

Proof. By definition τ`+1 is the value of root(E(P )) hence is computed at Line 1 of Algo. 1, as
follows: when the stack of recursive calls reached the subtree TP rooted at P , Line 1 of Algo. 1
rewrites as:

τ`+1 =
∑

L∈Child(P )

δ`+1(L).

On the other hand, according to Specification (5), and of Line 15 of Algo. 2,

σ`+1 ≤ δ`+1(P )− 1 +
∑

B∈N (N,(σn,...,σ`+2))

δ`+1(B)

Now Specification 4 (applied with ` = n−1 and d = n−`−2)N (N, (σn, . . . , σ`+2)) ⊂ sibling(Pn−`−2(N)) $
Child(P ). Therefore τ`+1 > σ`+1.
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Lemma 7. Let C 6= D ∈ Child(root(T )), and NC , ND some preleaves of T descendant of C and
D respectively. Let σ = (σn, . . . , σ1) be a leaf of the exponent tree E(NC) and τ = (τn, . . . , τ1) one
of the exponent tree E(ND). Write σ′ = (σn, . . . , σ2) and τ ′ = (τn, . . . , τ2). If σ′ = τ ′ and if C is
popped before D from the toProcess list, at Line 3 of Algo. 2, then:

N (NC ,σ
′) ∪ {C} ⊂ N (ND, τ

′).

(if D is popped first, then it suffices to exchange C with D).

Proof. Let A 6= C,D, assuming such a node exists, be in N (NC ,σ
′) ⊂ Child(root(T )). Ac-

cording to Lines 13, 14, 17 of Algo. 2 which build the discard trees NI( . ), this means that
isDivided(C,σ′, n−1, A, boolA,C , T ) == False. Let us prove isDivided(D, τ ′, n−1, A, boolA,D, T ) ==
False (†), which similarly is equivalent to A ∈ N (ND, τ

′).
Assume first that boolA,C == True. Then it is Condition (c.1) of Def. 2 that is not met. This

means that there is no node at any depth ` ≤ n − 1 that is a descendant of A and having an
exponent tree carrying an exponent ν = (ν`+1, . . . , ν2) such that νi ≤ σi for all 2 ≤ i ≤ ` + 1.
Since τ ′ = σ′, neither νi ≤ τi is possible for such i. This implies that both Conditions (c.1) and
(c.2) are not satsified for the node D, namely: isDivided(D, τ ′, n − 1, A, boolA,D, T ) == False,
independently of boolA,D.

Next, assume that boolA,C == False, that is A /∈ toProcessC (see Def. 1). Then Condi-
tion (c.2) is not met: if there is a descendant NA of A having an exponent tree E(NA) carrying
ν = (ν`A+1, . . . , ν2) sucht that νi ≤ σi for i = `A+1, . . . , 2 then NA is a preleaf and ν ′ = σ′. By as-
sumption, toProcessD ( toProcessC , therefore boolA,D == False as well. Therefore Condition
(c.1) is not met for D. And Condition (c.2) neither for the same reason it is not for the node C.
Thus isDivided(D,σ′, n − 1, A, False, T ) == False. This achieves the proof of (†) since all cases
have been treated. This implies that N (C,σ′) \ {D} ⊂ N (D,σ′).

Second, let us prove thatD /∈ N (NC ,σ
′). This is because isDivided(C,σ′, n−1, D, boolD,C , T ) ==

True, S,ν; for example S = ND, ν = τ ′ works: D ∈ toProcessC by assumption hence boolD,C ==
True. Moreover ν = τ ′ = σ′, and thus Condition (c.1) is verified. We have proved N (C,σ′) ⊂
N (D,σ′).

Last, we claim that C ∈ N (ND, τ
′), or equivalently isDivided(D, τ ′, n − 1, C, boolC,D, T ) ==

False. Since C /∈ toProcessD by assumption, we have boolC,D == False, and Condition (c.1)
is not fullfilled. But since NC is a descendent of C whose exponent tree E(NC) carries σ′ = τ ′ by
assumption, Condition (c.2) is not met neither. Hence, C ∈ N (ND, τ

′) and finally the inclusion of
the statement of the lemma holds.

Corollary 4. No two distinct leaves of some exponent trees attached to some preleaves of T carry
the same exponent.

(Putting it differently: If (ν1) and (τ1) are the labels of distinct leaves (but labels themselves
may be equal: τ1 = ν1) of E(NC) and E(ND) for ND, NC some preleaves of T , then the path
ν = (νn, . . . , ν1) in E(NC) and the path τ = (τn, . . . , τ1) in E(ND) are not equal.)

Proof. First Remark 6 affirms that no two leaves in E(N) have equal paths, therefore w.l.o.g. τ
and ν need not be in same exponent tree, whence NC 6= ND.

We proceed by induction on the depth n ≥ 2 of T starting with the case n = 2. We can assume
w.l.o.g. that τ2 = ν2, otherwise it is clear that τ 6= ν. Morever here NC and ND are distinct nodes
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at depth 1 of T . Assume that NC was popped first at Line 3 of Algo. 2. Lemma 7 affirms that
N (NC , (τ2)) ∪ {NC} ⊂ N (D, (ν2)). It follows,

τ1 :=
∑

B∈N (NC ,(τ2))

δ1(B) ≤ δ1(NC) +
∑

B∈N (ND,(ν2))

δ1(B) := ν1 + δ1(N).

and thus τ1 < ν1 and τ = (τ2, τ1) 6= (ν2, ν1) = ν.
Assume now that n ≥ 3. Let G the smallest common ancestor of NC and ND, say at depth `G,

and write C and D the two distinct children of G that are respectively ancestors of NC and ND.
Assume that `G ≥ 1. In the subree TG rooted at G, NC and ND are preleaves.

Write τ ′ := (τn, . . . , τ`G+1) and ν ′ := (νn, . . . , ν`G+1). Induction hypothesis implies that τ ′ = ν ′

iff they represent the same node, that is NC = ND and τ ′ = ν ′ represents the same leaf of EIG(NC).
This contradicts the assumption, therefore τ ′ 6= ν ′ henceforth τ 6= ν and the conlusion follows in
this case.

Remains to consider the case `G = 0, that is when C,D ∈ Child(root(T )). Assume w.l.o.g. that
C is popped first at Line 3 of Algo. 2. Lemma 7 implies that

N (NC , τ
′) ∪ {C} ⊂ N (ND,ν

′), (9)

and it follows,

τ1 :=
∑

B∈N (NC ,(τ ′))

δ1(B) ≤ δ1(NC) +
∑

B∈N (ND,(ν′))

δ1(B) := ν1 + δ1(N).

Thus τ1 < ν1 and τ 6= ν.

Proposition 5 (Intermediate Values). Let σ′ := (σn, . . . , σ2) be an n− 1-uplet of nonnegative
integers. Associate to it:

Λ(σ′) := {M1, . . . ,Mr} := {M is a preleaf of T | σ′ ∈ E(M)≤n−2}

and write Ci := Pn−2(Mi) the ancestor at depth 1 of the preleaf Mi. Define

a := min
M∈Λ(σ′)

{s1 | σs1 := (σn, . . . , σ2, s1) ∈ E(M)}

b := max
M∈Λ(σ′)

{s1 | σs1 := (σn, . . . , σ2, s1) ∈ E(M)

ai :=
∑

B∈N (Mi,σ)

δ1(B) for i = 1, . . . , r.

Then a = a1m b = ar + δ1(Cr)− 1 and ai+1 = ai + δ1(Ci).
Moreover, for all a ≤ c ≤ b, we can associate in one-one way a couple (Mc,σc) with Mc ∈ Λ(σ′)

and σc ∈ E(Nc), such that σc = (σn, . . . , σ2, c).

Proof. Step 1, the Ci’s are pairwise distinct: Otherwise take two elements of Λ(σ′), say w.l.o.g.
M1, M2 which yield C1 = C2. In the tree TC1 two disctinct preleaves have their exponent tree that
carries the same exponent σ′, which Corollary 4 forbids.

Step 2, assume that r = |Λ(σ′)| = 1. In this case σa, σb belong the unique exponent tree
E(M1) associated with the unique element M1 ∈ Λ(σ′). According to Line 15 of Algo. 2 we have
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b = a + δ1(C1) − 1. Moreover the children of σ′ are [a, . . . , b], hence there is a path σc for all
a ≤ c ≤ b.

Step 3, assume r ≥ 2, and that the numbering of the Ci’s is such that C1 is popped first, then
C2 etc. Write toProcessCi the status of the list toProcess right after Ci is popped (see Def. 1).
We then have toProcessCi+1 ( toProcessCi . We claim that:

N (Mi,σ
′) ∪ {Ci} = N (Mi+1,σ

′). (10)

Lemma 7 provides the inclusion ⊂, it remains to check the other side ⊃. To this aim, given
A 6= Ci, Ci+1, A /∈ N (Mi,σ

′), it suffices to show that A /∈ N (Mi+1,σ
′) (♥). This is acheived in

Steps 4-5 hereafter. Note first that since A /∈ N (Mi,σ
′), we have:

isDivided(Ci,σ
′, n− 1, A, boolA,Ci , T ) == True, S,ν , (11)

where S,ν make Condition (c.1) or (c.2) true.
Step 4, assume first that A ∈ toProcessCi that is boolA,Ci == False (♦). Then Condition

(c.1) of Def. 2 is verified, namely

(ν`S+1, . . . , ν2) ≤mon (σ`S+1, . . . , σ2) (12)

where `S is the depth of S.
Step 4.1: ifA ∈ toProcessCi+1 , then clearly Condition (c.1) is verfied by Ci+1 since isDivided(Ci+1,σ

′, n−
1, A, boolA,Ci+1 , T ) == True, S,ν thanks to Eqs. (11), (12). Hence A /∈ N (Mi+1,σ

′).
Step 4.2: if A /∈ toProcessCi+1 (‡) then Condition (c.2) only must be checked, since (c.1) is not

true. Under (c.2) and because of Eq. (11) which gives an S descendant of A carrying an exponent
ν such that Eq. (12) holds, “isDivided” returns False (on) iff there is a node MA descendant
of A whose exponent tree carries an exponent τ = σ′. If this was true, then MA ∈ Λ(σ′), say
A = Cj for j 6= i, i + 1 since A 6= Ci, Ci+1. According to the numbering of elements of Λ(σ′),
either j < i, in which case toProcessCj ) toProcessCi ) toProcessCi+1 , or j > i + 1, in which
case toProcessCi ) toProcessCi+1 ) toProcessCj . In the latter case, A = Cj ∈ toProcessCi+1 ,
contradiction with (‡). In the former case, A = Cj /∈ toProcessCi a contradiction with (♦).
Therefore (on) is not true and thus isDivided(Ci+1,σ

′, n− 1, A, boolA,Ci+1 , T ) 6= False.
Step 5, assume next that A /∈ toProcessCi . Then A /∈ toProcessCi+1 neither. Therefore

Eq. (11) and isDivided(Ci+1,σ
′, n− 1, A, False, T ) returns the same boolean, namley True. This

concludes the proof of (♥), and thus the proof of Eq. (10).
Step 6, from Eq. (10) we obtain ai+1 = ai + δ1(Ci) for i = 1, . . . , r − 1. Moreover by defini-

tion a1 =
∑

B∈N (M1,σ′)
δ1(N) is therefore the minimal value a in the statement. And ar+δCr−1 = b

from the same argument of Step 1.

Corollary 5. Let σ′ be as in Proposition 5. We refer to the notations Λ(σ′), a and Ma used
therein. Let also τ ′ = (τn, . . . , τ2) be a preleaf of an exponent tree E(N), where N is a preleaf of
T (I). Assume that τ ′ <mon σ

′. Then τ1 ≥ a.

Proof. Write Ca := Pn−2(Ma) the ancestor at depth 1 of Ma, and similary write C the one for
M . We prove that

N (Ma,σ
′) ⊂ N (M, τ ′). (13)

Since a =
∑

B∈N (Ma,σ′)
δ1(B) and τ1 =

∑
B∈N (M,τ ′) δ1(B), Eq. (13) is indeed enough to conclude

τ1 ≥ a.
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Let A 6= C,Ca not in N (M, τ ′). Whether Conditions (c.1) or (c.2) is verified, there is node NA

descendant of A say at depth 1 ≤ `A ≤ n− 1, and an exponent ν ′ = (ν`A+1, . . . , ν2) being a preleaf
in the exponent tree E(NA), such that νi ≤ τi for 2 ≤ i ≤ `A + 1.

isDivided(C, τ ′, n− 1, A, boolA,C , T ) == True, NA,ν
′. (14)

By assumption, τi ≤ σi, consequently Condition (c.1) is verified for Ca if A ∈ toProcessCa . Hence
isDivided(Ca,σ

′, n− 1, A, True, T ) == True, NA,ν
′

Next if A /∈ toProcessCa , we must look at Condition (c.2). It requires that no preleaf de-
scendant of A has an exponent tree that carries σ′ as a preleaf. Assume the contrary with MA

such a preleaf of T descendant of A. But then MA ∈ Λ(σ′), and thus A ∈∈ Pn−2(Λ(σ′)). On
the other hand, because a is minimal toProcessCa $ toProcessA, see Eq. (10) in the proof of
Prop. 5. Therefore the preleaf NA descendant of A makes Condition (c.2) true for Ca, that is
isDivided(Ca,ν

′, n− 1, A, False, T ) == True, NA, . . .. This contradicts Eq. (14)
A /∈ toProcessCi for all Ci := Pn−2(Λ(σ′)) (see proof of Prop. 5). Contradiction with A /∈

toProcessC . Thus Condition (c.2) is verified when A /∈ toProcessC . Hence in any cases A /∈
N (Na,σ

′). We have proved N (Ma,σ
′) \ {C} ⊂ N (M, τ ′).

If C = Ca then since Ca /∈ N (Ma,σ
′) we have N (Ma,σ

′) ⊂ N (M, τ ′) and Eq. (13) is proved.
If Ca 6= C, we claim that C /∈ N (Ma,σ

′), or equivalently isDivided(Ca, n−1,σ′, C, boolCa,C , T ) ==
True, S,ν ′ (♦), for some S descendant of C and ν ′ a preleaf in its exponent tree E(S). If one takes
S = M and ν ′ = τ ′, then τ ′ <mon σ

′. Hence Condition (C.1) is verified, when C ∈ toProcessCa
(that is boolCa,C == True). Otherwise, Condition (c.2) requires additionnally that no preleaf de-
scendant of C has an exponent tree that carries σ′ as a preleaf. As seen above, C /∈ toProcessCa
implies that C /∈ Pn−2(Λ(σ′)). Thus C cannot have a preleaf to whcih is attached an expeonent
tree that carries σ′. Thus Condition (c.2) is verfied, and finally (♦) is proved. This case achieves
the proof of Eq. 13, hence of the Corollary.

5.3. Standard monomials and leading exponents

Now that prelimiaries are settled, this part focuses on the proof of Theorem 3. According to
Remark 9, it implies Theorem 1. It proceeds by induction on the depth n of the tree T (I), that
is the number of variables. It follows the plan hereunder. Note that Points 3, 4, 5 are definitions.
Points 1, 9, 10 are statements allowing a short proof written directly here. Point 2 states the
induction hypothesis. Finally the proofs of Points 6, 7, 8 are given thereafter.

1. Proof of the base case. When n = 1, Bon(I) = {xσ11 } where σ1 =
∑

L∈Child(root(T (I))) δ1(L).
The prim-dec tree T (I) has depth 1, and root(T (I)) is the only preleaf. The exponent tree
E(root) has depth 0, the only node is its root whose value is computed at Line 1 of Algo. 1
equal to s =

∑
L∈Child(root(T (I))) δ1(L). σ1 = s implies mon(A``1(I)) = {xs1} = Bo1(I).

2. Induction hypothesis supplies: mon(A``n(IL)) = Bon(IL) for all L ∈ Child(root).

3. For all m = xµ22 · · ·x
µn
n ∈ Sm(IL) write m+ := xµ22 · · ·x

µn−1

n−1 · x
µ+n
n the unique monomial in

Bon(IL), µ+
n > µn.

4. By induction hypothesis 2, µ+ := (µ+
n , . . . , µ2) ∈ A``n(IL). Since the unions are disjoint in

Corollary 3 denote by N(L,m) the unique preleaf of T (IL) such that µ+ ∈ EIL(N(L,m)).

5. Define a(L,m) :=
∑

B∈N (N(L,m),µ+) δ1(B) and for each L the maps:

φL : Sm(IL) → {set of monomials in x1, . . . , xn}
m 7→ {xa(L,m)

1 ·m, . . . , xa(L,m)+δ1(L)−1
1 ·m}
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6. Define SM := ∪L∈Child(root(T ))φL(Sm(IL)). The union is disjoint.

7. |SM| = |Sm(I)|. (also equal to dimk(k[x1, . . . , xn]/I) the dimension of the k-vector space)

8. xnSM \ SM = mon(A``n(I)).

9. We deduce that Sm(I) = SM. Proof: Indeed, for each exponent σ in A``n(I), Theorem 2
constructs a polynomial fσ ∈ I with lm(f) = xσ11 · · ·xσnn . Thus mon(A``n(I)) ⊂ 〈lm(I)〉.
Since SM∩mon(A``n(I)) = ∅ by 8, it follows that SM ⊂ Sm(I) = {monomials /∈ 〈lm(I)〉}.
And thanks to 7, that SM = Sm(I).

10. Finally, Bon(I) := xnSm(I)\Sm(I) = xnSM\SM := mon(A``n(I)), achieving the induction.

Proof (Proof of 6). Assume that two monomials m ∈ Sm(IL) and p ∈ Sm(IK) for some L,K ∈
Child(root), verify m 6= p. Then clearly φL(m) ∩ φK(p) = ∅.

Using the notation of 3, write m+ = xµ22 · · ·x
µn−1

n−1 · x
µ+n
n and p+ = xπ22 · · ·x

πn−1

n−1 · xπ
+
n
n , the

monomials in Bon(IL) and Bon(IK) respectively. Indeed, using the notation N(L,m) and N(K, p)
of 4 deduced from the induction hypothesis, one has µ+ ∈ EIL(N(L,m)) ↪→ EI(N(L,m)) and
π+ ∈ EIN (N(K, p)) ↪→ EI(N(K, p)).

If m+ = p+, one can consider that K 6= L. Otherwise if K = L, in the subtree TL rooted at
K = L, µ+ = (µ+

n , µn−1, . . . , µ2) and π+ = (π+
n , πn−1, . . . , π2) are equal leaves of the exponent

trees EIL(N(L,m)) and EIL(N(L, p)) contradicting Corollary 4.
Assume thus m+ = p+ and K 6= L. Then Prop. 5 (applied with Λ(µ+) = Λ(π+)) implies that

µ1 6= π1 for any children µ = (µ+
n , . . . , µ1) of the preleaf µ+ in the exponent tree EI(N(L,m)),

and any children π = (π+
n , . . . , π1) of the preleaf π+ in the exponent tree EI(N(K, p)). W.l.o.g,

we can assume that µ1 < π1 which implies according to Eq. (10) that N (N(L,m),µ+) ∪ {L} ⊂
N (N(K, p),π+). In particular a(L,m) ≤ a(K, p) + δ1(L) with the notation 5.

Therefore the largest monomial x
a(L,m)+δ1(L)−1
1 ·m in φL(m) is strictly smaller than the smaller

exponent x
a(K,p)+δ1(L)−1
1 · p in φK(p). Hence φL(m) ∩ φK(p) = ∅.

Proof (Proof of 7). In Point 5 the union of the φL(Sm(IL)) is disjoint, therefore |SM| =∑
L |φL(Sm(IL))|. By construction, |φL(Sm(IL))| = δ1(L)|Sm(IL)|. Hence, |SM| =

∑
L δ1(L)|Sm(IL)|.

On the other hand, IL '
∏
M,preleaf of TL〈t

(M) ⊗ AL〉, where the product is irredundant (see
Prop. 1). Thus, R/I '

∏
LAL[x2, . . . , xn]/IL, and

dimk(R/I) =
∑
L

dimk(AL/IL) =
∑
L

dimk(AL) dimAL(A/IL) =
∑
L

dimk(k[x1]/〈t(L)
1 〉)|SM(IL)|.

Since dimk(k[x1]/〈t(L)
1 〉) = δ1(L), we obtain |Sm(I)| = dimk(R/I) =

∑
L δ1(L)Sm(IL). Hence

|Sm| = |SM|.

Proof (Proof of 8). Let xnm ∈ xnSM \ SM. By definition in 6, let L be the unique child of
root(T ) for which φL(SM(IL)) contains m, and let mL ∈ SM(IL) be the unique monomial for
which m ∈ φL(mL). By definition of the map φL in 5 We have m = xµ11 ·mL where a(L,mL) ≤
µ1 ≤ a(L,mL) + δ1(L)− 1.

Assume that xnmL ∈ Sm(IL), then φL(xn ·mL) = xnφL(m), and then xnx
µ1
1 mL = xnm ∈ SM.

Contradiction, therefore xnmL ∈ xnSm(IL) \ Sm(IL) = Bon(IL). By induction hypothesis 2,
xnmL ∈ mon(A``n(IL)). There is a unique preleaf N of T (IL) and a unique exponent ν ∈ EIL(N)
such that xν22 · · ·xνnn = xnmL. Note then that we have xnm = xµ11 xν22 · · ·xνnn . Besides, we have
N = N(L,mL) by definition 4. Therefore, by definition of a(L,mL), the labels of the children of the
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node ν ∈ EIL(N) ↪→ EI(N) are {a(L,mL), . . . , a(L,mL) + δ1(L)− 1}. An finally (νn, . . . , ν2, µ1) ∈
EI(N). In particular, xnm ∈ A``n(I), and xnSM \ SM ⊂ A``n(I).

Next, consider σ = (σn, . . . , σ1) ∈ E(N) ⊂ A``n(I), N a preleaf of T (I). Write σ′ =
(σn, . . . , σ2) ∈ EIL(N) ⊂ A``n(IL). Recall the notation Λ(σ′), a, and b of Prop. 5. In par-
ticular a ≤ σ1 ≤ b and N ∈ Λ(σ′). For all C ∈ Pn−2(Λ(σ′)), induction hypothesis implies
that mon(A``n(IC)) = Bon(IC). Thus mC = xσ22 · · ·xσnn ∈ xnSm(Ic) \ Sm(IC). Note that
N(C,mC) ∈ Λ(σ′). In particular By Prop. 5, Step 4 one has the following disjoint union

{a, . . . , b} = ∪C∈¶n−2(Λ(σ′)){a(C,mC), . . . , a(C,mC) + δ1(C)}.

It implies that there is a unique Cσ1 above such that a(Cσ1 ,mCσ1
) ≤ σ1 ≤ a(Cσ1 ,mCσ1

) + δ1(Cσ1).
And from the definiton of the map φCσ1 , xσ11 · · ·xσnn ∈ xnφCσ1 (mC) ⊂ xnφCσ1 (SM(ICσ1 )) ⊂ xnSM

6. Concluding Remarks

Specialization property. Corollary 2 was restricted to zero-dimensional ideals verifying Hypothe-
sis (H), when primary ideals have a lexGb are in purely triangular shape. It is very safe to think
that this specialization property holds for a larger class of zero-dimensional primary ideals. Using
the notation of Proposition 1, let h be a polynomial distinct from gi,si in the lexGb of a general
primary ideal.

h = p`11 · · · p`nn + tail terms

It is easy to see that the leading term of h may vanish after specialization at a point (α1, . . . , α`),
while tail terms may not:

G = {x2 , y2 + x , xyz + y , z2}.

This is a primary ideal of radical 〈x, y, z〉. Write φ0 the specialization map x = 0 from k[x, y, z]
to k[y, z] . Then φ0(xyz + y) = y, and nf(y , φ0(G \G0))) = nf(y , [y2, z2]) = y is not zero hence
does not verify the specialization property of Corollary 2. On the other hand if one considers the
primary ideal:

G ′ = {x2 , y2 + x , xyz + (2y + 1)x , z2},

then φ0(xyz + yx) = 0 hence Corollary 2 holds.
This is (likely) precisely what prevents the specialization to hold in full generality (see other

counter-examples in [14, 19, 15, 5]); the most general possible result is thus probably:
specialization property holds for I if and only if it holds for each of the primary ideals of I.
A proof requires to understand how to recombine the lexGb’s of these primary ideals into a

lexGb of I. The data structure of tree used in the article does not generalize straightforwardly to
such non-triangular lexGb.

Wrap-up algorithm. For sake of completeness pieces built so far are put together in Algo. 5 below.

Reduced lexGb. As already mentioned the algorithm does not compute the reduced lexGb in general.

The reason why is in the definition of χ
(R′)
` at Lines 7, 15 during recursive calls in the computation of

Algo 4. Instead of xw` , any degree w polynomial would do. In the case of ideal of points, Lederer [8]
computes the reduced lexGb without normal forms. Instead of xw, polynomials of “high” degree
with only monomials of low degree with prescribed coefficients are constructed on-demand, in order
to cancel monomials of too-high degree. This on-demand specification, and the number of such
polynomials required make it difficult to analyze the cost of construction.
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Algorithm 5: Final algorithm

Input: triangular sets of the primary ideals of I
Output: A minimal lexGb of I

1 Build the prim-dec tree T
2 assignExp(T ) // build exponent trees

3 G ← ∅
4 for ` = 0 to n− 1 do // top-down

5 minPreleaves ← extract the nodes N ∈ T≤` and minimal exponents σ in EI≤`(N) such

that σ is minimal for ≤mon
6 for (N, σ) ∈ minPreleaves do
7 G ← G ∪ {computePoly(N,σ, root)}

8 return G

In this work instead we give a simple optimization that still does not yield the reduced one, but
reduces furthermore the number of monomials. If one really needs the reduced lexGb, then taking
normal from computations are less expensive.
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