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Abstract

The original motivation of this work is to compute the 2nd largest eigenvalue and the
girth (and more generally the shortest cycle at any vertex) of new families of Cayley graphs
based on octonions. This new construction is modeled after the famous Ramanujan graphs
of Lubotzky-Phillips-Sarnak & Margulis, which are Cayley graphs based on quaternions, and
famously hold remarkable properties with respect to the 2nd eigenvalue and the girth. As
revealed by the computational experiments, the new octonion-based graphs do not hold the
same properties. However these new graphs are of interest in graph theory as non-associative
Cayley graphs, which likely hold other interesting properties. Implementations are realized
in the algebra software Magma. A discussion on the algorithms and a complexity analysis
are provided for those Cayley graphs in particular. The package that accompanies this
article may serve more general purpose computations with graphs.

1 Introduction

1.1 Overview

Since their introduction in the mid 80’s, the Ramanujan graphs [16, 18] have attracted a large
amount of subsequent works from different communities of researchers. They realized indeed
two major breakthroughs, first that of providing excellent explicit expanders, and second, by
displaying no short cycle, or equivalently having a large girth.

In all these subsequent works, none considered though the possible use of octonions, whereas
quaternions were used in [16, 18]. This is the main purpose of the present work, showing that by
using arithmetic of integral octonions and properties of simple Moufang Loops a totally similar
construction is indeed possible. For each odd prime number p, an infinite family of p3+1-regular
Cayley graphs based on these octonions are obtained. However, the non-associativity does not
allow to prove the same remarkable properties as hold by the Ramanujan graphs after which
they are modeled. To check that, we implemented these graphs1 and computed explicitly their
girth and 2nd largest eigenvalue. The outcome of these experiments is a negative answer: despite
the striking similarities between the construction of Cayley graphs based on quaternions and
octonions, they (unfortunately) do not share the same remarkable properties. Though, they are
of interest in graph theory as the first construction of Cayley graphs based on Moufang loops
arising from octonions algebras (for Cayley graphs of degree 3 based on different Moufang loops,
obtained “artificially” from doubling groups see [12]).

1The package can be downloaded at http://xdahan.sakura.ne.jp/Package/graph.html
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The implementation that we have realized requires to handle huge graphs and thus we
put a particular care on performance. This implementation is focused on Cayley graphs of
quaternions and octonions, however may serve for more general Cayley graphs.Indeed the 2nd

largest eigenvalue and the large girth property find many applications in theoretical computer
science, but also industrial ones. We describe below some of them.

1.2 Applications

Despite that the newly introduced graphs are (likely) not expander graphs and do not have
large girth in general, the computation of the second eigenvalue and of the girth is important
for the applications below.

Preliminaries When a directed graph G = (V,E) is connected, the largest eigenvalue of its
adjacency matrix has multiplicity one and its eigenspace is generated by the vector (1, . . . , 1)t.
If the graph if moreover d-regular this largest eigenvalue is d. The 2nd largest eigenvalue is
usually denoted λ(G) and for an infinite family of degree d-regular graphs Gn, if λ(Gn) remains
uniformly small, far away from d, then the graphs are good expanders. If λ(Gn) ≤ 2

√
d− 1

for large n then the family is Ramanujan. This is essentially the smallest value a second
largest eigenvalue of a regular graph can reach according to the Alon-Boppana bound [23, 29]:

λ(G) ≥ 2
√
d− 1−Om(

√
d−1

logm ), for any d-regular graph G of order m.
Besides this remarkable property, the graphs [16, 18] hold the current record on the girth:

girth(Gn) ≥ 4
3 logd−1 |Gn|. This is to compare with the (theoretical) upper bound girth(Gn) ≤

2 logd−1 |Gn| for an infinite family (Gn)n of d-regular graphs and for large n. (the tightness of
this bound is a notoriously difficult problem.)

Expanders First of all, these graphs provide excellent expander graphs which have proved
to be quite useful objects. They serve as model to build economical (in the sense of number
of connections) but sufficiently connected network, hold naturally some randomness and are
useful in a variety of constructions in theoretical computer science. This stems for the fact that
a random walk on a good expander graph has typically a rapid mixing time: it converges quickly
to the random distribution (on the set of all vertices). We are brief on these applications, since
otherwise it will be difficult not paraphrasing the survey [13] dedicated to expander graphs and
(some) of their applications.

Spectral partitioning & clustering The problem is to compute a partition in two or more
sets of vertices with conditions on the number of edges connecting each components. The
sparsest cut problem is an instance of partitioning where the conductance (or ratio-cut) is
minimal. It is known to be NP-hard, while a relaxation version (due to Leighton and Rao)
which can be stated in term of a Linear Program has a polynomial time solution [28].

Spectral clustering often refers to a more general problem that of graph partitioning in that
the number of components is not known in advance and the balance constraint, given as an
upper bound on the size of each set in the partition, is removed. The term “clustering” refers to
clustering of data in Statistics and has a far range of applications in e.g. big data visualization
and data mining. The technique of spectral clustering is somehow related to the computation
of the second, or first k largest eigenvalues and their associated eigenspaces. The power method
or generalization of it like the Rayleigh quotient is a key computational tool [2], as it is in the
experiments realized here on these newly introduced graphs. However, we put emphasize in
that the graphs are Cayley graphs for which more efficient, yet more simple algorithms can be
set.
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Large girth & LDPC Codes Computing the girth of graphs, as we did here for these
new graphs, is motivated by applications related to error-correcting codes theory, and more
precisely for “Low Density Parity Check” (LDPC) codes. This approach was pioneered by
Margulis in [19], where he gave the first constructive example of a family of LDPC codes of
unbounded minimum distance by providing explicit families of regular graphs of large girth.
Such a property is quite useful in this context for several reasons:
(i) Tanner gave in [26] a construction of codes based on graphs together with a lower bound on
the code minimum distance growing exponentially with the girth;
(ii) these LDPC codes are decoded with the help of iterative decoding algorithms working on
a certain graph associated to the code construction and the performance of such algorithms
is known to deteriorate in the presence of small cycles. This phenomenon is related to the
fact that these iterative decoding algorithms compute symbol probabilities conditioned on an
exponentially large (in the number of iterations) number of received symbols as long as the
number of iterations is smaller than half the girth [10], but that does not hold anymore for a
larger number of iterations.

1.3 Organization of the paper

Section 2 introduces quickly the background materials on octonions necessary to grasp the
construction of the new octonion based graphs (Subsection 2.1), as well as a comparison with
the construction of the LPS Ramanujan graphs which are based on quaternions (Subsection 2.2).

Then in Section 3 we present the outcome of the computations realized with our Magma
implementation2. First, the implementation is tested on the LPS Ramanujan graphs for which
explicit theoretical bounds are provided. After checking that the returned values match the
theoretical ones, we report on experiments realized on the octonon-based graphs. The conclusion
is that the graphs tested do not seem to have large girth and are not Ramanujan. Some tables
are reported at the end of the article Appendix D due spacing requirements.

Section 4 reports about the implementation of the algebraic structures underlying the con-
struction of Cayley graphs (that we will denote Xp,q, Yp,q for the quaternion based ones, and
Xp,q and Yp,q for the octonion-based ones, see Subsection 4.1). The algorithms used to compute
the girth, and the 2nd largest eigenvalue through the power method are reported in Subsec-
tions 4.2, 4.3 respectively.

Finally, in the first three Appendices, the complete construction of the octonion-based Cayley
graphs is given with detailed proofs. This part is crucial but quite technical, justifying the
summary given in Subsection 2.1.

2 Graphs based on quaternions and octonions

This section gives an overview of the construction of the new graphs based on octonions, and
for readability contains also a short comparison with the famous construction of Ramanujan
graphs, which rather use quaternions and after which they are modeled. For a complete and
detailed presentation with proofs see Appendices A, B, C.

2.1 A new family of Cayley graphs based on octonions

Moufang loop It is customary to define a Cayley graph by imposing a group but the con-
struction allows actually weaker algebraic structures. For example, left quasi-groups [22] in
which invertible elements do not necessarily exist. With left and right inverses, we have the

2http:://xdahan.sakura.ne.jp/Package/graph.thml
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Moufang loops [3] which are the non-associative structures the closest to groups. Structures
related to invertible elements of octonion algebras are generally Moufang loops, and thus all
Cayley graphs in this work will be on such Moufang loops. A first word about the implemen-
tation may be in order: there is no particular change to care of between implementing Cayley
graphs based on groups or on Moufang loops.

Overview of octonions. The purpose of this paragraph is to provide a minimal material
about octonions to understand how the Cayley graphs were implemented. For a comprehensive
presentation with detailed proofs, see Appendix A.

An octonion algebra O(R) over a commutative ring R is an 8-dimensional R-module which
contains two copies of the same quaternion algebra H(R). Let (1, i, j, k) denotes the usual basis
of Hamilton quaternions. It yields the equality of R-modules O(R) = H(R)⊕H(R)t, where t is
a new element of the basis of the 8-dimensional R-module. An octonion is written:

α = α0 + iα1 + jα2 + kα3 + tα4 + itα5 + jtα6 + ktα7, ( identified with (α0, . . . , α7)) (1)

The standard conjugation of the quaternions in H(R) extends to O(R) by defining 1̄ = 1 and
α+ βt = ᾱ− βt for any α, β, ∈ H(R). The multiplication follows the Cayley-Dickson doubling
process [5] which, given four quaternions q1, q2, q3, q4 ∈ H(R), is defined as follows:

(q1 + q2t)(q3 + q4t) = q1q3 − q̄4q2 + (q4q1 + q2q̄3)t.

Assuming the equality qiqj = qjqi true for quaternions, it follows in particular that αβ = β̄ᾱ for
α, β ∈ O(R). It is noteworthy that if H(R) is not commutative, then O(R) is not associative.

The norm of an octonion α is N(α) = αᾱ = ᾱα. It can be shown, and it is fundamental
that, the norm is multiplicative: N(αβ) = N(α)N(β). The set of invertible octonions is then

O(R)⋆ = {α : N(α) ∈ R⋆}.

Factorization of integral octonions In the following R will be either a finite prime field
Fp of characteristic ̸= 2, either Z or Q. As for Gauss integers, and quaternions, it is possible
to define a kind of unique factorization for an octonion in O(Z), due to Rehm [25]. First of all,
we isolate a special set of prime octonions (that is of norm p for a prime p) P(p) as follows
(see (17)). We write α > 0 to mean that the firs non-zero component of α is > 0.:

P(p)
def
= {α ∈ O(Z) : α > 0 , N(α) = p , α− 1 ∈ 2CO} (2)

where CO is a set defined by a parity condition on the 8 components forming the octonion, see
Lemma 1 for technical details. The cardinal of P(p) is p3 + 1, and it is stable by conjugation
(if π ∈ P(p), then π ∈ P(p) as well). Given α ∈ O(Z), N(α) = pℓ, let c(α) be its content:
it is the positive gcd of its 8 integer coefficients (taken in any Z-basis). Let m be such that
N(c(α)) = p2m. Then there exits ℓ−2m octonions in P(p), π1, . . . , πℓ−2m uniquely determined
(see Theorem 4), such that:

α = ±c(α) ((· · · ((π1π2)π3) · · · )πℓ−2m)

It is important that two consecutive prime octonions in the writing above are not conjugate
each other: πi ̸= πi+1.

This unique factorization property is used to show that two products satisfying the conditions
above yield two distinct octonions if at least one prime factor is distinct among the two products.
This shows that the regular graph defined hereunder is the infinite p3 + 1-regular tree.
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• the root corresponds to the void product

• the p3 + 1 neighbors of the root are the p3 + 1 prime octonions in P(p).

• LetN be a vertex defined by the product (· · · ((π1π2)π3) · · · )πℓ (πi ∈ P(p), no consecutive
prime πi, πi+1 are conjugate). Then, p3 neighbors are defined as:

{((· · · ((π1π2)π3) · · · )πℓ)πℓ+1 : πℓ+1 ∈ P(p), πℓ+1 ̸= πℓ}.

• And the last neighbor of N is (· · · ((π1π2)π3) · · · )πℓ−1.

This regular tree admits a description in term of Cayley graphs on a loop (see Appendix B
for details and proofs).

The Cayley graphs. Given an octonion α ∈ O(Z), a prime q, α mod q denotes the octonion
in O(Fq) where the 8 coordinates of α are reduced modulo q: (α0 mod q, α1 mod q, · · · , α7 mod
q). Let Z = {α ∈ O(Fq)

⋆ : αβ = βα, ∀β ∈ O(Fq)
⋆} be the central (sub)group of O(Fq)

⋆. It
is equal to {α ∈ O(Fq)

⋆ : α1 = α2 = . . . = α7 = 0} and thus can be identified as Z ∼ F⋆
q (see

Appendix C). Define next the subloop of O(Fq)
⋆ consisting of octonions of norm ≡ 1 mod q

M1 = {α ∈ O(Fq) : N(α) = 1 mod q}

Then its central subgroup is simply {±1}, which are the only two octonions in Z of norm
≡ 1 mod q. Here is how the new Cayley graphs are defined. Below p denotes a prime number
smaller than q.

• Moufang loop (defining the vertices): O(Fq)
⋆/Z if

(
p
q

)
= −1, and M1/{±1} if

(
p
q

)
= 1.

• Cayley set (defining the adjacency): Sp,q := {(π mod q)Z : π ∈ P(p)} ⊂ O(Fq)
⋆/Z if(

p
q

)
= −1, or

Sp,q := {(π mod q){±1} : π ∈ P(p)} ⊂ M1/{±1} if
(
p
q

)
= 1.

It is the image of P(p) by the map µq defined below (µq(P(p)) = Sp,q)

µq : {α ∈ O(Z) : N(α) ̸≡ 0 mod q} mod q−−−−→ O(Fq)
⋆ mod Z−−−−→ O(Fq)

⋆/Z. (3)

We have indeed Image(µq) = O(Fq)
⋆/Z if

(
p
q

)
= −1 and Image(µq) ≃ M1/{±1} if(

p
q

)
= 1 (See Lemma 4).

• Denote Xp,q = Cay(O(Fq)
⋆/Z , Sp,q) if

(
p
q

)
= −1, or

Yp,q = Cay(M1/{±1} , Sp,q) if
(
p
q

)
= 1.

Cayley graphs of Moufang loops are not necessarily vertex-transitive (multiplication by an
element yields no more an automorphism of graphs as it is trivially the case for Cayley graphs
on groups). The following properties hold.

Property: (see Appendix C: Definition 5, Lemma 5,Propositions 5 and 6)

• Xp,q is bipartite of order q7 − q3

• Yp,q is non-bipartite of order 1
2(q

7 − q3)

• Both are p3 + 1-regular and connected.

• the length of a shortest cycle at the identity vertex is ≥ 12
7 logp3 |Xp,q| − 2 logp 2.
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2.2 Comparison with the quaternion-based Ramanujan graphs

The construction above is inspired by that of Lubotzky-Philips-Sarnak’s Ramanujan graphs.
In order to compare the two constructions, and since we include experimental results on those
graphs as well, this subsection briefly recalls how the LPS Ramanujan graphs were built.

For two prime numbers p < q, let H(Fp)
⋆ and H1 denote the set of invertible quaternions

and the set of quaternions of norm 1 respectively, over Fp. We exclude the case p ≡ 1 mod 4
in this succinct presentation since it induces some slight complications (See [7, Proposition 2.3,
Equality (8)] for the whole generality).

Similarly to the set P(p) defined above (and in detail in Equality (17)) for octonions, unique
factorization in quaternions (known since Hurwitz...) requires a special set of prime quaternions

Q(p) := {π = (a0 + a1i+ a2j+ a3k) ∈ H(Z) : N(π) = p, a0 > 0, π − 1 ∈ 2H(Z)}. (4)

The cardinal of this set is p+ 1.
We denote Dp,q := (Q(p) mod q) modulo Z, where Z ∼ F⋆

q is the central subgroup of H(Fq)
⋆.

It is the image of Q(p) through {α ∈ H(Z) : N(α) ̸≡ 0 mod q} → H(Fq)
⋆/Z. If

(
p
q

)
= −1

then ⟨Dp,q⟩ = H(Fq)
⋆/Z and ⟨Dp,q⟩ = H1/{±1} ⊂ H(Fq)

⋆/Z if
(
p
q

)
= 1.

Then Xp,q := Cay(H(Fq)
⋆/Z,Dp,q) when

(
p
q

)
= −1 and Yp,q = Cay(H1/{±1},Dp,q) when(

p
q

)
= 1.

Property:

• (see [16]) Xp,q is bipartite of order q
3−q and Yp,q is not bipartite of order

1
2(q

3−q). Both
are connected and p+ 1-regular.

• The girth of graphs Xp,q verifies (see [1]):

4 logp q − logp 4 ≤ girth(Xp,q) < 4 logp q + logp 4 + 2, (5)

and girth(Yp,q) ≥ 2 logp q − logp 2.

• (see [16], or [18]) The second largest eigenvalue verifies: λ(Xp,q)
(⋆)
≤ 2

√
p (which means that

for each prime p, the infinite families of graphs {Xp,q}q and {Yp,q}q are Ramanujan).

3 Experimental Results

The girth and the spectral properties of the graphs of Subsection 2.2 could be thoroughly
checked with the implementation presented in the next section. For the octonion-based graphs
Xp,q and Yp,q, being larger, checking whether these properties hold is more difficult than for the
quaternion-based Xp,q and Yp,q. However on each graph we have checked, none seem to have
large girth and none are Ramanujan.

Implementation details and algorithms are discussed in the next section.

3.1 Checking the Ramanujan property of the Lubotzky-Philips-Sarnak graphs

In this subsection are presented some experimental results of our implementation of the LPS
graphs. For these graphs, precise theoretical results are known on the girth (Equation (5)) and
on the 2nd largest eigenvalue (inequality (⋆) below Equality (5)) and it is thus possible to check
the correctness of the implementation.
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Example of p = 37 We start by experimental results verifying the Ramanujan property, with
a sample of graphs of degree p + 1 = 38: Y37,41 (Table 4), Y37,71 (Table 5), X37,109 (Table 6).
The property to check is namely λ(X37,q) or λ(Y37,q) ≤ 2

√
37 ≈ 12.165. As the tables show this

inequality is verified.

Example of p = 47 Next, we have checked the Ramanujan property for graphs of degree
p+ 1 = 48 and for all primes q from 53 up to 113. We reproduce the results for q = 53, 83, 113
(Tables 7, 8, 9 respectively). The Ramanujan bound is 2

√
47 ≈ 13.71. As the tables show this

inequality is verified.

How to read the tables? The first line shows the time necessary to generate all the nodes,
denoted Hp,q (for quaternions it is either H(Fq)

⋆/Z or H1/{±1}) and it is the first Step of
Algorithm 2. The second line displays the time necessary to construct the initial vector x(0) as
described in Step 2 of Algorithm 2. The third line is the timing required to build the adjacency
table. It requires a lot of memory but induces considerable speed-up at each iteration of the
power method. Lines coming after these three ones are easy to understand: they show the iter-
ation number, the corresponding timing to achieve the current iteration and the approximation
of the eigenvalue obtained.

3.2 Eigenvalue computation for the new octonion based graphs

Due to the quickly increasing order of these graphs that exhausts the computational resources,
only few experiments with the smallest parameters could have been undertaken: X3,5 (Table 10),
X3,7 (Table 11), Y3,11 (Table 12). These are sufficient to see that the Ramanujan bound
2
√
27 ≈ 10.392 is not verified in each case which clearly show that the graphs are not Ramanujan,

according to Corollary 1.
See the previous subsection for explanations on how to read the tables.

3.3 Checking the girth of LPS Ramanujan graphs

After presenting experimental results about the 2nd largest eigenvalue here are presented some
others, related to the computation of the girth. In the tables 13, 14 of Appendix D, are displayed
experimental results related to the girth of LPS Ramanujan graphs of degree 12 and degree 108.
The column “Girth Range” indicates the possible values as predicted by Inequality (5). Dots
like x . . . means “any value larger than x”. The results perfectly confirm what the theoretical
bounds predict. Many more experiments not reproduced in the paper have been run with the
same conclusion.
Remark: The time to find the girth of some non-bipartite graphs of degree 108 as reported in
Table 14 (values of q = 491, 487, 479, 461, 457, 419, 397, 379, 367, 337, 311, · · · ) can be ≈ 500
times slower than some other computations. The girth is even and is “large”. The reason of
this extra cost is due the generation and management of two lists of nodes necessary to take
into account cycles of odd length (see Algorithm 1) as well as the depth reached in the breadth
search (not indicated in the tables).

3.4 Girth of octonion graphs

In the case of vertex-transitive graphs (like Cayley graphs on groups) it suffices to compute the
length of a shortest cycle at one node to find the girth. The Cayley graphs on Moufang loops
introduced are (likely) not vertex-transitive requiring to check the length of shortest cycles at
each node.
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Lemma 6 states that the cycles going through the identity vertex are long, so the purpose
of these experiments is to answer the question:

Are there such long cycles at all vertices ?

The experimental investigations yield a negative answer in general. The rather “chaotic”
results of the experiments on on small graphs suggest a negative answer for larger graphs as
well.

It was possible to do this without exhausting the 1Gb memory only for the three smallest
graphs X3,5,Y3,7 and Y3,11. For larger graphs, we could only take a sample of nodes randomly
selected and compute the length of a shortest cycle at each nodes of the sample. This way of
doing supplies only an upper bound on the girth, that is why in the column girth of Tables 1, 2,
3, only an inequality symbol ≤ is written. Nonetheless, the results show that the girth is much
smaller than expected and unlikely bring anything interesting in terms of large girth graphs.

We undertook three kinds of experiments concerning the length of cycles.

1. the existence of short cycles (quite cheap and allows to investigate large graphs)

2. Computing the girth

3. Computing the distribution of the length of the shortest cycle going through all/a sample
of vertices

The order of the graphs prohibits to compute the girth in 2. except for rather small values of p
and q, and for 3. to consider large samples. It is however possible to look in 1. for short cycles
for rather large graphs since short cycles do exist and tend to be abundant.

graphs order bipartite girth cycle at identity distrib

X3,5 78000 yes 6 6 6 (100%)

X3,7 823200 yes 6 8 6 (98.81%) and 8
(1.18%)

Y3,11 9742920 no 5 9 5 (54.5%), 6 (41.6%) , 7
(3,8%) , 8 (0.003%), 9
(41 vertices)

Y3,13 31373160 no ≤ 6 9

Y3,23 1702406640 no ≤ 5 memory

Y3,37 47465913240 no ≤ 6 memory

Table 1: Experiments for various degree 28 graphs. The column “distrib” displays the minimal
length of cycles found at each vertices, and inside parentheses the percentage or the number of
vertices through which the shortest cycle has this length

Experiments on degree 28 graphs. They are summarized in Table 1. For example the
table shows that in Y3,13 the girth is lower or equal to 6. Here is a cycle of length 6:

Cycle of length 6 in Y3,13: consider the following 6 elements of P(3)

β4 = (0, 0, 0, 0, 0, 1,−1,−1) β2 = (0, 0, 0, 0, 0, 1,−1, 1)
β15 = (0, 0, 1,−1, 0, 1, 0, 0) β18 = (0, 1, 0, 0, 1, 1, 0, 0)
β13 = (0, 0, 1, 1, 0, 1, 0, 0) β28 = (0, 1,−1, 0, 0, 0, 0,−1)
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And consider the element x = (3, 3, 9, 2, 6, 3, 10, 0) ∈ O(F13)
⋆. Then N(x) = 1 in F13, so that

x ∈ M1. The normal form of x in O(F13)
⋆/Z is x̃ = (−3−1 mod 13)x = (1, 1, 3, 5, 2, 1, 12, 0).

Recall the map µq introduced in (3) (or in more details in (21) of Annex C). We can verify that:

((x̃ ∗ µ13(β18)) ∗ µ13(β13)) ∗ µ13(β28) = ((x̃ ∗ µ13(β4)) ∗ µ13(β2)) ∗ µ13(β15) = (1, 8, 2, 1, 0, 1, 9, 6).

This shows a cycle of length 6 going through the vertex x̃.

Degree 126 = 53 + 1 regular graphs Let us move to the next “smallest” case where p = 5,
yielding degree 126 graphs. Table 2 shows the results of the experiments. Surprisingly, very
short cycles of length 4 are found, indicating that the girth does not necessarily grow with p
nor with the order of the graphs.

graphs order bipartite girth cycle at identity

X5,7 823200 yes 4 6
Y5,11 9742920 no 4 6
X5,13 62746320 yes ≤ 6 8
X3,17 410333760 yes ≤ 6 8
Y5,19 446932440 no ≤ 5 5
X5,23 3404813280 yes ≤ 6 8
Y5,29 8624925960 no ≤ 5 memory
Y5,31 13756292160 no ≤ 6
X5,37 94931826480 yes ≤ 6
Y5,41 97377102480 no ≤ 6
X5,43 271818531600 yes ≤ 6
X5,47 506623016640 yes ≤ 6

Table 2: Computations of the smallest cycle going through the identity vertex in various graphs
for p = 5 (degree 126). And search for the existence of cycles of length 4, 5 or 6 at a sample of
other vertices

Cycle of length 4 in X5,7. There is such a cycle going through the node corresponding to
x = (1, 5, 5, 4, 6, 6, 0, 0) ∈ O(F7)

⋆/Z. Consider the 4 elements γ1, γ3, γ12, γ32 ∈ P(5).

γ7 = (1, 0, 0, 0,−2, 0, 0, 0) γ86 = (1, 1, 0,−1, 0,−1, 0,−1)
γ5 = (1, 0, 0, 0, 0, 2, 0, 0) γ119 = (1,−1, 1,−1, 1, 0, 0, 0)

The cycle of length 4 is defined by the following equalities:

(x ∗ µ7(γ7)) ∗ µ7(γ86) = (x ∗ µ7(γ5)) ∗ µ7(γ119) = (1, 2, 4, 3, 4, 1, 5, 5)

Graphs of degree 344. Taking p = 7, the existence of short cycles was verified until q = 43.
This confirms the observation that the girth does not seem to be a growing function with the
order of the graphs, as should be graphs of large girth.

Cycle of length 4 in Y7,29. Such a short cycle is going through the vertex indexed by
the octonion in normal form x = (1, 10, 1, 8, 11, 4, 25, 8) ∈ O(F29)

⋆/Z. The four elements
δ217, δ199, δ326, δ151 ∈ P(7)

δ217 = (0, 1, 1, 0,−2, 0, 0, 1) δ199 = (0, 1, 0,−2, 1,−1, 0, 0)
δ151 = (0, 0, 2,−1,−1, 0, 0,−1) δ326 = (0, 2, 0,−1, 1, 0, 0, 1)
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graphs order bipartite girth cycle at identity

X7,11 19485840 yes 4 6

X7,13 62746320 yes 4 6

X7,17 410333760 yes 4 6

Y7,19 446932440 no 4 memory

X7,23 3404813280 yes ≤ 6

Y7,29 8624925960 no 4

Y7,31 13756292160 no ≤ 5

Y7,37 47465913240 no ≤ 5

X7,41 194754204960 yes ≤ 6

X7,43 271818531600 yes ≤ 6

Table 3: Search for cycles of length 6 or less in huge degree 344 regular graphs was actually not
difficult: they are abundant

yield to following equality in O(F29)
⋆/Z:

(x ∗ µ29(δ217)) ∗ µ29(δ199) = (x ∗ µ29(δ151)) ∗ µ29(δ326) = (1, 28, 12, 18, 3, 15, 16, 23),

and thus a cycle of length 4.

4 Implementation details

4.1 Representation of Cayley graphs

A Cayley graph is fully encoded by the set of nodes (a quaternion group or a Moufang loop
in our case) and the Cayley set. Note that to reduce memory consumption, it is sufficient to
encode the Cayley set only and build vertices on-demand. This way of doing is commonplace in
iterative methods in linear algebra where only matrix/vector products are needed, and where
the matrix is stored as a “black-box”. This is the case for computing the girth. For computing
the 2nd largest eigenvalue, it is faster to pre-compute all the vertices if memory space is not a
problem. Indeed, having this list acts as a “look-up table”. When the memory demand is too
excessive to store the adjacency table, the computation may still be possible while much slower.
For an example of graph whose adjacency table’s construction exceeds the memory capacity,
see the graph Y3,11 (Section 3.2) and timings in Table 12.

Quaternions and octonions We implemented the Cayley-Dickson doubling process [5] to
generate the multiplication rules of quaternions and octonions. While quaternions are already
implemented in Magma, octonions are not and the flexibility of this process, which allows to
perform various checking for correctness motivated choosing this process to compute the multi-
plication table of both quaternions and octonions. Once the multiplication table is constructed,
Magma provides a functionality to create algebras. It also supplies with homomorphism maps
which we used to generate the algebras O(Fq) from O(Z). In those algebras an octonion is
coded by a 8-dimensional vector, or a list of 8 elements easier to manipulate.

Next, the special set of prime octonions P(p) (see (3), (21)) or of quaternions Q(p) is
generated without difficulty by brute force (with some obvious refinements as suggested by the
properties held by the elements in P(p)) since this set is small. In the code, this set is recorded
in the global variable named PGLOBAL in the remainder of the implementation.
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Representation of in quotient of “Moofang loop” We use normal forms to represent
an element in O(Fq)

⋆/Z or M1/{±1}, where M1 = {α ∈ O(Fq) : N(α) = 1}. A list of 8 elements
in Z is in normal form if its first non-zero coordinate is equal to 1.

Indeed given α ∈ O(Fq)
⋆ (or M1) there is a unique vector α̃ = (a0, a1, . . . , a7) (with entries

in Z) which encodes the classes αZ ∈ O(Fq)
⋆/Z (or the classes ±α ∈ M1/{±1}). It is defined

by inverting the first non-zero coefficient xfirst and multiplying it by α: α̃ = x−1
firstα is in normal

form.
In the package that accompanies this article, the set denoted Hp,q is a set of elements in

O(Fq)
⋆ in normal form (hence representing O(Fq)

⋆/Z if
(
p
q

)
= −1 or the set of elements in

M1/{±1} when
(
p
q

)
= 1). This necessary step in the implementation has a running-time linear

in the order of the graphs.

4.2 Computing the girth

We search for the shortest cycle at the identity for Cayley graphs based on groups Xp,q and Yp,q
(quaternions), or, at each cycle for the Cayley graphs Xp,q and Yp,q based on octonions. This
latter computation was done only for p = 3 and q = 5, 7, 11, 13 where the outcome is displayed
in Table 1.

To find the shortest cycle at a given node we use the following “breadth-first” search algo-
rithm adapted to Cayley graphs.

Two tables Tab and newTab are maintained. The former contains vertices computed at a
given distance ℓ−1 from the starting vertex v0 and the latter table contains vertices at distance
ℓ currently being computed from a vertex x in Tab: newTab = newTab∪ {NormalForm(xy) :
y ∈ P(p)} . A cycle is detected if an element currently being computed and to be input in
newTab happens to be already in one of the two tables (a kind of collision). The size of the
tables increase exponentially so we have optimized our code to maintain only necessary elements
in the two tables (this is not written in Line 15, where all elements in newTab are computed
before filling its content to Tab at the end of an iteration).

The record of the edges forming a path from the starting vertex x0 and to the currently
computed vertex is not written in Algorithm 1 since it complicates unnecessarily the matter.
Following the construction of Cayley graphs in this work, by taking “ finite quotients” of an
infinite regular tree, this simply amounts to track record of indices of elements in P(p) used
for the walk, and to check for a “collision” by reduction modulo q of the coordinates. We recall
that elements of P(p) in normal form are stored in a global variable called PGLOBAL.

Comparison with built-in function “girth” of Magma. Octonions are not pre-implemented
in Magma but quaternions are. In this case, it is actually more natural to use matrix groups
PGL2(Fq) or PSL2(Fq): it is a well-known fact that PGL2(Fp) ≃ H(Fq)

⋆/Z and PSL2(Fq) ≃
H1/{±1} with the notations of Subsection 2.2 (see e.g. [8, Proposition 2.5.2]). Then to con-
struct a Cayley graph using the function CayleyGraph, and finally use the Girth function. The
first obstacle is the way Magma represents matrix groups PSL2(Fq) and PGL2(Fq), not well-
suited for our purpose: it uses representation though permutation groups. This representation
is indeed customary in the realm of Computational Group Theory, but for performance comput-
ing in Cayley graphs, the simpler normal forms as mentioned above are more suited. Moreover,
the function CayleyGraph does not support such data, complicating the matter furthermore.
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Algorithm 1: Shortest cycle at a node v0 (high-level algorithm)

Input: An element v0 ∈ Hp,q in normal form (Hp,q represents either O(Fq)
⋆/Z or

H(Fq)
⋆/Z if graphs are bipartite, either M1/{±1} or H1/{±1} otherwise)

PGLOBAL, set representing P(p)
Output: Length of a shortest cycle, and coordinates of the edges in this cycle

1 ℓ = 1, Tab = [v0] // store vertices at distance ℓ− 1 from v0
2 newTab = [ ] // store vertices at distance ℓ from v0
3 while no cycle found do
4 for x ∈ Tab do
5 for y ∈ PGLOBAL do
6 z = x ∗ y (computed in Hp,q: first in H(Fp) or O(Fp) and then the normal

form is taken)
7 if z ∈ newTab then // test for a cycle of even length

8 return 2ℓ, and the two paths from x to z: the one just computed
v0 → · · · → x → z, and the one previously computed

9 else if z ∈ Tab then // test for a cycle of odd length

10 return 2ℓ− 1 and two paths from v0 to z: the one of length ℓ just
computed v0 → · · · → x → z and one of length ℓ− 1 previously computed

11 else // no cycle found

12 newTab = newTab cat [z]

13 end

14 end
15 ℓ = ℓ+ 1, Tab = newTab, newTab = [ ]

16 end
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4.3 Computing the 2nd largest eigenvalue

The standard method to approximate largest eigenvalues of graphs is the power method. There is
an extensive literature on the subject, and in the context of regular expanders the introductory
reference that we recommend is that of Luca Trevisan [27].

The power method fundamentally approximates the largest eigenvalue and its eigenspace,
but can easily be adapted to compute the 2nd largest one if the eigenspace of the largest one
is known. The algorithm is probabilistic Las Vegas, the rate of convergence depends partly on
how far is the initial guess from the eigenspace of the 2nd largest eigenvalue. But it depends
especially on the quotient between the 3rd and 2nd one largest eigenvalue.

The main iteration is the following, where A is the adjacency matrix.

Choose x(0) ∈ {−1, 0, 1}n randomly and for i ≥ 0 x(i+1) = A ·x(i), λ(i+1)2 def
=

∥x(i+1)∥2

∥x(i)∥2
(6)

Theorem 1 Let λ0 = d > λ1 = λ(G) ≥ λ2 · · · ≥ λn−1 be the eigenvalues of the graph G. Let µ

the smallest eigenvalue in absolute value: µ
def
= infi{|λi| > 0}, and σ the 3rd largest eigenvalue:

σ
def
= maxi≤2{λi} = maxi{λi < λ1}.

(H) Assume that the initial vector x(0) ∈ ker(A− λ0Id)
⊥ = ⟨(1, 1, . . . , 1)⟩⊥. (in the bipartite

case, assume additionally that x(0) ∈ ker(A− λn−1Id)
⊥ = ⟨(1, . . . , 1,−1, . . . ,−1)⟩⊥)

Let p1 be orthogonal projection on ker(A− λ1Id) (or on ker(A− λ1Id)⊕ ker(A− λn−2Id)
in the bipartite case), and assume that n2

1 = ∥p1(x(0))∥2 is ̸= 0.

Denote by m the multiplicity of λ1 (so that σ = λ1+m) and by α the ratio of non-zero coefficients
in the choice of x(0). Then the sequence λ(i) defined in (6) converges to λ(G) = λ1 with:

1−
(
n2α2 − n2

1

n2
1

)(
σ

λ1

)2i−2(
1−

(µ
λ 1

)2)
≤ λ(i)2

λ2
1

≤ 1 (7)

Remark 2 A few remarks before the proof:

(a) The convergence rate depends on how far is the 3rd largest eigenvalue σ from λ1. Since
0 < σ

λ1
< 1, the convergence rate decreases with the number of iterations. Experiments in

Subsections 3.1, 3.2 perfectly reflects this speed decrease: higher iterations produce little
precision gain.

(b) This kind of theorem is classic but in most cases, λ(i) is approximated by x(i−1)tAx(i−1)

x(i−1)tx(i−1)
(∗)

rather than by ±∥Ax(i−1)∥
∥x(i−1)∥ which has the advantage to keep record of the sign: the conver-

gence rate does not involve squares of λ(i) like in (7). Note that since λ1 > 0 in our case,
the sign does not matter.

(c) It is also more customary to state the convergence rate additively. For example [11, Theorem
8.2.1] the approximation of the largest eigenvalue λ0 by λ(1), λ(2), . . . is defined though the

iteration (∗) in (b). The convergence rate is given by: |λ(k)−λ0| ≤ 1−x(0)t·q0
x(0)t·q0

|λ0−λn−1|
∣∣∣λ1
λ0

∣∣∣2k,
where λ0 is assumed to be simple that is λ0 > λ1, where q0 is a vector of 2-norm 1 that
generates the eigenspace for the eigenvalue λ0, and where the initial vector x(0) ∈ ⟨q0⟩⊥

(equivalently x(0)
t · q0 ̸= 0) is of 2-norm 1. In our case, the convergence rate (7) stated

additively is very similar:

0 ≤ λ2
1 − λ(i)2 ≤

(
n2α2 − n2

1

n2
1

)(
σ

λ1

)2i−2

(λ2
1 − µ2).
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(d) Choosing α small, that is choosing x(0) with any zero entries among {−1, 0, 1}, accelerates
slightly the convergence, but on the other hand it is more difficult to guarantee that x(0)

is “far” from the eigenspace ker(A − λ1Id) (and of ker(A − λn−1Id) in the bipartite case).
Note that his latter condition is impossible to check in advance.

Proof: Consider an orthonormal basis q0, q1, q2, . . . of eigenvectors for A, so that A
i·qℓ = λi

ℓqℓ.
If we write the initial vector x(0) in this basis x(0) =

∑n−1
ℓ=0 aℓqℓ, then x(i) =

∑n−1
ℓ=0 aℓλ

i
ℓqℓ, where

aℓ = qtℓ · x(0). Note that by assumption a0 = 0 (also an−1 = 0 in the bipartite case), and
n2
1 = ∥p1(x(0))∥2 ̸= 0. From ∥x(i)∥2 =

∑n−1
ℓ=0 a2ℓλ

2i
ℓ and regarding the multiplicity m of λ1, we

have: ∥x(i)∥2 = λ2
1n

2
1 +
∑

ℓ>m a2ℓλ
2i
ℓ (in the bipartite case, change

∑
ℓ>m by

∑n−2−m
ℓ=m+1 and recall

that λn−2 = −λ1)

By definition of the approximated sequence (λ(0)2, λ(1)2, λ(2)2, . . . ) in (6):

λ(i)2 =
∥x(i)∥2

∥x(i−1)∥2
=

n2
1λ

2i
1 +

∑
ℓ>m a2ℓλ

2i
ℓ

n2
1λ

2i−2
1 +

∑
ℓ>m a2ℓλ

2i−2
ℓ

=
|λ1|2i

|λ1|2i−2
·

n2
1 +

∑
ℓ>m

(
λℓ
λ1

)2i
n2
1 +

∑
ℓ>m

(
λℓ
λ1

)2i−1
= λ2

1 ·
n2
1 +Bi

n2
1 +Bi−1

, (8)

where Bi =
∑

ℓ>m a2ℓ

∣∣∣λℓ
λ1

∣∣∣2i. (in the bipartite case, replace
∑

ℓ>m by
∑n−2−m

ℓ=m+1 ). Regarding the

definition of µ and σ, we obtain µ
λ1

≤ |λℓ|
λ1

≤ σ
λ1
. Moreover, regarding the definition of α, we get

∥x(0)∥2 = α2n2:

(n2α2 − n2
1)

(
µ

λ1

)2i

≤ Bi ≤ (n2α2 − n2
1)

(
σ

λ1

)2i

On the other hand,

n2
1 +Bi

n2
1 +Bi−1

=
n2
1 +Bi−1 − (Bi−1 +Bi)

n2
1 +Bi−1

= 1− Bi−1 −Bi

n2
1 +Bi−1

. (9)

Next, we bound this latter term. Thanks to the formula for Bi−1 −Bi hereunder:

Bi−1 −Bi =
∑
ℓ>m

a2ℓ

∣∣∣∣λℓ

λ1

∣∣∣∣2i−2

− a2ℓ

∣∣∣∣λℓ

λ1

∣∣∣∣2i = ∑
ℓ>m

a2ℓ

(
λℓ

λ1

)2i−2
(
1−

∣∣∣∣λℓ

λ1

∣∣∣∣2
)
,

(in the bipartite case, replace
∑

ℓ>m by
∑n−2−m

ℓ=m+1 ) we obtain the following upper and lower
bounds:

Bi−1 −Bi ≤ (n2α2 − n2
1)

(
σ

λ1

)2i−2
(
1−

(
µ

λ1

)2
)

n2
1 +Bi−1 ≥ n2

1 +

(
µ

λ1

)2i−2

> n2
1.

From Equation (9),

n2
1 +Bi

n2
1 +Bi−1

≥ 1−
(n2α2 − n2

1)
(

σ
λ1

)2i−2 (
1− ( µ

λ1
)2
)

n2
1

Now by equality (8) λ(i)2

λ2
1

=
n2
1+Bi

n2
1+Bi−1

, achieving the proof. 2

To check if the graphs are Ramanujan or not we use the following Corollary.
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Corollary 1 If x(0) verifies the condition (H) of Theorem 1, then the sequence (λ(k))k is growing
and converging to λ(G) = λ1.

In particular, if |λ(k)| > 2
√
d− 1 for some k, then the graph is not Ramanujan. (even if the

condition that x(0) must not be orthogonal to the eigenspace of λ1 is not met, since it implies
that the approximates λ(i) are even smaller).

Algorithm There is no built-in functionality in Magma to approximate the eigenvalue of
graphs. The implementation follows the above power method, with some minor adaptations
that allow Cayley graphs, in the following way. As major iterative methods for matrices,
the power methods only handle matrix/vector products making unnecessary the storage of the
whole matrix. This is particularly beneficial here for two reasons: the adjacency matrix is sparse
and the product matrix/vector simply amounts to look-up for the neighbors of a given entry
(=vertex, denoted x(i)[ℓ]):

x(i)[ℓ] =
∑
ℓ′∼ℓ

x(i−1)[ℓ′]

where x(i)[ℓ] denotes the ℓ-th entry of the vector x(i), and the neighborhood of the vertex indexed
by ℓ is computed within d operations in O(Fq). This can be computed in time O(nd), which
is almost linear in O(n) since d ≪ n, still yielding an almost linear time algorithm to compute
the vector x(i) from x(i−1).

While the iterations are computed, huge numbers appear but the underlying algorithms
in Magma are designed to handle exact arithmetic very efficiently and doing numerical ap-
proximations in order to reduce the sizes of these numbers did not accelerate substantially the
computations. The bottleneck that actually restricts the range of tests is the memory usage
limitation to 1Gb. This appears quickly insufficient to store the octonions representing each
vertices, all these data being indeed required at each iteration. Neither is provided a paralleliza-
tion facility by Magma that would allow several processes to communicate their results each
other.

Algorithm 2: Power method to approximate the 2nd largest eigenvalue

Input: symmetric subset S = S−1 of a group or a Moufang loop G
Number of iterations L

Output: Approximation of the 2nd largest eigenvalue λ(G ) of the Cayley graph
G = Cay(G,S)

1 Generate all elements in normal form in the group or Moufang loop ⟨S⟩ // This allows

fast access to coordinates of vector in Line 6 (but requires more memory)

2 Choose a random vector x(0) ∈ {−1, 0, 1}n verifying Condition (H) in Theorem 1

3 N0 = ∥x(0)∥2 ; N1 = 0
4 for i from 1 to L do
5 for ℓ ∈ G do

6 x(i)[ℓ] =
∑

g∈S x(i−1)[ℓ · g] // ⌈·⌋ refers to the product in G

7 N1 = N1 + |x(i)[ℓ]|2 // the vertex ℓ · g is a neighbor of g

8 end

9 λ =
√
N1/

√
N0 // Here, λ is equal to λ(i)

10 N0 = N1 ; N1 = 0

11 end

12 return λ // Here, λ is equal to λ(L).
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Appendix A Preliminaries on octonions

All the material on octonions required for this work is contained in the article of Rehm [25],
where a more substantial bibliography can be found. A good complementary material is Ch.9
of [5]. For convenience, we recall the main theorems along with setting notation.

Octonions. We denote by O(R) (or simply by O when the meaning of R is clear from the
context) the octonion algebra over a commutative ring R, that is the 8-dimensional R-module
with canonical basis denoted by 1, i, j, k, t, it, jt, kt, usually referred as the unit bases. The only
rings considered here are R = Z,Q,Fp. A unit basis x ̸= 1 verifies x2 = −1. Here 1, i, j, k is the
usual quaternion basis and satisfies

i2 = j2 = k2 = −1, ij = k. (10)

The conjugate of an octonion α = a0 + a1i+ · · ·+ a7kt is α
def
= 2a0 − α. It is a (ring) antiauto-

morphism of O, that is a bijection of O that satisfies for any α, β in O:

1̄ = 1

α+ β = α+ β

αβ = βα. (11)

If we let the quaternion algebra H be the R-module with basis 1, i, j, k, then the octonions can
be viewed as O = H + Ht. The multiplication of octonions is completely determined by the
multiplication of quaternions and the rule

(α1 + α2t)(β1 + β2t) = α1β1 − β̄2α2 + (β2α1 + α2β̄1)t (12)

for α1, α2, β1, β2 ∈ H. It is easy to check that the multiplication of octonions is not associa-
tive. For instance, if we define a triad to be a set of 3 elements among the seven unit bases
{i, j, ij, t, it, jt, kt}, then it is well known (see [6]) that among the 35 possible triads, only 7 are
associative, namely:

i, j, k , i, t, it , j, t, jt , k, t, kt, and k, jt, it , j, it, kt , i, kt, jt. (13)

Each of these associative triads generates, with the additional unit basis 1, a quaternion sub-
algebra. Octonion algebras are never associative but are alternative algebras:

(alternative algebra identities) (αα)β = α(αβ) and β(αα) = (βα)α. (14)

These 2 conditions are equivalent to the fact that the trilinear map called associator [a, b, c] =
a(bc)− (ab)c is alternating. It follows that octonion algebras verify the Artin theorem:

Theorem 3 (E. Artin) In an alternative algebra, any two elements generate an associative
subalgebra.

In our case, we will often use the following corollary

Corollary 2 Let α, β be elements of O(R). Then

(αβ)β̄ = α(ββ̄) , α(ᾱβ) = (αᾱ)β. (15)
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Octonions are endowed with a quadratic form N , commonly called norm. For the specific
octonion algebra defined above, the associated bilinear map is simply:

⟨ a0 + a1i+ · · ·+ a7kt , b0 + b1i+ · · ·+ b7kt ⟩ = a0b0 + · · ·+ a7b7,

meaning that the norm N is a sum of 8 squares. It can be defined equivalently by N(α) = αᾱ.
The fundamental property is the multiplicativity of N : N(αβ) = N(α)N(β) for any octonions α
and β (it deserves to be emphasized: this property does not hold for division algebras of larger
dimension). This rule follows directly from Theorem 3 and the antiautomorphism property (11)

N(αβ) = (αβ)αβ = (αβ)(βα) = α(ββ̄)ᾱ = N(β)αᾱ = N(α)N(β).

Let O(R)⋆ denote the set of invertible octonions. Because if α is invertible, then α−1 =
N(α)−1α, we have:

O(R)⋆ = {α ∈ O(R) : N(α) ∈ R⋆}.

Loops. The set of invertible elements in an alternative ring is a Moufang loop (see [3, p. 254]
and [5, p. 87-88]). Recall that

Definition 1 (loop) A loop is a set L with a binary operation ∗, such that
(i) for each a and b in L, there exist unique elements x and y in L such that: a ∗ x = b and
y ∗ a = b;
(ii) there exists a unique element e such that x ∗ e = x = e ∗ x for all x in L.

It follows that every element of a loop has a unique left and right inverse. A loop where the
right and left inverses coincide is an inverse loop. In this case, x−1 denotes the unique element
such that x ∗x−1 = x−1 ∗x = e. A Moufang loop is a loop satisfying one of the three equivalent
following identities:

Moufang identities:
(αβα)γ = α(β(αγ))
(αβ)(γα) = α(βγ)α
((βα)γ)α = β(αγα)

(16)

It is straightforward to check that a Moufang loop is an inverse loop [5, Ch. 7] or [3, Lemma 2A
and 2B, p. 292].

Unique factorization As for integers (and Gauß integers, and integral quaternions), the
first step toward a factorization property is an Euclidean division3. In the quaternion case,
unlike what happens with ordinary integers and Gauss integers, two integral quaternions whose
norms have a common divisor do not necessarily have a common divisor which is an integral
quaternion (consider for instance 2 and 1+ i+ j+ k). Hurwitz [14, 15] noticed that it is possible
to obtain a satisfactory arithmetic of quaternions by considering instead quaternions having
its 4 coordinates all in Z, or all in 1

2 + Z. His result was fully understood after Dickson [9]
and his concept of maximal arithmetic (also called a maximal order). Recall here that an
arithmetic (or an order) for a ring R which is a finite-dimensional algebra over the rational
number field Q, is at the same time a subring of R and a finitely generated Z-module which
spans R over Q. It is maximal if is not contained in a larger arithmetic. For octonions, there
are 7 distinct maximal arithmetics which were identified by Coxeter [6]. They allow as in the
case of Hurwitz quaternions to obtain a set of octonions which obey the essential divisibility

3or that the class number of ideals is equal to 1. But for constructive purposes, the Euclidean division is
essential, and anyway, there is no concept of class number in octonion rings.
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properties of ordinary integers. Each of them is related to one associative triad in (13). While for
quaternions the Euclidean algorithm can then be directly initiated to obtain left and right gcds,
the lack of associativity of octonions complicates the matter. Rehm [25, Prop. 4.1], obtained
a kind of distortion of the Euclidean algorithm, by using only the alternative property (14).
With clever counting arguments, unique factorization follows in a similar fashion to integral
quaternions, except that of course some bracketing must be specified.

The result of Rehm is stated in the Coxeter maximal arithmetic CO associated to the asso-
ciative triad i, j, k. Defining h = 1

2(i+ j+k+ t), CO is the Z-module with basis 1, i, j, k, h, ih, jh, kh
(see [6, p. 567], or for a more comprehensive description [5, Fig. 9.1, p. 101]). It contains strictly
O(Z) (and the 6 other maximal arithmetics associated to the 6 other triads are isomorphic to
this one). Therein, there are not only 16 units as in O(Z) but rather 240. Since

ih =
1

2
(−1− j+ k+ it)

jh =
1

2
(−1 + i− k+ jt)

kh =
1

2
(−1− i+ j− kt)

it is straightforward to check that

Lemma 1 CO is the set of octonions of the form 1
2(a0+a1i+a2j+a3k+a4t+a5it+a6jt+a7kt)

where the ai’s are integers satisfying

(a0, a1, a2, a3) ≡ (a4, a5, a6, a7) (mod 2) if a0 + a1 + a2 + a3 ≡ 0 (mod 2),

(a0, a1, a2, a3) ≡ (1− a4, 1− a5, 1− a6, 1− a7) (mod 2) if a0 + a1 + a2 + a3 ≡ 1 (mod 2).

Given an octonion α = a0 + a1i + · · · + a7kt ∈ O(Q)⋆, we say that it is positive and write
α > 0 if and only if for the smallest i such that ai ̸= 0 one has ai > 0. Let p be an odd prime
number. Related to unique factorization, we define (see [25, Prop. 5.6]):

P(p)
def
= {α ∈ O(Z) : α > 0 , N(α) = p , α− 1 ∈ 2CO} (17)

Rehm proved that |P(p)| = p3 + 1 (see [25, Prop. 6.4]). His main result in [25], which is
fundamental in the present work, is the following:

Theorem 4 [25] Let α ∈ CO be primitive, meaning that the gcd of its coefficients in any Z-
basis is 1. Suppose that N(α) = p1 · · · ps where the pi’s are odd prime integers, not necessarily
distinct. There exists a unique ϵ ∈ C⋆

O and unique πi ∈ P(pi) for i = 1, . . . , s, such that:

α =
(
. . .
(
(︸ ︷︷ ︸

open brackets

ϵπ1)π2
)
π3 · · ·

)
πs.

Remarks: 1. This writing depends heavily on the order in which the factorization sequence
p1 · · · ps of N(α) is chosen.

2. The primes pi are supposed to be odd. Let us mention that Rehm has treated the case
of occurrence of primes equal to 2 in the factors of N(α) as well. However, the set of prime
octonions of norm 2 presents a more complicated structure which prevents to define graphs in
the same way as in the case pi > 2.
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Appendix B Arithmetic construction of the infinite (p3 + 1)-
regular tree

Overview of the whole construction. Similarly to [16, 18, 4, 20], the Ramanujan graphs
construction of this paper can be decomposed in two steps.
1. The first step consists in constructing the (p3 + 1)-regular infinite tree in an arithmetic way
by using octonions.
2. Finite regular graphs are derived from this tree by taking suitable finite quotients of it which
do not create small cycles.

The first step is detailed in this section. It will also turn out that the construction has a
description in terms of Cayley graphs defined over loops. This will be explained in Appendix
C.

Preliminary lemmas on the factorization of octonions of norm pt. The main ingre-
dients used for the construction are the uniqueness of the factorization property of Theorem 4
and considering products of elements of CO of the following form(

. . .
(
(︸ ︷︷ ︸

open brackets

ϵα1)α2

)
α3 · · ·

)
αℓ,

where ϵ ∈ C⋆
O, αi ∈ CO − C⋆

O and αi ̸= αi+1 for i = 1, . . . , ℓ− 1. We say that such products are
irreducible products. This terminology comes from the fact that products of elements of CO that
are not irreducible can be simplified by using Corollary 2 of Artin’s theorem. We also use the
following lemma.

Lemma 2 Any irreducible product (. . . ((ϵπ1)π2)π3 · · · )πt of a unit ϵ in C⋆
O by elements π1, . . . , πt

of P(p) is primitive.

Proof: We proceed by contradiction and consider an irreducible product α of a unit by elements
of P(p) of minimal length that is not primitive. We may write this element as α = βπ, where
β is a primitive irreducible product of an invertible element and elements of P(p) and π is an
element of P(p). For an element γ of CO, let us denote by c(γ) the content of γ, which is the
largest integer dividing γ (it is also the greatest common divisor of the coefficients of γ in some
Z basis of CO). Obviously,

c(α)|c(απ̄) (18)

because the coefficients of απ̄ are integer linear combinations of the coefficients of α in a Z
basis. Since απ̄ = (βπ)π̄ = β(ππ̄) = pβ by Corollary 2, we obtain that c(απ̄) = p. This
together with (18) implies that c(α) = p and that p divides α. We may therefore write α as
α = γp = γ(π̄π) = (γπ̄)π (by using Corollary 2 again) for some γ ∈ CO. Hence, β = γπ̄. But γ
is necessarily primitive, since β is primitive. Then by Theorem 4, γ is an irreducible product of
a unit ϵ by elements π1, . . . , πs of P(p):

γ = (. . . ((ϵπ1)π2) · · · )πs.

This shows that β is of the form

β = ((. . . ((ϵπ1)π2) · · · )πs)π̄.
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This is an irreducible product, for if πs were equal to π, β would be divisible by p and would
not be primitive. From Theorem 2 applied to β, this is the only way we can write β as an
irreducible product, and therefore the product α is necessarily of the form

α = βπ = (((. . . ((ϵπ1)π2) · · · )πs)π̄)π,

contradicting the assumption on its irreducibility. 2

Proposition 1 Any element α ∈ O(Z) of norm N(α) = pt such that α − 1 ∈ 2CO, can be
uniquely written as:

α = ±ps((. . . (α1α2) · · · )αt−2s−1)αt−2s,

where ((. . . (α1α2) · · · )αt−2s−1)αt−2s is an irreducible product with elements αi ∈ P(p).

Proof: Let c(α) = ps be the content α (defined in the previous proof). Then p−sα is primitive.
Theorem 4 insures existence and uniqueness of elements α1, . . . , αt−2s ∈ P(p) and of a unit
ϵ ∈ C⋆

O such that α is written as an irreducible product

α = ps
(
. . . ((ϵα1)α2)α3 · · ·

)
αt−2s. (19)

Suppose that α admits another writing as in (19) α = ps
′(
. . . (ϵ′α′

1)α
′
2 · · ·

)
α′
t−2s′ . Then nec-

essarily s′ ≤ s, otherwise ps
′
would be larger than the content c(α). And if s′ < s then p−s′α

would not be primitive, implying that
(
. . . (ϵ′α′

1)α
′
2 · · ·

)
α′
t−2s′ would also not be primitive, in

contradiction with Lemma 2. Hence s = s′, and the following holds:(
. . . (ϵ′α′

1)α
′
2 · · ·

)
α′
t−2s′ =

(
. . . (ϵα1)α2 · · ·

)
αt−2s.

Both sides are irreducible products which are therefore primitive by Lemma 2. Then Theorem 4
insures that ϵ′ = ϵ and αi = α′

i for i = 1, . . . , t−2s. Therefore, the writing of α in (19) is unique.
The invertible element ϵ is necessarily in O(Z). Suppose this is not true, ϵ ∈ C⋆

O − O(Z)⋆.
Let us first prove the following

(P) “a ∈ CO −O(Z) and b ∈ 1 + 2CO implies ab ∈ CO −O(Z)”.

Notice that a has necessarily in the 1, i, j, k, t, it, jt, kt basis at least one coordinate which is of
the form m

2 where m is an odd integer. Write now ab = a(1 + 2c) = a + 2ac for some c ∈ CO.
But 2ac is in O(Z), which implies that ab has some coordinate of the form m

2 + n, where n is
some integer. This shows that ab is not in O(Z) and finishes the proof of Property (P).

When we apply this property recursively to ϵα1, (ϵα1)α2, . . . ,
(
. . . ((ϵα1)α2) · · ·

)
αt−2s, we

see that they are all in CO −O(Z), and therefore so is also α = ps
(
. . . ((ϵα1)α2) · · ·

)
αt−2s. This

is a contradiction, because α is in 1 + 2CO and hence also in O(Z).
Therefore, ϵ is among the 16 units of O(Z)⋆. By using Corollary 2, it is straightforward to

check that we can write ϵ as

ϵ = ps−t
(
. . . ((αᾱt−2s)ᾱt−2s−1) · · ·α2

)
ᾱ1

The set 1 + 2CO is stable by multiplication, therefore
(
. . . ((αᾱt−2s)ᾱt−2s−1) · · ·α2

)
ᾱ1 belongs

to 1+ 2CO and so does ϵ. We conclude the proof by observing that the only invertible elements
in O(Z)⋆ which are also in 1 + 2CO are ±1. 2
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The construction of the infinite tree This proposition above has a simple corollary, namely
that all irreducible products (. . . (α1α2) · · ·αs−1)αs of elements of P(p) are different. These will
be the vertices of a tree we want to build.

Definition 2 Let Λ be the set of all irreducible products with elements in P(p) (with the con-
vention that the void product belongs to it and is equal to 1).

Let T be the infinite graph with:

• vertex set Λ;

• edge set defined as follows. By Proposition 1, any vertex can be viewed in a unique way
as an irreducible product (. . . (α1α2) · · ·αs−1)αs where the αi’s belong to P(p). There is
an edge between (. . . (α1α2) · · ·αs−1)αs and vertices of the set

{(. . . (α1α2) · · · )αs−1} ∪ {((. . . (α1α2) · · ·αs−1)αs)π : π ∈ P(p)− {αs}}

By the convention that the void product is equal to 1, the vertex 1 is adjacent to all
vertices labeled by π, for π ∈ P(p).

It is clear by construction of the graph that T is the infinite (p3 + 1)-regular tree.

Cayley graphs on loops There is an interpretation of the arithmetic construction of this
(p3 +1)-regular tree in terms of a Cayley graph on a loop. This is a slight generalization of the
usual Cayley graph definition (see for instance [22]) that uses loops instead of groups.

Definition 3 (directed/undirected Cayley graph on a loop) Let L be a loop and S be a

generating set for it. The directed Cayley graph
−−→
Cay(L, S) has for vertices the elements of L

and for edges {(l, ls), l ∈ L, s ∈ S}. The undirected Cayley graph Cay(L, S) is obtained from
−−→
Cay(L, S) by replacing each directed edge (l, ls) by an undirected edge {l, ls}. Equivalently, there
is an edge between l and l′ if and only if there exists s in S such that either l′ = ls or l = l′s.

For the usual Cayley graph on a group, the undirected version is a |S|-regular graph without
self-loops4 if and only if S = S−1 and 1 /∈ S. There is a generalization of this property for Cayley
graphs on loops.

Proposition 2 [21, Theorem 8] Cay(L, S) is an |S|-regular graph without loops if and only if
for all l ∈ L we have:
(i) l ̸∈ lS,
(ii) l ∈ (ls)S for any s ∈ S.

Note that if L is a Moufang loop, then this is equivalent to 1 ̸∈ S and S−1 = S, as in a
group. Cayley graphs on groups are of course vertex transitive, this is not necessarily the case
for Cayley graphs defined on loops. The problem is that left multiplication by a loop element
does not necessarily yield a graph automorphism because of the lack of associativity. Indeed,
any regular graph can be realized as a Cayley graph on a certain loop [21].

To view the tree T as a Cayley graph on a loop, we endow the vertex set Λ with the following
operation

4 a self-loop, that is an edge with the same origin and extremity, should not be confused with the meaning of
a loop here, i.e. a weaker algebraic structure than a group.
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Definition 4 Let α, β be two elements of Λ. By Proposition 1, these vertices can be written in
a unique way as irreducible products over P(p), α = (. . . (α1α2) · · · )αs, β = (. . . (β1β2) · · · )βt.
By using Proposition 1 again, there exists a unique irreducible product γ on P(p) such that
αβ = ±pℓγ, with N(γ) = ps+t−2ℓ, that is γ is an irreducible product of length s + t − 2ℓ. We
define

α ∗ β def
= γ.

Proposition 3 The set Λ endowed with the multiplicative law ∗ is a Moufang loop generated
by P(p).

Proof: Clearly 1 ∗ α = α ∗ 1 = α for any α ∈ Λ.
Let α be some element of Λ. It belongs to 1 + 2CO and is primitive by Lemma 2. This

is therefore also the case for ᾱ. By Proposition 1 we know that either ᾱ or −ᾱ belongs to
Λ. If α ∈ Λ, then since αᾱ = ps where ps = N(α), we get α ∗ ᾱ = 1. The case −α ∈ Λ is
treated similarly. This shows that Λ is a loop. It remains to show that ∗ satisfies the Moufang
identities (16).

The following equalities come from the definition of ∗:

α ∗ (β ∗ (α ∗ γ)) = α ∗ (β ∗ (p−s1αγ)),

= p−s1α ∗ (p−s2β(αγ))

= p−s1−s2p−s3α(β(αγ))

for some non-negative integers s1, s2 and s3. From the Moufang identities (16), α(β(αγ)) =
(αβα)γ, it comes that α ∗ (β ∗ (α ∗ γ)) = (α ∗ β ∗ α) ∗ γ. 2

With this definition, it is straightforward to check that the one to one mapping between
elements of Λ and their representation as irreducible products of elements of P(p) gives an
isomorphism between T and Cay(Λ,P(p)).

Proposition 4 The following graph isomorphism holds:

T ≃ Cay(Λ,P(p)).

Appendix C Obtaining finite graphs from T by reducing Λ mod-
ulo another prime q

Reducing to finite graphs Basically, finite graphs are obtained from the arithmetic con-
struction of T by reducing the octonions in Λ modulo another prime q. For reasons which will
appear later on we also assume that q is chosen to be greater than p. Notice that we obtain
in this way elements in O(Fq)

⋆, because the norm of elements of Λ is a power of p which is
therefore invertible modulo q. Let τq denotes the reduction modulo q map, τq : O(Z) → O(Fq).
By the definition of the product ∗, the following holds:

τq(α ∗ β) = τq(ϵp
−sαβ) = τq(ϵp

−s)τq(α)τq(β), (20)

for some nonnegative integer s and ϵ ∈ {−1, 1}. We note that τq(ϵp
−s) is in F⋆

q , identified as
a subset of O(Fq)

⋆. This subset appears to be precisely the center Z of O(Fq)
⋆, as is easily

verified. It follows that the two elements τq(α ∗ β) and τq(α)τq(β) differ only by an element in
the center. Therefore, they yield the same element in the quotient loop O(Fq)

⋆/Z. In other
words, the map

µq : Λ → O(Fq)
⋆/Z,

α 7→ τq(α)Z.
(21)
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is a loop homomorphism. Indeed, Equality (20) clearly implies µq(α ∗ β) = µq(α)µq(β). In
addition, O(Fq)

⋆ being a Moufang loop, O(Fq)
⋆/Z is itself a Moufang loop. We have proved:

Lemma 3 The map µq is a homomorphism of Moufang loops.

Our graphs will be defined as Cay(Im µq, µq(P(p))) when these graphs are bipartite or by
double covers of these Cayley graphs (which are therefore bipartite) when this is not the case.
The reason for this, is that bipartite graphs have only even cycles and we have in the case of
Cay(Im µq, µq(P(p))) a very good lower bound on the size of cycles of even length, but the
lower bound on cycles of odd length is only half the aforementioned bound.

Determining Im µq. Let M1
def
= {α ∈ O(Fq)

⋆ : N(α) = 1} and Mp
def
= {α ∈ O(Fq)

⋆ :
N(α) is a power of p}. They are Moufang subloops of O(Fq)

⋆ and the inclusions of Moufang
loops M1 ⊂ Mp ⊂ O(Fq)

⋆ hold. The central subgroups of M1 and Mp are respectively Z1 =
Z ∩M1, and Zp = Z ∩Mp. If we identify Z with F⋆

q , then Zp = {±ps, s = 0, 1, . . . , q − 2} and
Z1 = {−1, 1}. This gives the following embeddings of Moufang loops:

M1/Z1 ↪→ Mp/Zp ↪→ O(Fq)
⋆/Z. (22)

By a result of Paige [24, Theorem 4.1] M1/Z1 is a simple Moufang loop, and an index 2 normal
subloop5 of O(Fq)

⋆/Z (in total analogy with PGL2(Fq) and PSL2(Fq)). It follows that either
Mp/Zp = M1/Z1 or O(Fq)

⋆/Z (see Corollary 3 below for an answer to this issue).

Lemma 4 (the image of µq) We have Im µq = Mp/Zp.

Proof: Every element of Λ has norm some power of p, so the inclusion Im µq ⊂ Mp/Zp is clear.
To obtain the other inclusion, we first show that for any element α = a0+a1i+ · · ·+a7kt ∈ O(Z)
such thatN(α) ≡ pr (mod q) for some integer r, there exists an element β = b0+b1i+· · ·+b7kt ∈
1 + 2CO such that
(i) ai ≡ bi (mod q),
(ii) N(β) = pℓ for some integer ℓ.

To prove this claim we use as in [16, Prop. 3.3], a result of Malyshev on the number of
solutions of integral definite-positive quadratic forms [17]. This result can be described as
follows. Let f(x1, . . . , xn) be a quadratic form in n ≥ 4 variables with integral coefficients and
discriminant d. Let m be an integer prime to 2d. Malyshev proved that there exists some
constant depending on f , K(f) such that for any integer N ≥ K(f), verifying additionally:
(i) N generic for f (that is f ≡ N (mod r) has at least one solution for every r),
(ii) gcd(m, 2Nd) = 1,
(iii) and for which there exist integers ai such that gcd(a1, . . . , an,m) = 1, f(a1, . . . , an) ≡ N
(mod m),
there are integers b1, . . . , bn verifying:

bi ≡ ai (mod m) and f(b1, . . . , bn) = N.

Let us first assume that p ≡ 1 (mod 4). We apply the aforementioned result of Malyshev

to f(x0, . . . , x7)
def
= x20 + 4(x21 + · · · + x27). This is an integral positive definite quadratic form.

The discriminant of f , d = 27, verifies gcd(2dpℓ, q) = 1 for any ℓ. There are obviously integers
(a′0, . . . , a

′
7) such that f(a′0, . . . , a

′
7) ≡ pr (mod q) by the assumption on α (by taking a′0 = a0

and a′i ≡ 2−1ai (mod q) for i ∈ {1, . . . , 7}), and such that gcd(a′0, . . . , a
′
7, q) = 1. Now choose

5From Corollary of Lemma 3.4 of [24], since q > p is an odd prime.
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ℓ such that pℓ ≥ K(f) and pℓ ≡ pr (mod q). It is straightforward to check that pℓ is generic
for f (this follows from the fact that pℓ ≡ 1 (mod 4) and, for example, the 4 squares theorem).
Therefore there exist integers (b′0, . . . , b

′
7) satisfying

b′
2
0 + 4b′

2
1 + · · ·+ 4b′

2
7 = pℓ.

This implies the existence of the aforementioned octonion β of norm equal to pℓ which is
congruent to pr modulo q by setting b0 = b′0, bi = 2b′i for i ∈ {1, . . . , 7}. This octonion belongs
to 1 + 2CO since b0 ≡ 1 (mod 2).

Now, let us consider the remaining case p ≡ 3 (mod 4). We can use the same proof as above
for the case where ℓ is even, since in this case pℓ ≡ 1 (mod 4). In the case of an odd ℓ, pℓ is no
more generic for f , indeed f(x0, . . . , x7) ≡ pℓ (mod 4) has no solution: this equation reduces to
x20 ≡ 3 (mod 4) which has no solution. In order to treat this case we consider another quadratic
form, namely

f(x0, . . . , x7)
def
= 4(x20 + x21 + x22 + x23 + x24) + x25 + x26 + x27. (23)

This time pℓ is generic for f . Moreover a solution (b0, b1, . . . , b7) in Z8 to the equation f(x0, . . . , x7) =
pℓ gives an element β = 2b0 + 2b1i + 2b2j + 2b3k + 2b4t + b5it + b6jt + b7kt of norm pℓ. Let us
show that β is also in 1+2CO. By reducing Equation (23) modulo 4, we obtain b25+ b26+ b27 ≡ 3
(mod 4), hence:

b5 ≡ b6 ≡ b7 ≡ 1 (mod 2).

The element β−1
2 = 2b0−1

2 + b1i+ b2j+ b3k+ b4t+
b5
2 it+

b6
2 jt+

b7
2 kt is therefore in CO by using

the characterization of CO provided by Lemma 1.
Summing up the whole discussion we obtain in both cases an element β in 1 + 2CO of norm

pℓ. By applying Proposition 1 to it, we can write β as

β = ϵpsγ

for some non-negative integer s, ϵ in {−1, 1} and γ in Λ. Since τq(α) = τq(β) it comes that
τq(γ) ∈ τq(α)Zp and therefore τq(α)Zp ∈ Im µq. 2

Since M1/Z1 is of index 2 in O(Fq)
⋆/Zp, the image loop µq

(
Λ
)
= Mp/Zp is either equal to

M1/Z1 or O(Fq)
⋆/Z. A direct consequence is:

Corollary 3 If
(
p
q

)
= 1, then Im µq = M1/Z1. Else, when

(
p
q

)
= −1, Im µq = O(Fq)

⋆/Z.

Proof: The loop homomorphism O(Fq)
⋆ → {−1, 1}, α 7→

(
N(α)
q

)
, regarding the definition of

Z, factorizes into this homomorphism: ε : O(Fq)
⋆/Z → {−1, 1}. Its kernel contains M1/Z1.

Besides, for π ∈ P(p), µq(π) is mapped by ε to 1 or -1 in {−1, 1}, according to the sign of(
p
q

)
. This shows that if

(
p
q

)
= −1, then µq (P(p)) ⊂ O(Fq)

⋆/Z − M1/Z1. From Lemma 4,

we know that M1/Z1 ( Mp/Zp = Im µq, from which Im µq = O(Fq)
⋆/Z follows by Paige’s

theorem.
On the other hand, if

(
p
q

)
= 1, then µq

(
P(p)

)
⊂ ker ε. The multiplicativity of the Legendre

symbol shows that Im µq ⊂ ker ε. It comes, with Lemma 4, M1/Z1 ⊂ Mp/Zp = Im µq (
O(Fq)

⋆/Z, and Im µq = M1/Z1 by Paige’s theorem. 2
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What is kerµq ? By definition, kerµq = {α ∈ Λ : τq(α) ∈ Z}. Write α = a0+a1i+· · ·+a7kt.
This means that q|ai for i = 1, . . . , 7, and N(α) ∈ F⋆

q . This last condition is already verified for

elements of Λ. If we denote Λ(q)
def
= kerµq, this gives:

Λ(q) = {α ∈ Λ : q|a1 , . . . , q|a7}, then Λ/Λ(q) ≃

O(Fq)
⋆/Z if

(
p
q

)
= −1

M1/Z1 if
(
p
q

)
= 1

(24)

Definition and properties of Xp,q and Yp,q. As mentioned before our finite regular graphs
will be obtained as Cayley graphs defined over loops.

Definition 5 We define S (p, q)
def
= µq

(
P(p)

)
. If

(
p
q

)
= −1 let Xp,q be the Cayley graphs

Cay
(
O(Fq)

⋆/Z,S (p, q)
)
, and if

(
p
q

)
= 1, let Yp,q be the Cayley graph Cay

(
M1/Z1,S (p, q)

)
.

We have |O(Fq)
⋆/Z| = q7 − q3 [25, Lemma 3.2]. It follows that |Xp,q| = q7 − q3 and

|Yp,q| = 1
2(q

7 − q3).

Lemma 5 The graphs Xp,q and Yp,q are connected.

Proof: The set P(p) generates Λ as a loop. The proof of Corollary 3 showed that S (p, q)

generates M1/Z1 if
(
p
q

)
= 1, and O(Fq)

⋆/Z if
(
p
q

)
= −1. It follows that the graphs Xp,q and

Yp,q are all connected. 2

Before giving the degree regularity of these graphs, we recall that |P(p)| = p3 + 1 by [25,
Proposition 6.4].

Proposition 5 The graphs Xp,q and Yp,q are (p3 + 1)-regular.

Proof: First let us show that |S (p, q)| = |P(p)| = p3+1. Suppose that two distinct elements π
and π′ in P(p) give the same element in O(Fq)

⋆/Z through µq. The equality τq(π)Z = τq(π
′)Z

is equivalent to π ∗ π′ ∈ kerµq = Λ(q). By Equation (24), taking norms gives an equation of
the form p2 = a20 + q2x2, for an a0 and x. If x ̸= 0, then p2 ≥ q2, which is excluded by p < q.
If x = 0, then π ∗ π′ ∈ Z, that is π = π′, also excluded. Finally, µq(π) = µq(π

′) is impossible if
π ̸= π′.

To prove that they are |S (p, q)|-regular, we must show that S (p, q) satisfies the hypotheses
of Proposition 2, as aforementioned. We already know that if π ∈ P(p) then its inverse for ∗ is
π and is in P(p). Hence, P(p)−1 = P(p) for ∗, and since µq is an homomorphism by Lemma 3
also holds S (p, q)−1 = S (p, q). Last, 1Z ̸∈ S (p, q), or else there would be a π ∈ P(p) that
would also be in Λ(q) by Equation (24), which is clearly impossible. 2

Proposition 6 The graphs Xp,q are bipartite, and the graphs Yp,q are not.

Proof: First, assume that
(
p
q

)
= −1 (this concerns Xp,q). Consider the partition A ∪ B =

O(Fq)
⋆/Z of the set of vertices of Xp,q:

A = M1/Z1 and B = O(Fq)
⋆/Z −M1/Z1.

Let v ∈ A be a vertex with v = µq(α), and let w = µq(β) be a neighbor of v. By construction
of Cayley graphs, there exists π ∈ P(p), such that µq(α ∗ π) = µq(α)µq(π) = µq(β). This leads
to: (

N(β)

q

)
=

(
N(α)p

q

)
=

(
p

q

)
= −1,
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since v ∈ A implies
(
N(α)
q

)
= 1. This means that w ∈ B. In the same way any neighbor x of

w is in A, so the graph is bipartite.

Now assume that
(
p
q

)
= 1 (this concerns the graphs Yp,q). As seen above, a bipartition

A ∪ B of the set of vertices M1/Z1 would imply a non trivial loop homomorphism:

M1/Z1 → {−1, 1}.

The kernel of it would consist of a non trivial normal subloop of M1/Z1, which is impossible
since M1/Z1 is simple by Paige’s theorem. 2

Lemma 6 The length 2t of each cycle in Xp,q going through the identity verifies 2t > 4 logp q−
2 logp 2 = 12

7 logp3 |Xp,q| − 2 logp 2.

Proof: Let β be an irreducible product of length 2t such that µq(β) ∈ Λ(q), and let β1, . . . , β2t
its 2t letters. This corresponds to a cycle path without backtracking going through the vertex
identity of O(Fq)

⋆/Z, regarding that µq(1) = kerµq = Z. Thus β can be written as follows
β = b0+q(b1i+ · · ·+b7kt) where the bi’s are integer coefficients. Moreover, N(β) = p2t, yielding
the equation:

b20 + q2(b21 + · · ·+ b27) = p2t. (25)

At least one bi (with i > 0) is non zero, or else β = b0 would yield an irreducible product
of length 0, in contradiction with the assumption t > 0. This implies p2t ≡ b20 (mod q2), or
equivalently pt ≡ ±b0 (mod q2). Observe that b20 < p2t, so |b0| < pt, and pt = ±b0 +mq2, for a
positive integer m. This implies

p2t = (pt −mq2)2 + q2(b21 + · · ·+ b27)

= p2t − 2mq2pt +m2q4 + q2(b21 + · · ·+ b27)

Equivalently, 2mpt −m2q2 = b21 + · · · + b27. It follows that 2pt −mq2 > 0. This is because at
least one bi (with i > 0) is different from 0. Therefore t > 2 logp q − logp 2. 2

Appendix D Reference tables of Section “Experimental Results”

Construction of Hp,q takes: 0.780 s

Construction of x(0) takes: 0.016 s
Adjacency table built in: 11.840 s
iteration nb. time (sec) λ(Y37,41) approx.

5 0.358 10.434716
10 0.405 11.047467
15 0.577 11.286008
20 0.577 11.434530
25 0.499 11.535968
28 0.531 11.580817
29 0.578 11.593612
30 0.577 11.605451
31 0.577 11.616401

Table 4: Non-bipartite Ramanujan graphs
Y37,41 of degree 38 and order 1

2(41
3 − 41) =

34, 440 (Ramanujan’s bound: 2
√
37 ≈ 12.165)

Construction of Hp,q takes: 18.954 s

Construction of x(0) takes: 0.827 s
Adjacency table built in: 172.958 s

iteration nb. time (sec) λ(Y37,71) approx.
5 8.237 10.574894
10 8.596 11.338621
15 10.717 11.615755
20 10.686 11.757395
25 10.515 11.837835
30 10.748 11.886180
35 10.639 11.916605
40 9.828 11.936646
45 9.890 11.950488
50 10.281 11.960524
51 10.187 11.962210
52 10.250 11.963809
53 10.203 11.965328
54 10.234 11.966775

Table 5: Non-bipartite Ramanujan graphs
Y37,71 of degree 38 with 1

2(71
3 − 71) = 178, 920

(Ramanujan’s bound: 2
√
37 ≈ 12.165)
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Construction of Hp,q takes: 60.030 s

Construction of x(0) takes: 5.772 s
Adjacency table built in: 1222.502 s

iteration nb. time (sec) λ(X37,109) approx.
5 59.452 10.557072
10 66.145 11.283166
15 72.884 11.545344
20 73.461 11.682997
25 72.494 11.770558
30 74.584 11.832848
35 74.101 11.879901
40 74.444 11.916577
45 72.088 11.945661
50 73.617 11.968980
55 74.600 11.987837
60 73.258 12.003205
65 74.865 12.015826
70 74.615 12.026275
75 72.463 12.034995
80 73.430 12.042331
85 74.819 12.048555
90 75.005 12.053879
95 72.369 12.058470
100 75.848 12.062460

Table 6: Bipartite Ramanujan graphs X37,109

of degree 38 and order 1093 − 109 = 1, 294, 920
(Ramanujan’s bound: 2

√
37 ≈ 12.165)

Construction of Hp,q takes: 1.779 s

Construction of x(0) takes: 0.031 s
Adjacency table built in: 34.258 s

iteration nb. time (sec) λ(Y47,53) approx.
5 1.030 11.718370
10 1.622 12.579286
15 1.997 12.909203
20 1.841 13.076825
25 1.856 13.180004
29 1.966 13.238521
30 1.982 13.250846
31 1.996 13.262404
32 1.982 13.273255

Table 7: Non-bipartite Ramanujan graph
Y47,53 of degree 48 and order 1

2(53
3−53) = 74412

(Ramanujan’s bound: 2
√
47 ≈ 13.711)

Construction of Hp,q takes: 21.700 s

Construction of x(0) takes: 2.012 s
Adjacency table built in: 636.235 s

iteration nb. time (sec) λ(X47,83) approx.
5 33.197 11.892675
10 39.796 12.754317
15 41.200 13.058563
20 42.323 13.205139
25 40.342 13.290773
30 42.510 13.348382
35 42.104 13.390707
40 42.900 13.423511
45 41.340 13.449890
50 42.370 13.471756
55 40.498 13.490388
58 41.621 13.500396

Table 8: Non-bipartite Ramanujan graph of
degree 48 and order 1

2(83
3 − 83) = 571, 704

(Ramanujan’s bound: 2
√
47 ≈ 13.711)

Construction of Hp,q takes: 16.723 s

Construction of x(0) takes: 1.420 s
Adjacency table built in: 1535.611 s

time (sec) iteration nb. λ(X47,113) approx.
5 70.419 11.928329
10 90.605 12.803581
15 94.271 13.123996
20 88.531 13.294066
25 88.188 13.398118
30 92.602 13.466084
33 90.418 13.495743
34 90.106 13.504235
35 90.293 13.512125
36 90.762 13.519464

Table 9: Non-bipartite Ramanujan graph
of degree 48 and order 1

2(113
3 − 113) =

1, 442, 784 (Ramanujan’s bound: 2
√
47 ≈

13.711)
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Construction of Hp,q takes: 0.936 s

Construction of x(0) takes: 0.047 s
Adjacency table built in: 20.873 s

iteration nb. time (sec) λ(X3,5) approx.
5 0.670 9.5978624
10 0.764 11.054285
15 1.108 11.574964
20 1.092 11.802923
25 1.077 11.906630
28 1.029 11.939458

Table 10: Proof that the degree 28 = 33 +
1-regular bipartite octonion based graph X3,5

of order 57 − 53 = 78, 000 is not Ramanujan
(Ramanujan bound: 2

√
27 ≈ 10.392)

Construction of Hp,q takes: 12.995 s

Construction of x(0) takes: 0.765 s
Adjacency table built in: 505.318 s

iteration nb. time (sec) λ(X3,7) approx.
5 21.747 9.1201917
10 23.416 10.259195
15 29.095 11.293992
20 28.923 11.854913
25 28.486 12.053509
30 29.375 12.132786
32 29.343 12.151599

Table 11: Proof that the degree 28 = 33 + 1-
regular bipartite octonion based graph X3,7 of
order 77 − 73 = 8, 232, 000 is not Ramanujan.
(Ramanujan bound: 2

√
27 ≈ 10.392)

Construction of Hp,q takes: 741.426 s

Construction of x(0) takes: 63.165 s

No adjacency table built (> 1Gb memory)

iteration nb. time (sec) λ(Y3,11) approx.

1 9543.127 5.2904058

2 9539.321 7.4130549

3 9531.754 8.2581244

4 9525.639 8.7245532

5 9855.504 9.0238248

6 9848.281 9.2342039

7 9958.667 9.3916022

8 9771.716 9.5148749

9 9539.243 9.6149043

Memory failure (> 1Gb) at the 10th iteration

Table 12: Evidence that the degree 28 =
33 + 1-regular non- bipartite octonion based
graph Y3,11 of order 1

2(11
7 − 113) = 9, 742, 920

vertices is not Ramanujan. (the 9 iterations do
not overtake the Ramanujan bound: 2

√
27 ≈

10.392, but more iterations would)

Graphs Bipartite Order Girth
Range

time
(sec)

girth

X11,13 yes 2184 4 6 0.00 6

X11,17 yes 4896 6 0.01 6

Y11,19 no 3420 3 ... 0.03 6

X11,23 yes 12144 6 0.00 6

X11,29 yes 24360 6 8 0.00 6

X11,31 yes 29760 6 8 0.00 6

Y11,37 no 25308 3 ... 0.06 7

X11,41 yes 68880 6 8 0.04 8

Y11,43 no 39732 3 ... 0.04 7

X11,47 yes 103776 6 8 0.04 8

Y11,53 no 74412 4 ... 0.04 7

X11,59 yes 205320 8 0.04 8

X11,61 yes 226920 8 0.06 8

X11,67 yes 300696 8 0.04 8

X11,71 yes 357840 8 0.04 8

X11,73 yes 388944 8 0.06 8

Y11,79 no 246480 4 ... 1.02 8

Y11,83 no 285852 4 ... 1.02 8

Y11,89 no 352440 4 ... 1.04 8

Y11,97 no 456288 4 ... 1.06 9

Table 13: Girth of degree 12 Ramanujan
graphs for primes q raging from 13 to 97. Col-
umn “Girth range” displays the possible theo-
retical values predicted by Inequality (5), and
x . . . means values “x and larger”
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Graphs Bipartite Order Girth
Range

time
(sec)

girth

X107,109 yes 1294920 4 6 .37 6
X107,113 yes 1442784 4 6 .37 6
Y107,127 no 1024128 2 ... 0.00 3
Y107,131 no 1123980 2 ... .25 5
Y107,137 no 1285608 2 ... .23 5
Y107,139 no 1342740 2 ... .26 5
Y107,149 no 1653900 2 ... 0.00 3
X107,151 yes 3442800 4 6 .39 6
X107,157 yes 3869736 6 .37 6
X107,163 yes 4330584 6 .39 6
Y107,167 no 2328648 3 ... .37 5
X107,173 yes 5177544 6 .37 6
Y107,179 no 2867580 3 ... .21 5
X107,181 yes 5929560 6 .39 6
Y107,191 no 3483840 3 ... .53 5
Y107,193 no 3594432 3 ... .32 5
Y107,197 no 3822588 3 ... .26 5
X107,199 yes 7880400 6 .39 6
Y107,211 no 4696860 3 ... .23 5
X107,223 yes 11089344 6 .39 6
X107,227 yes 11696856 6 .39 6
X107,229 yes 12008760 6 .39 6
Y107,233 no 6324552 3 ... .35 5
X107,239 yes 13651680 6 .40 6
Y107,241 no 6998640 3 ... .68 5
X107,251 yes 15813000 6 .39 6
X107,257 yes 16974336 6 .39 6
X107,263 yes 18191184 6 .43 6
X107,269 yes 19464840 6 .39 6
X107,271 yes 19902240 6 .37 6
X107,277 yes 21253656 6 .39 6
X107,281 yes 22187760 6 .39 6
X107,283 yes 22664904 6 .39 6
Y107,293 no 12576732 3 ... .57 5
Y107,307 no 14467068 3 ... 1.80 5
Y107,311 no 15039960 3 ... 524.13 6
Y107,313 no 15331992 3 ... .40 5
X107,317 yes 31854696 6 .37 6
X107,331 yes 36264360 6 .43 6
Y107,337 no 19136208 3 ... 563.19 6
Y107,347 no 20890788 3 ... .63 5
X107,349 yes 42508200 6 .39 6
X107,353 yes 43986624 6 .39 6
Y107,359 no 23133960 3 ... .60 5
Y107,367 no 24715248 3 ... 534.10 6
Y107,373 no 25947372 3 ... .63 5
Y107,379 no 27219780 3 ... 562.44 6
X107,383 yes 56181504 6 .43 6
X107,389 yes 58863480 6 .37 6
Y107,397 no 31285188 3 ... 591.26 6
X107,401 yes 64480800 6 .39 6
X107,409 yes 68417520 6 .40 6
Y107,419 no 36779820 3 ... 631.96 6
Y107,421 no 37309020 3 ... 1.49 5
X107,431 yes 80062560 6 .59 6
X107,433 yes 81182304 6 .43 6
X107,439 yes 84604080 6 .54 6
Y107,443 no 43468932 3 ... .71 5
X107,449 yes 90518400 6 .68 6
Y107,457 no 47721768 3 ... 643.70 6
Y107,461 no 48985860 3 ... 640.50 6
X107,463 yes 99252384 6 .40 6
X107,467 yes 101847096 6 .70 6
Y107,479 no 54950880 3 ... 669.58 6
Y107,487 no 57750408 3 ... 639.60 6
Y107,491 no 59185140 3 ... 638.04 6
Y107,499 no 62125500 3 ... .32 5

Table 14: Degree 108 Ramanujan
graphs of various order, and their
girth. Column “Girth Range” dis-
plays possible values of the girth as
predicted from theoretical bound (5),
and x . . . means values “x and larger”.
Column “girth” displays the actual
computed girth, and the column
“time” the time required to find it.
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