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ABSTRACT
We study the triangular representation of zero-dimensional
varieties defined over the rational field (resp. a rational func-
tion field). We prove polynomial bounds in terms of intrin-
sic quantities for the height (resp. degree) of the coefficients
of such triangular sets, whereas previous bounds were ex-
ponential. We also introduce a rational form of triangular
representation, for which our estimates become linear. Ex-
periments show the practical interest of this new represen-
tation.

Categories and Subject Descriptors
I.1.2 [Computing Methodologies]: Symbolic and Alge-
braic Manipulation—Algebraic Algorithms

General Terms
Algorithms, Experimentation, Theory

Keywords
Polynomial systems, Triangular sets, Intrinsic bounds

1. INTRODUCTION
We start by defining the triangular representation of zero-

dimensional varieties. Let k be a field, V ⊂ An(k) a zero-
dimensional variety defined over k and I ⊂ k[X1, . . . , Xn]
the ideal of V . Our basic assumption is as follows.

Assumption 1. For the lexicographic order X1 < · · · <
Xn, the reduced Gröbner basis of the ideal I has the form˛̨̨̨

˛̨̨̨
˛

Tn(X1, . . . , Xn)
...

T2(X1, X2)
T1(X1),

where for ` ≤ n, T` depends only on X1, . . . , X` and, when
considered in k[X1, . . . , X`−1][X`], T` is monic in X`. We
also suppose that the extension k → k[V ] is separable.
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Following the terminology introduced in [15], the polyno-
mials T1, . . . , Tn form a triangular set. This representation
is well-suited to many practical problems (see some exam-
ples in [15, 3, 20, 24]), as meaningful informations are easily
read off these triangular sets; however, many complexity
questions remain unanswered in this model. To formulate
such questions, we introduce suitable notation.

Definition 1. Let V be as in Assumption 1 and ` ≤ n.
We let d` be the degree of T` in X` and V` ⊂ A`(k) the image
of V by the projection (x1, . . . , xn) 7→ (x1, . . . , x`).

Representing T1, . . . , T` then amounts to specifying at most
`d1 · · · d` elements of k. If k bears no particular structure,
we cannot say more in terms of complexity. New questions
arise when k is endowed with a “size” function: then, the
natural question is to relate the size of the coefficients in
T1, . . . , Tn to quantities associated to V . This is the case in
the following two fundamental situations.

Number fields. If k is the rational field Q (or more gen-
erally a number field), we want to estimate the number of
digits necessary to write the coefficients of T1, . . . , Tn. Here,
the interesting quantity to refer to is the height of V , which
is a measure of its arithmetic complexity.

Function fields. Here k is the rational function field
K(Y1, . . . , Ym) over a field K. This situation typically arises
when studying parametric polynomial systems: Y1, . . . , Ym

are the parameters, and T1, . . . , Tn describe the generic so-
lutions of such systems. Then, we want to estimate the
degrees of the numerators and denominators of the coeffi-
cients of T1, . . . , Tn and the interesting quantity to refer to
is a suitable geometric degree.

Up to now, in the function field case, the best bounds
for the coefficients of T1, . . . , Tn were in [20]. These bounds
are exponential, as the number n of variables appears as an
exponent. It is expected that similar methods would yield
similar bounds in the case k = Q.

The optimality of these bounds is a crucial question: If
these exponential bounds were sharp, triangular represen-
tations might become difficult to compute and potentially
impossible to use for large problems. The question is all the
more important as for other representations (e.g., with prim-
itive elements, see below), polynomial bounds are known.

Our first contribution is to settle this issue, proving poly-
nomial, and more precisely quadratic, bounds for the trian-
gular representation, with respect to the above quantities,
height and degree. Our results cover both the number field
and function field cases.



Rational representations. To obtain estimates better
than quadratic (i.e., linear), it is necessary to modify the
representation. To motivate our discussion, we first present
an important special case.

Suppose that X1 is a primitive element for the exten-
sion k → k[V ]. Then there exist univariate polynomials
P2, . . . , Pn such that (T1, . . . , Tn) have the following shape:˛̨̨̨

˛̨̨̨
˛

Tn = Xn − Pn(X1)
...

T2 = X2 − P2(X1)
T1(X1).

Suppose now that k = Q (the discussion is the same in the
function field case). Then, it is known [19] that the bit-size
of the coefficients of P2, . . . , Pn is (up to minor correcting
terms) bounded by the product of the height of V by the
cardinality of V , i.e. it has a quadratic behavior. If V is
defined by polynomials of degree d, with integer coefficients
of bit-size h, this quantity is bounded by (essentially) nhd2n.

Is is well known that one can improve this by switching
to the following equivalent rational representation˛̨̨̨

˛̨̨̨
˛̨

τn = Xn − Qn(X1)
T ′
1(X1)

...

τ2 = X2 − Q2(X1)
T ′
1(X1)

τ1 = T1(X1),

(1)

where for i ≥ 2, Qi = PiT
′
1 mod T1. Indeed, the bit-size of

the coefficients of Q2, . . . , Qn is now (up to small correcting
terms) bounded by solely the height of V [19]. If V is defined
by polynomials of degree d, with integers coefficients of bit-
size h, this quantity is bounded by (essentially) nhdn, i.e.,
much less than above.

From the practical point of view, it was already noticed
in [1] that using the rational representation (1) quite fre-
quently brings dramatic reductions in terms of bit-size. Now-
adays, such representations bear the name Rational Univari-
ate Representation [18], or Kronecker representation [9].

When X1 is not a separating variable, we will apply simi-
lar ideas, by defining a triangular representation with ratio-
nal function coefficients that generalizes Equations (1): let
V as in Assumption 1 and T1, . . . , Tn the corresponding tri-
angular set. Recall that for ` ≤ n, T1, . . . , T` form a reduced
Gröbner basis; for a polynomial A, A mod (T1, . . . , T`) de-
notes the normal form of A modulo (T1, . . . , T`).

Definition 2. Let D1 = 1 and N1 = τ1 = T1. For ` in
2, . . . , n, define

D` =
Y

1≤i≤`−1

∂Ti

∂Xi
mod (T1, . . . , T`−1),

N` = D`T` mod (T1, . . . , T`−1).

τ` =
N`

D`
∈ k(X1, . . . , X`−1)[X`].

Note that D` ∈ k[X1, . . . , X`−1], N` ∈ k[X1, . . . , X`−1, X`],
and D` is the leading coefficient of N` in X`. Due to the sep-
arability assumption, D` is invertible modulo (T1, . . . , T`−1),
so τ` equals T` modulo (T1, . . . , T`−1).

Example. Let us take k = Q and consider the variety

V ⊂ A2(Q) =
˘
(1, 1), (1, 2), (2, 3), (2, 4)

¯
.

This variety satisfies Assumption 1; the corresponding tri-
angular set is˛̨̨̨

T2 = X2
2 + (−4X1 + 1)X2 + 10X1 − 8,

T1 = X2
1 − 3X1 + 2.

Our definitions give D2 = T ′
1 = 2X1 − 3 and

N2 = (2X1 − 3)X2
2 + (−10X1 + 13)X2 + 14X1 − 16.

Then we associate to V the representation˛̨̨̨
τ2 = X2

2 + −10X1+13
2X1−3

X2 + 14X1−16
2X1−3

,

τ1 = X2
1 − 3X1 + 2.

Our second contribution is the introduction and the study
of the polynomials N`. Whereas our complexity estimates
for the coefficients of the polynomials T` are quadratic, those
for N` will turn out to be linear (note that this trivially
implies similar bounds for the polynomials τ`). Again, our
results cover both the number field and function field cases.

From these estimates, it is expected that in practice, the
coefficients of N` should be smaller than those of T`. Our
experiments confirm these expectations: for a large class
of examples, both over Q or a rational function field, the
coefficients in N` are significantly smaller than those of T`.

2. MAIN RESULTS
To state our results, we need new definitions, that are

used throughout this paper. Let k be a field and V ⊂ An(k)
a zero-dimensional variety defined over k. The Chow form
CV of V is the polynomial in k[X0, X1, . . . , Xn] given by

CV =
Y
α∈V

(X0 − α1X1 − · · · − αnXn)

(a different sign convention is sometimes used, but this has
no consequence whatsoever for what follows). CV is homo-
geneous of degree the cardinality of V , denoted by #V . If
k → k[V ] is separable, CV has coefficients in k. Finally, note
that CV ∪V ′ = CV CV ′ if V and V ′ are disjoint.

Our second set of definitions is used to denote some terms
that appear in the complexity estimates. Given V that sat-
isfies Assumption 1 and ` ≤ n, we will write

G` = 1 + 2
X

i≤`−1
(di − 1)

H` = 5 log(` + 3)
X

i≤`
di

I` = H` + 3 log(2)
X

i≤`−1
di(di − 1).

Since
Q

i di >
P

i(di − 1), G` and H` are in O(log(`)(` +
#V`)): we think of them as linear in #V`, overlooking the
dependence in `. Since d2

i ≥ di(di − 1) + 1 we get
Q

i d2
i >P

i di(di − 1), so I` is in O(log(`)(#V` + `) + (#V` + `)2) =
O((#V` + `)2): we see it as a quadratic quantity.

The number field case. We now recall some basic defini-
tions of height theory over the field k = Q.

We first introduce the (global) height of polynomials with
coefficients in Q, as a means to estimate their size in binary
representation. Let P in Q[X1, . . . , Xm], and c ∈ N the lcm
of the denominators of its coefficients. Let next C be the
set of the coefficients of cP and C+ the set of their absolute
values; note that C ⊂ Z and C+ ⊂ N. Then the height of
P is h(P ) = log max({c}∪C+); thus, h(P ) is up to a factor
log(2) equal to the bit-size of the coefficients of P .



Let next W ⊂ Am(Q) be a zero-dimensional variety de-
fined over Q. We now define its height h(W ) as a measure
of its bit complexity (we are deliberately brief here, as all
details are given in Section 4):

h(W ) =
X

p prime

hp(CW ) + m(CW ; Sm+1) + #W

mX
i=1

1

2i
,

where CW is the Chow form of W , hp( . ) denotes the p-adic
height of polynomials, and m( . ; Sm+1) denotes the Mahler
measure on the complex sphere Sm+1. This quantity was ini-
tially introduced in [17], and used in effective algebra in [22,
10, 13, 5]. This height is especially useful in positive dimen-
sion, but also fits quite naturally in our subsequent develop-
ments. It is polynomially equivalent to the Weil height and
to the heights of Bost et al. [4] and Giusti et al. [8]; see for
instance [22].

With these notions at hand, let V be a zero-dimensional
variety defined over Q that satisfies Assumption 1. The
following theorem gives upper bound on the heights of the
polynomials T1, . . . , Tn and N1, . . . , Nn.

Theorem 1. For ` ≤ n, we have the inequalities

h(N`) ≤ h(V`) + H`, h(T`) ≤ G` h(V`) + I`.

As announced, the bound on N` is linear in h(V`) and
#V`; that on T` is linear in h(V`)#V` and (#V`)

2: we can
say it is quadratic in quantities intrinsic to V . Both bounds
on N` and T` are polynomial.

If V is given as the zero-set of a polynomial system F , we
deduce extrinsic bounds by means of an arithmetic Bézout
theorem [13]. Suppose indeed that all polynomials in F
have total degree at most d, and integer coefficients which all
satisfy log |x| ≤ h. Then the height of all varieties V` satisfies
h(V`) ≤ (nh+(2n+3) log(n+1))dn. Further, #V` = d1 · · · d`

is bounded by dn. From this, it is easy to deduce that the
bit-size of the coefficients of T` grows at most like nhd2n,
whereas the coefficients of N` have bit-size controlled by the
smaller quantity nhdn.

The function field case. Here we first describe the geo-
metric context (see [20] for a more detailed presentation).

Let K be a field and V ⊂ Am+n(K) an m-equidimensional
variety defined over K. We make the following geometric
assumption: the projection of V on the space of the first m
coordinates is Zariski-dense.

Let us denote by Y = Y1, . . . , Ym the first m coordinates,
by X = X1, . . . , Xn the last n ones and by I the radical
ideal in K[Y, X] defining V. The underlying idea is that V
is the zero-set of a parametric polynomial system in K[Y, X],
where Y play the role of parameters; the assumption says
that for a generic value of the parameters, the system has a
finite, non-zero, number of solutions.

To obtain an analogue of the results given in the number
field case, we introduce suitable projections of V. For ` in
1, . . . , n, let V` denote the projection of V on the space of
coordinates Y, X1, . . . , X`. We denote deg V` its degree.

Let us finally define the generic solutions V of V as the
zeros of the extended ideal I = I ·K(Y )[X]. Our assumption
says that V has dimension zero over k = K(Y ). Let us
furthermore suppose that V satisfies Assumption 1. In this
case, the polynomials T` and N` belong to k[X] = K(Y )[X],
that is, they have rational functions coefficients.

To give complexity estimates, we will adopt a language
similar to the one used in the number field case, introducing
a notion of (global) height of polynomials in this context.
Let P a polynomial with coefficients in K(Y ) and c ∈ K[Y ]
the lcm of the denominators of its coefficients. Let next C
denote the set of the coefficients of cP ; note that C ⊂ K[Y ].
Then the height of P is defined as h(P ) = max{deg(x) | x ∈
{c} ∪ C}. In particular, h(P ) bounds the degree of the nu-
merators and denominators of all coefficients of P .

As an illustration of this notion, let us note the following
proposition, which is a restatement of [21, Lemma 3]. It will
be used in the proof of the subsequent theorem.

Proposition 1. For ` ≤ n, let C` ∈ K(Y )[X0, . . . , X`] be
the Chow form of V`. Then h(C`) ≤ deg V`.

Then, the main result is the following.

Theorem 2. For ` ≤ n, we have the inequalities

h(N`) ≤ deg(V`), h(T`) ≤ G` deg(V`).

As announced, the bound for N` is linear in the degree of
V`. As for T`, note that Πi≤`di ≤ deg(V`), and thus G`

is bounded by 2 deg(V`). This implies the bound h(T`) ≤
2 deg(V`)

2. If V is the zero-set of polynomials of total de-
gree at most d, then the Bézout inequality of [11] implies
deg V` ≤ dn. Thus, the coefficients of T` have degree at
most 2d2n, whereas those of N` have degree at most dn,
which is much smaller.

Related work. Our definition of triangular sets in dimen-
sion zero comes from [15]. There exists a vast literature on
the subject, with extensions in arbitrary dimension, see no-
tably [2] and [12] for a comprehensive overview. However,
fewer articles focus on the complexity-theoretic questions:
previous upper bounds were given in [6, 23, 20] in the func-
tion field case. To give a comparison with our results, we
use again the notation of Theorem 2.

The results in [6, 23] show that h(T`) ≤ nO(n)dO(n2) if V
is defined by polynomials of degree at most d. Those in [20]

are intrinsic; they show that h(T`) ≤ nO(n) deg(V`)
O(n),

which is exponential in n. If V is defined by polynomials
of degree at most d, the Bézout bound implies estimates
that are slightly better that those of [6, 23], but still in the

class nO(n)dO(n2). Thus, the bounds for T` in Theorem 2
significantly improve all previously known results. For the
number field case, we are not aware of similar results.

The introduction of the polynomials N` is inspired by the
approach of [1, 18] for primitive element representations over
Q, where the practical interest of using rational representa-
tions is already underlined, and estimates are given in terms
of a suitable multiplication tensor. Polynomial-type bounds
were also given for such representations in [8, 22, 19]. It
should be noted that our estimates are a faithful extension
of these results to triangular representations.

A first generalization of the approach of [1, 18] is in [5],
based on a study of the Chow for of V and its successive
derivatives. However, the bounds in [5] are not as good as
the ones given here.

Strategy of proof and outline of the paper. We will de-
duce Theorems 1 and 2 as particular cases of a more general
theorem applicable to a wide class of fields (containing Q
and K(Y )). A field k in this class has a family of valuations
which verifies the so-called product formula. These valua-
tions allow to develop a theory of heights of varieties and



polynomials defined over k. In the particular case k = Q,
we recover the notions of height defined in the previous para-
graphs. In the case k = K(Y ), this justifies our introduction
of the notion of “height of polynomials”.

The first step of the proof consists in rewriting the poly-
nomials T` and N` by means of a generalization of Lagrange
interpolation: this enables us to relate these polynomials to
suitable Chow forms. This is done in Section 3, and involves
no valuation theory. Next, we recall the necessary valuation
and height-theoretic definitions in Section 4. They enable
us to use the results of Section 3 to obtain a general theorem
on the heights in a triangular set, in Section 5, from which
Theorems 1 and 2 follow easily.

The last section presents practical experiments over k =
Q, where we compare the bit-size of the coefficients of the
representations T` and N` for various systems. These results
show the interest of using the polynomials N`.

3. INTERPOLATION FORMULAS
In this section, we give interpolation formulas which are

the basis of the estimates in Section 5. The main ingredient
is the introduction of polynomials (to be denoted by Eα)
that, up to constant factors, form a complete set of orthog-
onal idempotents modulo T1, . . . , T`.

Notation and definitions. For 1 ≤ i ≤ j ≤ n, we define

πj
i : Vj → Vi

(x1, . . . , xj) 7→ (x1, . . . , xi)

Then Assumption 1 implies that all fibers of πj
i have cardi-

nality di+1 · · · dj , see [3] for more explanations.
Let next K be a finite extension of k that contains all

coordinates of all points of V ; e.g., K can be the splitting
field of the minimal polynomial of a primitive element for
V . The field K is our base field in what follows.

Let ` be a fixed integer in 1, . . . , n− 1; we now give inter-
polation formulas for the polynomials T`+1 and N`+1 (this
shift of one unit in the index aims at simplifying the presen-
tation). To this effect, let α = (α1, . . . , α`) in V`. Associated
with α, we define the varieties V 1

α , . . . , V `+1
α ⊂ V`+1 by

V i
α = {α′ = (α1, . . . , αi−1, α

′
i, . . . α

′
`+1) ∈ V`+1 | α′i 6= αi}

for 1 ≤ i ≤ `, and V `+1
α = {(α1, . . . , α`, α

′
`+1) ∈ V`+1}.

These sets form a partition of V`+1. In terms of cardinality,
#V i

α = (di − 1)di+1 · · · d`+1 for i ≤ ` and #V `+1
α = d`+1.

Other interesting objects are the projections of the varieties
V i

α, defined by vi
α = π`+1

i (V i
α) ⊂ Vi for i ≤ `. In terms of

cardinality, we have #vi
α = di − 1.

For i ≤ ` + 1, recall that Ti ∈ k[X1, . . . , Xi]. We define
Tα,i = Ti(α1, . . . , αi−1, Xi). Next, for i ≤ `, we define

eα,i =
Y

α′∈vi
α

(Xi − α′i) ∈ K[Xi] ⊂ K[X1, . . . , X`], (2)

so that Tα,i = eα,i(Xi − αi). For further use, note also the
equality

Tα,`+1 =
Q

α′∈V `+1
α

(X`+1 − α′`+1). (3)

We now introduce

Eα =
Y

1≤i≤`

eα,i ∈ K[X1, . . . , X`].

Results. The following lemma shows that the polynomials
Eα satisfy orthogonality conditions, which show them as
analogues of Lagrange interpolation polynomials.

Lemma 1. Let α ∈ V`. Then Eα(α) 6= 0 and Eα(α′) = 0
for α′ ∈ V`, α′ 6= α.

Proof. Our definitions imply that eα,i(α) 6= 0 for all i ≤ `,
from which the first point follows. Let next α′ 6= α in V`.
Then, there exists i ≤ ` such that π`

i (α
′) ∈ vi

α. Then,
eα,i(α

′) = 0, concluding the proof. �

As a consequence, we deduce our interpolation formulas.

Proposition 2. The following equalities hold:

T`+1 =
X

α∈V`

EαTα,`+1

Eα(α)
, (4)

N`+1 =
X

α∈V`

EαTα,`+1. (5)

Proof. All polynomials appearing in Equations (4) and (5)
are reduced with respect to the Gröbner basis T1, . . . , T`

in k[X1, . . . , X`+1]. This is true by definition for T`+1 and
N`+1; as for the right-hand sides, this comes from inspecting
the degrees in all variables Xi, i ≤ `.

Thus, it suffices to prove that both sides of Equation (4)
(resp. (5)) agree on V`. Due to Lemma 1, this is immediately
checked for Equation (4). As for Equation (5), consider
α ∈ V`. By Definition 2, the evaluation at α of N`+1 is0@ Y

1≤i≤`

∂Ti

∂Xi
(α)

1A Tα,`+1 ∈ K[X`+1].

Since Eα′(α) = 0 for α′ 6= α, the right-hand side reduces
to Eα(α)Tα,`+1, so we are left to estimate the value Eα(α).
Recall that for 1 ≤ i ≤ `, we have Tα,i = eα,i(Xi − αi),
whence

eα,i(α) = T ′
α,i(α) =

∂Ti

∂Xi
(α).

Taking the product on i ≤ ` proves the proposition. �

Let us define the constants

ei =
Y

α∈Vi

eα,i(α) for i ≤ ` and E` =
Y

1≤i≤`

ei.

Equation (4) is equivalent to write T`+1 as the quotient of

T`+1 =
X

α∈V`

EαTα,`+1E`

Eα(α)
= E`T`+1

by E`. We now show that both quantities are defined over
k; in Section 5, we will actually prove bounds on T`+1, and
deduce bounds for T`+1.

Lemma 2. The polynomial T`+1 is in k[X1, . . . , X`+1].

Proof. Since T`+1 is defined over k, it suffices to prove
that for i ≤ `, ei is in k. Given α in Vi, we saw in the proof
of Proposition 2 that eα,i(α) = ∂Ti/∂Xi(α). Thus, ei is
the determinant of the endomorphism of multiplication by
∂Ti/∂Xi modulo T1, . . . , Ti, so it is in k. �

We next relate the polynomials introduced above to suit-
able Chow forms. Let first be C`+1 ∈ k[X0, X1, . . . , X`+1]



the Chow form of V`+1. For α in V`, the partition V 1
α , . . . , V `+1

α

of V`+1 induces the factorization

C`+1 =
Y

1≤i≤`+1

Cα,i

in K[X0, X1, . . . , X`+1], where Cα,i is the Chow form of V i
α.

The next lemma gives useful facts about these polynomials.

Lemma 3. For α in V` and i ≤ `, we have

Cα,i(Xi, 0, . . . , 0, 1, 0, . . . , 0) = e
di+1···d`+1
α,i (6)

Cα,`+1(X`+1, 0, . . . , 0, 1) = Tα,`+1. (7)

Proof. For i ≤ `, let cα,i be the Chow form of vi
α. For

i ≤ ` + 1 (resp. i ≤ `), we respectively have

Cα,i =
Q

α′∈V i
α
(X0 − α′1X1 − · · · − α′`+1X`+1) (8)

cα,i =
Q

α′∈vi
α
(X0 − α′1X1 − · · · − α′iXi). (9)

Since vi
α = π`+1

i (V i
α) and since all fibers have cardinality

di+1 · · · d`+1, we deduce

Cα,i(X0, X1, . . . , Xi, 0, . . . , 0) = c
di+1···d`+1
α,i .

Equations (2) and (9) then imply Equation (6). Next, com-
bining Equations (3) and (8) easily gives Equation (7). �

For further use, let us finally note useful equalities. The
proofs are easy and left to the reader.

Lemma 4. For α ∈ V`, the following equality holds:

E`

Eα(α)
=

Q
1≤i≤`

Q
α′ ∈ Vi

α′ 6= π`
i (α)

eα′,i(α
′). (10)

For i ≤ `, the following equality holds:Q
α′∈Vi

eα′,i(Xi − α′i)
di−1 =

Q
α′∈Vi

(Xi − α′i)
2di−2. (11)

4. VALUATED FIELDS AND HEIGHTS
We now recall the definitions and properties of absolute

values and heights. Our references are [14, 16, 17, 22, 10,
13]; our presentation is strongly inspired by [13].

4.1 Absolute values
Let k be a field. An absolute value v on k is a multi-

plicative map k → R+, such that v(a) = 0 iff a = 0, and
∀a, b ∈ k2, v(a + b) ≤ v(a) + v(b). If the stronger inequal-
ity v(a + b) ≤ max(v(a), v(b)) holds ∀a, b ∈ k2, v is called
non-Archimedean, and Archimedean otherwise.

A family Mk of absolute values verifies the product formula
(with multiplicities 1) if for every x ∈ k∗, there are only
a finite number of v in Mk such that v(x) 6= 1, and the
equality

Q
v∈Mk

v(x) = 1 holds. In this case, we denote
by Ak and NAk the Archimedean and non-Archimedean
absolute values in Mk, and write Mk = (Ak, NAk). Ak is
then necessarily finite; we write its cardinality #Ak.

We now introduce two basic examples of valuated fields,
which respectively underlie the proofs of Theorems 1 and 2.

Case 1: k = Q. Let P be the set of prime numbers, so that
each x in Q∗ has the unique factorization

x = ±
Y
p∈P

pordp(x).

For each prime p, x 7→ |x|p = p−ordp(x) defines a non-
Archimedean absolute value. Denoting x 7→ | . |∞ the usual
Archimedean absolute value, we let MQ = { | . |p }p∈P ∪
{ | . |∞ }. Note that #AQ = 1.

Case 2: k = K(Y ), with Y = Y1, . . . , Ym and K a field.
Let P be a set of irreducible polynomials in K[Y ], such that
each x in k∗ has the unique factorization

x = c
Y
p∈P

pordp(x), c ∈ K.

Then each p in P defines a non-Archimedean absolute value
x 7→ |x|p = e− deg p ordp(x). An additional non-Archimedean
absolute value is given by x 7→ |x|∞ = edeg x, where deg x is
defined as deg n− deg d, with n, d ∈ K[Y ] and x = n/d. We
define MK(Y ) = { | . |p }p∈P ∪{ | . |∞ }, so that #AK(Y ) = 0.

We easily check that MQ and MK(Y ) satisfy the product
formula.

4.2 Heights of polynomials
Let k be a field and Mk a set of absolute values on k that

satisfies the product formula. We now define the notion of
height over k, and more generally on polynomial rings over k.

Let m ≥ 0 and f =
P

β fβXβ1
1 . . . Xβm

m in k[X1, . . . , Xm].
For v in Mk, define the v-adic local height of f by

hv(f) = log max{1, maxβ{v(fβ)}} ≥ 0.

In the two special cases seen above, k = Q and k = K(Y ),
we defined in Section 2 a notion of (global) height of poly-
nomials in k[X1, . . . , Xm]. This notion fits nicely into the
setting of valuated fields through the following general defi-
nition. Define the (global) height of f by

h(f) =
X

v∈Mk

hv(f). (12)

In the above particular cases, this definition coincides with
that of Section 2: see [13] when k = Q; the proof for K(Y ) is
the same and both follow simply from the product formula.

Mahler measures. Archimedean local heights are not ad-
ditive; this shortcoming will prevent us from using them
to define heights of varieties. We now introduce Mahler
measures, which are closely related to Archimedean local
heights, but possess the additivity property.

Let v an Archimedean absolute value over k. Then there
exists a isometric injection σv from k to C endowed with its
usual norm. Extending σv to the polynomial rings over k,
we define the Sn-Mahler measure associated to v as

mv(f ; Sn) =

Z
Sn

log |σv(f)|µn

for f ∈ k[X1, . . . , Xn], where µn is the Haar measure of mass
1 over the complex sphere Sn of dimension n. We also use
the more “classical” Mahler measure, given by

mv(f) =

Z 1

0

. . .

Z 1

0

log |σv(f)(e2iπt1 , . . . , e2iπtn)|dt1 . . . dtn.

It is immediately seen that both quantities are additive.

Useful inequalities. We conclude by giving basic inequal-
ities for local heights and Mahler measures. Let f1, . . . , fs

be in K[X0, . . . , Xn], f in K[X1], and assume that each fi

has at least one coefficient equal to 1 (this simplifying as-
sumption is satisfied in the sequel). If v is an Archimedean
absolute value on K, we have:



A1 m(fi) ≥ 0 if deg(fi) = 1.
A2 hv(fi) ≤ mv(fi) + log(n + 2) deg(fi).
A3 hv(f1 · · · fs) ≤

Ps
i=1 hv(fi) + log(n + 2)

Ps
i=1 deg(fi).

A4

Ps
i=1 hv(fi) ≤ hv(f1 · · · fs) + 2 log(n + 2)

Ps
i=1 deg(fi).

A5 hv(f1 + · · ·+ fs) ≤ maxi≤s hv(fi) + log s.
A6 mv(fi) ≤ mv(fi; Sn+1) + deg(fi)

`Pn
i=1

1
2i

´
.

A7 hv(f(x)) ≤ hv(f) + deg(f)(hv(x) + log(2)) for x ∈ K.
A8 mv(fi(X0, . . . , Xn−1, 0)) ≤ mv(fi).

If v is a non-Archimedean absolute value on K, we have:

N1 hv(f1 · · · fs) = hv(f1) + · · ·+ hv(fs).
N2 hv(f1 + · · ·+ fs) ≤ maxi≤s hv(fi).
N3 hv(f(x)) ≤ hv(f) + deg(f)hv(x) for x ∈ k.

If we drop the assumption that each fi has one coefficient
equal to 1, we still have, for any absolute value v:

E hv(xfi) ≤ hv(x) + hv(fi) for x ∈ K.

4.3 Heights of varieties
Let Mk = (Ak, NAk) be absolute values over k, which

satisfy the product formula. We now use these absolute
values to define heights of zero-dimensional varieties.

Let V ⊂ An(k) be a zero-dimensional variety defined over
k, and suppose that k → k[V ] is separable, so that the Chow
form CV of V has coefficients in k. We use the local heights
and Mahler measures of CV to define the height h(V ) of V
as X

v∈NAk

hv(CV ) +
X

v∈Ak

mv(CV ; Sn+1) + #Ak#V

nX
i=1

1

2i
.

This quantity is additive: h(V ∪ V ′) = h(V ) + h(V ′) if V
and V ′ are disjoint zero-dimensional varieties.

Let us inspect the content of this definition in the two
special cases we are primarily interested in. If k = Q, this
definition does coincide with the one given in Section 2, since
#AQ = 1. If k is the rational function field K(Y ), there are
no Archimedean absolute values in MK(Y ), so the height of
V equals the global height of its Chow form.

5. MAIN THEOREM
Let k be a field, with a family of absolute values Mk =

(Ak, NAk) that satisfies the product formula; let V ⊂ An(k)
a variety defined over k that satisfies Assumption 1. We
now prove a general result that relates the height of the
polynomials T` and N` associated to V to the height of V ,
and deduce Theorems 1 and 2 as special cases. We actually
take ` in 0, . . . , n − 1, and consider the polynomials N`+1,
T`+1 (compared to Theorems 1 and 2, we shift the indices
of one unit for convenience).

Theorem 3. Let (G`)`, (H`)` and (I`)` be as in Section 2.
Then for 0 ≤ ` ≤ n− 1, the following inequalities holds:

h(N`+1) ≤ h(V`+1) + #AkH`+1.

h(T`+1) ≤ G`+1 h(V`+1) + #AkI`+1.

Taking these results for granted, we deduce our main the-
orems. Theorem 1 is merely the special case k = Q, with
the set of absolute values MQ of Subsection 4.1. Theorem 2
corresponds to the case k = K(Y ) with the set of abso-
lute values MK(Y ): in this case, all absolute values are non-
Archimedean, so #Ak = 0. We saw in Subsection 4.3 that
the height of V` then equals the height of its Chow form, so
Proposition 1 concludes the proof of Theorem 2.

Thus, we can now concentrate on proving Theorem 3. The
core of the proof is the following lemma, which involves the
polynomials T`+1 of Section 3.

Lemma 5. Let 0 ≤ ` ≤ n − 1. For v ∈ NAk we have
hv(N`+1) ≤ hv(C`+1), and hv(T`+1) ≤ G`+1 hv(C`+1).

For v ∈ Ak, we have hv(N`+1) ≤ mv(C`+1) + H`+1 and
hv(T`+1) ≤ G`+1 mv(C`+1) + I`+1.

Let us show how to derive Theorem 3. Plugging the esti-
mates for N`+1 in Equation (12) gives

h(N`+1) ≤
X

v∈NAk

hv(C`+1) +
X

v∈Ak

(mv(C`+1) + H`+1)

and the first part of Theorem 3 follows from inequality A6.
Similar arguments apply to T`+1 and yield the bound

h(T`+1) ≤ G`+1 h(V`+1) + #AkI`+1.

Now, recall that T`+1 is obtained by dividing out T`+1 by
its leading coefficient in X`+1. By the product formula, this
operation lowers the global height, whence Theorem 3 fol-
lows. Thus, we can now focus on proving the lemma, using
freely the notation of Section 3.

In what follows, we consider ` in 1, . . . , n − 1. The case
` = 0 follows along the same lines, by noting that T1 = N1

is obtained by a suitable specialization of the Chow form C1

of V1. The easy details are left to the reader.
Let then K be a finite extension of k that contains all

coordinates of all points in V . Let v ∈ Mk and w an absolute
value on K that coincides with v on k. If v is Archimedean
(resp. non-Archimedean), w is Archimedean (resp. non-
Archimedean) as well: for the existence of such w, see [14,
16]. Let finally α in V`.

Specializing indeterminates at zero decreases height, so
hw(Cα,i(X0, 0, . . . , 0, Xi, 0, . . . , 0)) ≤ hw(Cα,i) for i ≤ `. Sin-
ce Cα,i(X0, 0, . . . , 0, Xi, 0, . . . , 0) is homogeneous, its local
height coincides with that of Cα,i(Xi, 0, . . . , 0, 1, 0, . . . , 0).
Then, Equations (6) and (7) finally give

hw(e
di+1···d`+1
α,i ) ≤ hw(Cα,i) for i ≤ ` (13)

hw(Tα,`+1) ≤ hw(Cα,`+1). (14)

Case 1: w is non-Archimedean. We use equality N1

and Equations (13) and (14) to give

hw(EαTα,`+1) =
X
i≤`

hw(eα,i) + hw(Tα,`+1)

≤
X
i≤`

hw(Cα,i) + hw(Cα,`+1) = hw(C`+1).

Summing on all α, we deduce hw(N`+1) ≤ hw(C`+1) by in-
equality N2 . Since both polynomials have coefficients in k,
and w extends v, this proves the first part of Lemma 5.

Next, we consider T`+1. Inequality E yields

hw

„
EαTα,`+1E`

Eα(α)

«
≤ hw(EαTα,`+1) + hw

„
E`

Eα(α)

«
. (15)

The term hw(EαTα,`+1) was dealt with above. As to the
other term, inequality E and Equation (10) show that

hw

„
E`

Eα(α)

«
≤

X
1≤i≤`

X
α′∈Vi

hw(eα′,i(α
′)), (16)



since the positivity of height enables us to complete the
product in Equation (10). Then inequality N3 gives the
upper boundX

1≤i≤`

X
α′∈Vi

`
hw(eα′,i) + (di − 1)hw(α′i)

´
.

Note that hw(α′i) = hw(Xi −α′i), so by equality N1, the in-
nermost term is hw(eα′,i(Xi−α′i)

di−1). Using Equation (11),
the inner sum is then bounded from above byX

α′∈Vi

hw(eα′,i(Xi − α′i)
di−1) = hw

“ Y
α′∈Vi

(Xi − α′i)
2di−2

”
.

This quantity can be bounded from above by 2(di−1)hw(Ci).
Note that hw(Ci) ≤ hw(C`+1); summing on i ≤ ` and intro-
ducing the constant G`+1 gives the second point in Lemma 5.

Case 2: w is Archimedean. Let mv and mw be the
Mahler measures associated to v and w; they coincide on
polynomials with coefficients in k.

For i ≤ `, since Cα,i has degree (di − 1)di+1 · · · d`+1, in-
equality A2 gives

hw(Cα,i) ≤ mw(Cα,i) + (di − 1)di+1 · · · d`+1 log(` + 2).

Thus, we deduce from inequality A4 and Equation (13)

hw(eα,i) ≤ hw(Cα,i)

di+1 · · · d`+1
+ 2(di − 1) log(` + 2)

≤ mw(Cα,i)

di+1 · · · d`+1
+ 3(di − 1) log(` + 2)

Using (di+1 · · · d`+1) ≥ 1 and inequality A3, we obtain

hw(Eα) ≤
X
i≤`

mw(Cα,i) + 4 log(` + 2)
X
i≤`

(di − 1).

We next deduce from Equation (14) and inequality A2

hw(Tα,`+1) ≤ mw(Cα,`+1) + log(` + 3)d`+1.

Now, mw(C`+1) = mw(Cα,`+1)+
P

i≤` mw(Cα,i), so applying
inequality A3 yields

hw(EαTα,`+1) ≤ mw(C`+1) + 4 log(` + 3)
X

i≤`+1

di.

Summing over α and using inequality A5, we finally get

hw(N`+1) ≤ mw(C`+1)+4 log(`+3)
X

i≤`+1

di+log(d1 · · · d`+1).

Next, we use the inequality log(di) ≤ di for all i. With the
introduction of the constant H`+1, this finishes the proof of
the third point in Lemma 5, since N`+1 and C`+1 both have
coefficients in k.

As for the last point of that lemma, note first that inequal-
ities (15) and (16) hold in the Archimedean case as well; we
now only have to bound the rightmost term of Equation (16).

Using inequalities A7 and A3 and Equation (11), an easy
check proves that for i ≤ `, the sum

P
α′∈Vi

hw(eα′,i(α
′)) is

bounded from above by

2(di − 1)mw

“ Y
α∈Vi

(Xi − αi)
”

+ 3di(di − 1) log(2).

Now, we remark that mw(Xi−αi) = mw(X0−αiXi). Using
the additivity of the Mahler measure, we deduce that the
above quantity equals

2(di−1)mw(Ci(X0, 0, . . . , 0, Xi, 0, . . . , 0))+3di(di−1) log(2).

Inequality A8 now shows that this can be bounded from
above by 2(di−1)mw(Ci)+3di(di−1) log(2). Noticing that
mw(Ci) ≤ mw(C`+1) and using the above estimates yields

hw

„
EαTα,`+1E`

Eα(α)

«
≤ mw(C`+1)

“
1 + 2

X
i≤`

(di − 1)
”

+ 4 log(` + 3)
X

i≤`+1

di

+ 3 log(2)
X
i≤`

di(di − 1).

Summing on all α and using inequality A5 as above, we
conclude the proof of Lemma 5.

6. EXPERIMENTAL RESULTS
In this last section, we compare the representations by

the polynomials T` and N` (or equivalently τ`) from a prac-
tical viewpoint. We set k = Q and compare the bit-size of
the coefficients of these polynomials for various systems. In
our experiments, the second representation always leads to
smaller coefficients, sometimes by an important factor.

For our first examples, we fix n, some integers [d1, . . . , dn],
select random points in n-space and with rational coeffi-
cients, such that the variety formed by their reunion satisfies
Assumption 1 with degrees d1, . . . , dn; then we use the inter-
polation formulas (4) and (5) to construct the polynomials
T1, . . . , Tn and N1, . . . , Nn.

In the following table, 4 examples are given, one for each
of the last 4 columns. The first line gives the degrees of
[T1, . . . , Tn] (thus the number of variables is the cardinal of
the list). The second (resp. the third) line returns the lists
of the maximum number of digits of the numerators (resp.
denominators) of the coefficients of [T1, . . . , Tn]. The last
two lines give the same informations for the list of polyno-
mials [N1, . . . , Nn]. As N1 = T1, the first number is the
same in each column at lines 2-4 and 3-5.

d` 2,3,4,5 4,5,6,7 4,1,2,3,4 8,8,8,8

hnum 4,16 10,63, 9,44, 28,324,
T` 63,225 286,1080 91,123,157 1813,9588

hden 2,46, 9,59, 7,45, 27,316,
T` 62,220 280,1076 88,118,152 1798,9567

hnum 4,13, 10,44, 9,32, 28,181,
N` 43,169 150,357 61,84,119 831,2815

hden 2,13, 9,41, 7,30, 27,176,
N` 43,137 145,346 58,80,115 821,2802

We observe a diminution of the size of the coefficients,
which corroborates the better bound for h(N`) in Theo-
rem 1. The ratio is however smaller than what could be
expected from Theorem 1; this is partly due to the simplifi-
cations we made along the proof.

Next, we experiment on systems coming from applica-
tions. These systems, called Bershenko, P19, Hawes and
J1J2J3, together with background information, are given
in [19, Annexe E]. The second line of the following table
gives the number n of variables of the system, the third
returns the lists of degrees [d1, . . . , dn] of the polynomials
[T1, . . . , Tn]; the next lines are as above. In the third col-
umn, the dots denote six occurrences of the number 1560.



Syst. P19 Bersh. Hawes J1J2J3
Var. 5 4 7 4
Deg. 31,1,2,1,1 12,2, 30,4,1,1, 5,2,
d` 1,1 1,1,1 3,1

hnum 90,1444,1029, 15,58, 77,1560,. . . 13,25,
T` 1444,1467 57,72 . . . ,1560 24,39

hden 30,1448,1031, 5,57, 46,1560,. . . 19,24,
T` 1450,1483 57,70 . . . ,1560 25,39

hnum 90,94,117, 15,17, 77,80,78,78, 13,17,
N` 117,117 17,29 79,118,80 21,17

hden 30,28,44, 5,5, 46,48,47, 19,2,
N` 44,62 5,18 46,46,85,47 8,5

Again, we observe a systematic diminution of the size of the
coefficients, which is sometimes quite important: our con-
clusion is that using the polynomials N` is a good choice in
practice. For k = K(Y ), experiments on parametric systems
are possible, measuring the degrees of the coefficients of the
polynomials T` and N`. The results are similar.

7. CONCLUSION
We proved quadratic estimates for the representation by

means of the triangular sets T`, improving all previous, ex-
ponential, bounds. We introduced an alternative represen-
tation by means of the polynomials N`, for which we are able
to obtain linear bounds. We treated the cases k = Q and
k = K(Y ) in a uniform manner. Our experiments showed
the interest of using the new representation N`, since we ob-
served a systematic reduction of the size of coefficients when
switching from the data of T` to the data of N`.

The next question to answer is that of lower bounds, for
both representations. It is expected that the first family
of examples used in the previous section might yield such
lower bounds when k = K(Y ), using points with generic and
algebraically independent coordinates.

A last question is that of algorithms: in practice, it is
certainly not interesting to compute first the polynomials T`

and then deducing the polynomials N`: efficient algorithms
should compute the polynomials N` only.

An answer is Hensel lifting for triangular sets, as presented
in [20] (see also the references therein). Let us describe how
such techniques apply over k = Q. First the polynomials T`

are computed modulo some prime p; then, by Hensel lift-
ing, we can compute the polynomials T` modulo arbitrary
powers pκ, from which we can deduce N` at precision pκ.
We stop the lifting when the coefficients of N` can be re-
constructed from their reduction modulo pk: this way, we
avoid computing the larger coefficients of the polynomials
T`. This strategy is used for k = K(Y ) in [7].
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