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ABSTRACT
This work is limited to the zero-dimensional, radical, and bi-
variate case. A lexicographical Gröbner basis can be simply
viewed as Lagrange interpolation polynomials. In the same
way the Chinese remaindering theorem generalizes Lagrange
interpolation, we show how a triangular decomposition is
linked to a specific Gröbner basis (not the reduced one). A
bound on the size of the coefficients of this specific Gröbner
basis is proved using height theory, then a bound is deduced
for the reduced Gröbner basis. Besides, the link revealed be-
tween the Gröbner basis and the triangular decomposition
gives straightforwardly a numerical estimate to help finding
a lucky prime in the context of modular methods.

Categories and Subject Descriptors
I.1.2 [Computing Methodologies]: Symbolic and Alge-
braic Manipulation—Algebraic Algorithms

General Terms
Algorithms, Theory

Keywords
Gröbner bases, Triangular sets, Space complexity

1. INTRODUCTION
In greatest generality, the problem of bounding the size of

coefficients over the rational field is stated as follows:

(P)

“Given input polynomials F = F1, . . . , Ft over Q, verifying
an hypothesis (H), with n variables, deg(Fi) ≤ d, and with
size of coefficients bounded by h, find a bound B(n, d, h)
on the size of coefficients of a Gröbner basis G(F ) of F”

We will exclusively be interested in lexicographical orders.
While the coefficients swell is a long-time observed phenom-
ena, no such bounds were known before [6]. Therein, they
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answer (P) in a very specific case: It concerns only triangular
sets, somehow the simplest lexicographical Gröbner bases.
They are illustrated hereunder for the order X1 < · · · < Xn.

(T )

8
>><

>>:

Tn(X1, X2, . . . , Xn−1, Xn) = Xan
n + · · ·

Tn−1(X1, . . . , Xn−1) = X
an−1
n−1 + · · ·

. . .
...

T1(X1) = Xa1
1 + · · ·

We obtained that B(n, d, h) is dominated by a term in 2nhd2n

for (T ). Even in staying in the zero-dimensional radical
case, for more general Gröbner bases than (T ) no bounds
are known for the size of the coefficients. This work is a first
step toward filling this gap, by exploring bivariate polyno-
mial systems: Equations (2) and (3) provide estimates on
B(2, d, h). The technicality involved to get sharp bounds
motivated to treat first this easier case. How to extend the
strategy to multivariate systems is discussed in Conclusion.

Complexity measuring tools. As aforementionned, the
hypothesis (H) we are making here is that n = 2, F generates
a zero-dimensional and radical ideal. The size of coefficients
will be measured using elementary height theory, coming
from Diophantine approximation theory.

Definition 1. For a and b relatively prime integers, the
height of x := a/b is defined as h(x) := log max{|a|∞, |b|∞}.

For P ∈ Q[X1, . . . , Xn], let c be the lcm of the denomi-
nators of the coefficients of P , so that cP ∈ Z[X1, . . . , Xn].
The height of the polynomial P , is defined as:

h(P ) := log max({|c|∞} ∪ {|coeff. of cP |∞}).

More details are given in § 4.1, but this shows that the height
is a relevant measure for the size of coefficients.

The previous approach in [6] that has been successful to
get sharp bounds is to relate the polynomials of the Gröbner
basis not directly to the input system F , but rather to the
variety that it described. This leads to bounds involving in-
trinsic quantities like the degree of a variety. Our result also
involves the height of a variety (defined in Equation (9)),
that has not as a simple interpretation as in Definition 1.
Roughly, as the degree deg(V ) measures the complexity of
the geometry of a variety V , the height h(V ) measures the
arithmetic complexity of its points. Several definitions ex-
ist, we will use Philippon’s approach [12], and will follow in
§ 4.1 the accessible and successful framework provided in [8].
Such bounds involving the degree and the height of a variety
benefit of Bézout inequalities.



Bézout inequalites. ([8] p.26) Let V ⊂ An
Q be the Zariski

set defined by the t polynomials in F . If t ≥ n then:

deg(V ) ≤ dn and h(V ) ≤ ndn−1(h + 2d log(n + 1)).

This permits to answer Problem (P) involving the numbers
n, d, h, by only establishing intrinsic estimates. Equation (1)
is such a bound.

Outline of the article. In all the following, we will fix
the lexicographical order X < Y on monomials of the bi-
variate polynomial ring Q[X, Y ]. All Gröbner bases will be
implicitly defined for this order, and minimal (which implies
monic). Under our hypothesis (H) made, the set of solutions
in A2

Q will be finite, and simple (no multiplicity).
The study of lexicographical Gröbner bases implies non-

generic situations: if the points are in general position (say,
randomly chosen), almost always X is a separating variable,
and the bases verify the shape lemma. The number of vari-
ables being fixed here, an important parameter will be the
number of polynomials s appearing in the Gröbner bases (it
is an invariant among minimal bases). The case of trian-
gular sets (T ) corresponds to s = n (= 2 in this work), and
here we will focus on the case s > n. The Gröbner basis can
be decomposed (or “factorized”) into several triangular sets
(Algo. 1) forming the so-called equiprojectable decomposition
introduced in [5]. The reciprocal algorithm, seen as a Chi-
nese remaindering map (Algo. 2) does not compute the re-
duced Gröbner basis. This specific Gröbner basis appears to
have smaller coefficients, certainly the smallest coefficients
among all minimal bases, according to its construction from
elementary pieces. We will first study bounds on this Gröb-
ner basis, and deduced ones for the reduced Gröbner basis,
through linear algebra (Algo. 3) where the linear equations
are given by monomial cancellations.

Section 2 sets main definitions and states the main re-
sults, Section 3 establishes a Chinese remaindering map for
Gröbner bases under considerations, and explores a direct
consequence to the choice of “lucky prime” in the context of
modular computations (following Arnold [1]). Section 4 con-
cerns the technical proofs of the height bounds, after defining
(very briefly) the necessary notions from height theory.

2. STATEMENT OF THE MAIN RESULTS
We define first the concepts involved in our main results,
and refer to Section 4 for the proofs.

Equiprojectable decomposition. This decomposition was
introduced in [5] to set up efficient modular computations of
triangular decompositions of polynomial systems. In fact, it
is well-suited under specialization modulo a prime p, while
for example the irreducible decomposition is limited for this
purpose due to the restriction implied by the Chebotarev
density theorem. We briefly recall the definition, over any
perfect field k.

For i = 1 or 2, let πi : A2
k̄ → A1

k̄, (x1, x2) (→ xi. For
any α ∈ π1(V ), let Fibα be the fiber of V over α equal to
π−1

1 ({α}) ∩ V , and let fibα(Y ) :=
Q
β∈Fibα

Y − π2(β). A

finite family of points V ⊂ A2
k̄ is equiprojectable if the

following two conditions are satisfied:

(i) #Fibα = #Fibβ , ∀α,β ∈ π1(V ).

(ii) V is Zariski closed over k: it is the solutions over An
k̄

of a system of polynomials with coefficients in k.

Let now V be any finite family of points in A2
k̄. We con-

sider the following combinatorial decomposition of V . Let
φ : V → N, α (→ #Fibπ1(α). Then, the subsets V (i), i ∈ N
of V defined by V (i) := φ−1({i}) are almost all empty.
Those who are not form a disjoint union of V . By con-
struction they verify (i). If they verify also (ii), then it
is called the equiprojectable decomposition of V . The
non-empty V (i) are called the equiprojectable compo-
nents of V .

Let Vj := φ−1({ej}), j = 1, . . . , s are the equiprojectable
components of a variety V , and let dj := #π1(Vj). We say
that Vj is of size (dj , ej) (note that #Vj := djej). In all the
following, we will put an order ≺ equiprojectable varieties:
Vi ≺ Vj if and only if ei < ej .

Main results. We assume that we are given the zero-
dimensional variety V , set of solutions in An

k̄ of a polyno-
mial system F = F1, . . . , Ft in Q[X, Y ], that generates a
radical ideal. We consider the equiprojectable decomposi-
tion V1 ≺ · · · ≺ Vs of V , with Vi of size (di, ei). For any
1 ≤ % ≤ s, let furthermore V≤$ := V1 ∪ . . . ∪ V$, while
V>$ := V$+1 ∪ . . . ∪ Vs, and d≤$ be the sum d1 + · · · + d$,
while d>$ := d$+1 + · · ·+ds. In Algorithm 2 is defined a spe-
cial non-reduced minimal Gröbner basis of 〈F 〉 obtained by a
Chinese remaindering map from the triangular sets defining
each equiprojectable components Vi. Let G = {g1, . . . , gs+1}
be this basis, ordered such that lt(gi) | lt(gj) for i < j.
For each element gi ∈ G, let pi(X) be the coefficient of the
highest power of Y of gi(X, Y ); it is actually a factor of gi

(Corollary 1). The polynomial gi/pi with leading term a
pure power in Y is denoted ri.

Theorem 1. With the notations above, let B$ := e$ log 2+
(3d2

≤$ − 5d≤$ + 8) log d≤$, and Ai := (1/ei)(2di log 2 + (ei +
1) log di). Define also R$+1 as the quantity equal to

(2d≤$ − 3)

„X$

i=1

h(Vi)
ei

«
+ (2d≤$ − 2)

“X$

i=1
Ai

”
+ B$,

and G$+1 equal to R$+1 + log d≤$ + log d>$. We have:

h(r$+1) ≤ h(V≤$) + R$+1 and h(g$+1) ≤ h(V ) + G$+1.

With this level of precision, we can observe that the domi-
nant quantities are d2

≤$ log d≤$ and d≤$h(V≤$), that are bal-
anced by the integers ei at the denominators. But to solve
Problem (P) we need a formula with “global” quantities.

Let D$ := deg(V≤$) = #V≤$ be the degree of V≤$. Using
d≤$ ≤ D$, ei ≥ i, comes on one hand,

P$
i=1

di
ei

≤ D$ as well

as
P$

i=1 log di ≤ % log D$, and on the other hand, with the

convexity of − log:
P$

i=1(log di)/ei ≤ log(D$). While
more precise bounds depending on % can be obtained, % is
not known a priori, hence these bounds would be of limited

interest. Using D$ ≥ %(%−1)/2, comes % ≤ 1+
√

1+8D"

2 := ∆$,

yielding the following estimate for
P$

i=1 Ai:

2(log 2)D$ + (% + 1) log D$ ≤ 2(log 2)D$ + (∆$ + 1) log D$.

As for B$, the following can be easily obtained:

B$ ≤ D$ log 2 + 3(D2
$ + 1) log D$.

The above and Theorem 1 shows that h(g$+1) is lower than:

h(V ) + D$h(V≤$) + D2
$ (4(log 2) + 3 log D$) + O(D

3
2
$ log D$)

(1)



This quantity can be seen as quadratic in the natural intrin-
sic data of the problem: its height and its degree. Moreover
the Bézout inequalities, permits to answer Problem (P):

h(g$+1) ≤ 4hd3 + 6d4(log d + 2) + O(d3 log d). (2)

The size of the coefficients of the reduced Gröbner basis
G′ is larger, its estimate is deduced from the bound on G,
and an additional quantity induced by some linear algebra.
The family r′2, . . . , r

′
s+1 denotes the similar polynomials for

G′ that are the ri for G defined above.

Theorem 2. Let D$ be the “complementary degree” of V$
equal to d≤$e$−D$, and G$+1 be as in Theorem 1. We have:

h(r′$+1) ≤ 2D$h(r$+1) + D$ log D$ + h(r$+1)

h(g′
$+1) ≤ 2D$h(r$+1) + D$ log D$ + h(V ) + G$+1

The quantity D$ can vary a lot depending on the data.
While D$ ≤ D2

$ is always true, in the median case, it is
only in the order of D$ . In one case like another, the domi-
nant term in the bound for h(g′

$+1) is 2D$h(r$+1), yielding a
cubic behavior on the median case with respect to the height
or the degree of the variety. We use the previous computa-
tions for bounding h(r$+1) and the Bézout inequalities, to
get in the median case (i.e. when D$ = D$):

h(g′
$+1) ≤ 8hd5 + 12d6(log d + 2) + O(d5 log d). (3)

Giving a worst-case bound is possible (around 8hd7+12d8 . . .)
but is probably overestimated: for a small degree D$ and a
large complementary degree D$, the linear system to solve
that induces this overgrowth, is more structured and the
bound from Lemma 1 not sharp for this instance.

Previous work. This work constitutes a following of the
articles [6, 5]. Concerning the structure, the results of § 3.2
are already stated in Lazard structural theorem [9], but our
formulation à la Lagrange is necessary. The Chinese remain-
dering map established in Algorithm 2 and the importance
of polynomials qα,$ in Equation (6) and Algorithm 3 looks
certainly new.

Concerning modular computations for Gröbner bases, Ar-
nold found criteria to study lucky primes (for more general
Gröbner bases than in this work), leading to Hilbert lucki-
ness [1] for example. However this does not give indication
to pick up such a prime a priori. The bound of Corollary 2
can provide such indications.

As for the bounds of coefficients, apart from the triangular
case [6], we are not aware of previous work.

3. ON THE STRUCTURE
Some features in this section seem already known (The-

orem 3, Algo. 1), other features like Algorithms 2, 3 seem
new.

We will use the following notations: for a bivariate polyno-
mial f(X, Y ) =

P
(a,b)∈N2 fabX

aY b, coeff(f, XaY b) denotes

the coefficient fab, and coeffX(f, Y b) denotes the univariate
polynomial equal to

P
i∈N fibX

i (while coeff(f, Y b) is simply
the coefficient f0b).

3.1 Lagrange bases
For any finite subfamily A of Q, Zariski closed over Q,

let %α,A(X) be the the polynomial
Q
β∈A−{α}

X−β
α−β . The

family {%α,A , α ∈ A} is a basis of Q[X]<#A. If f(X, Y ) is a

bivariate function from Q2
to Q, the Lagrange interpolation

polynomial P f
A of f associated to the nodes A is:

P f
A(X, Y ) :=

X
α∈A

f(α, Y )%α,A(X)

In particular, if f is a bivariate polynomial with degX(f) <
#A, then P f

A = f . If we take f(X, Y ) = Y a, we get

P Y a

A (X, Y ) = Y a =
X

α∈A
Y a%α,A(X),

and by linearity, for any bivariate polynomial f ,

coeffX(P f
A, Y a) =

X

α∈A

coeffX(f(α, Y ), Y a)%α,A(X). (4)

Let V be an equiprojectable variety definable over Q, of size
(a, b) and let A := π1(V ). Let T1(X) :=

Q
α∈A X − α and

T2(X, Y ) :=
X

α∈A
fibα(Y )%α,A(X). (5)

This yields the reduced Gröbner basis of I(V ). In fact, first,
T2 vanishes and V , is reduced modulo T1. Second, since
deg(V ) = ab, this implies that dimQ Q[X, Y ]/I(V ) = ab,
which is equal to dimQ Q[X, Y ]/〈lt(T1), lt(T2)〉.

Let us show that any minimal Gröbner basis {g1, g2} of
I(V ) verifies lt(g1) = Xa and lt(g2) = Y b. First the elimina-
tion property imposes that lt(g1) = Xa. Next by definition,
any minimal Gröbner basis of I(V ) verifies

dimQ Q[X, Y ]/〈lt(g1), lt(g2)〉 = ab.

Since V is finite, lt(g2) is a pure power of Y , so lt(g2) = Y b.
This also proves that T has its coefficients in Q. For-

mula (5) is generalized to the case of several variables [6,
Prop. 2]. Such a simple Gröbner basis is a special case of
triangular set, and often named a Lazard triangular set [2].

3.2 Main result

Theorem 3. Let V1 ≺ V2 ≺ · · · ≺ Vs be the equipro-
jectable decomposition of a finite Zariski set V , closed over
Q. Let (di, ei) be the size of Vi. Then there are s + 1 ele-
ments {g1, g2, . . . , gs+1} in any minimal Gröbner basis G of
I(V ), verifying for 2 ≤ i ≤ s:

lt(g1) = Xd≤s , lt(gi) = Xdi+···+dsY ei−1 , lt(gs+1) = Y es .

Moreover, the polynomial ps(X) :=
Q
α∈π1(Vs) X −α divides

gi(X, Y ) for 1 ≤ i ≤ s, and the family

eG = {g1/ps , g2/ps , . . . , gs/ps},

is a minimal Gröbner basis of I(V1 ∪ . . . ∪ Vs−1).

Proof. By induction on s. For s = 1, the statements are
contained in § 3.1. Assume that the theorem is true for any
variety admitting an equiprojectable decomposition of s− 1
components, and let us prove it for those who admit s.

First, let us show that lt(gs+1) = Y es . Since V is finite,
lt(gs+1) is a pure power of Y , say Y a for an a > 0. No other
lower elements gi are pure power of Y , else contradicts the
minimality of G. Define the Lagrange polynomial:

rs+1(X, Y ) :=
sX

j=1

X

α∈π1(Vj)

fibα(Y )Y es−ej %α,π1(V≤s)(X).

From Property (i) of equiprojectable varieties, for α ∈ π1(Vj)
the polynomials fibα(Y ) above have degree ej , hence



fibα(Y )Y es−ej have degree es. From Formula (4), it fol-
lows that lt(rs+1) = Y es . Then the family of polynomials
g1, . . . , gs, rs+1 vanishes on V , is lexicographically ordered,
of dimension zero, so, if a > es:

〈lt(I)〉 ⊆ 〈lt(g1, . . . , gs, rs+1)〉 ! 〈lt(G)〉,

contradicts the fact 〈lt(I)〉 = 〈lt(G)〉. Hence, a ≤ es. As
before, fibα(Y )|gs+1(α, Y ), for any α ∈ π1(Vs), so either
deg gs+1(α, Y ) = es, or gs+1(α, Y ) = 0. In this case, X − α
divides gs+1, and a non-zero power of X appears in lt(gs+1),
which is not possible. So a ≥ es, and lt(gs+1) = Y es . Let ps

be as defined in the theorem. For i ≤ s, since gi vanishes on
Fibα, gi(α, Y ) = 0, else deg gi(α, Y ) ≥ es, and lt(gs+1)|lt(gi)
contradicting the minimality of G. So ps divides gi, for i ≤ s.

Let us prove that the family eG is a minimal Gröbner basis
of I(V1 ∪ . . . ∪ Vs−1). First, eG vanishes on V1 ∪ . . . ∪ Vs−1,
since for any of its point (α, β), gi(α, β) = 0, but ps(α) 1= 0.
Let g̃i := gi/ps, for 1 ≤ i ≤ s. We have:

deg(I) =
Xs

i=1
eidi = dimQ Q[X, Y ]/〈lt(G)〉

= dimQ Q[X, Y ]/〈Xds lt(g̃1), . . . , X
ds lt(g̃s), Y

es〉
= dimQ Q[X, Y ]/〈lt( eG)〉 + dimQ Q[X, Y ]/〈Xds , Y es〉.

The last Equality comes from the isomorphism between

Q[X, Y ]/〈Xds lt(g̃1), . . . , X
ds lt(g̃s), Y

es〉

and the direct product Q[X, Y ]/〈lt( eG)〉×Q[X, Y ]/〈Xds , Y es〉,
obtained through the map: m (→ m quo Xds , m mod Xds .
We deduce that

dimQ Q[X, Y ]/〈lt( eG)〉 =
s−1X

i=1

eidi = deg(I(V1 ∪ . . . ∪ Vs−1)),

and that 〈lt(G̃)〉 = 〈lt(I(V1 ∪ . . . ∪ Vs−1))〉. Induction hy-
pothesis can then be applied and the conclusion follows. !

Remark: If G is reduced, so it is for eG.

Corollary 1. For 1 ≤ i ≤ s, let pi(X) :=
Q

α∈π1(∪s
j=iVj )

X − α.

Any minimal Gröbner basis G = {g1, . . . , gs+1} of I(V ), or-
dered such that lt(gu) | lt(gv) for u < v, verifies:

gi = pi(X)ri(X, Y ), with r1 = 1 and lt(ri) = Y ei−1 .

For any j < i and each α ∈ π1(Vj), fibα(Y ) divides ri(α, Y ),
and are equal only when j = i − 1.

Proof. All but the last assertion concerning the divisibil-
ity are proved in the previous theorem. Since g1, . . . , gi−1, ri

is a Gröbner basis of I(V≤i−1), ri vanishes on Fibα, for α ∈
V≤i−1. After Lagrange formula (4), we have deg ri(α, Y ) =
ei−1, whereas #Fibα = ej , if α ∈ π1(Vj): the equality
fibα(Y ) = ri(α, Y ) holds only when j = i − 1. !

3.3 Algorithmic considerations
The link between the equiprojectable components and Gröb-

ner bases above suggests Algorithm 1 to go from one to the
other.

Steps 3 and 4 consists only in extraction of coefficients.
The roots of the polynomials T i

1 computed at Step 5 are
π1(Vi), hence the polynomial T i

2 at Step 6 and ri+1 have the
same values above π1(Vi) ; T i

2 being also reduced, it follows
that (T i

1(X), T i
2(X, Y )) is a Gröbner basis of I(Vi).

Input: An ordered Gröbner basis {g1, . . . , gs+1}, with the
notation of Corollary 1

Output: Family T i = (T i
1(X), T i

2(X, Y )), of reduced Gröbner
bases of I(Vi)

1: ps+1 ← 1 ; rs+1 ← gs+1

2: for i = s, . . . , 2 do
3: pi(X) ← coeffX(gi, Y

ei−1)
4: ri(X, Y ) ← gi(X, Y )/pi(X)
5: T i

1(X) ← pi(X)/pi+1(X)
6: T i

2(X, Y ) ← ri+1(X, Y ) mod T i
1(X)

7: end for
8: T 1

1 (X) ← g1(X)/p1(X)
9: T 1

2 (X, Y ) ← r2(X, Y ) mod T 1
1 (X)

10: return [T 1, . . . , T s]

Algo 1: Gröbner basis to equiprojectable decomposition

The reverse algorithm based on the Chinese remaindering
map, does not compute the reduced Gröbner basis. This
specific basis is however of interest for two reasons: it can be
computed from a triangular decomposition algorithm, com-
pletely “S-polynomials computations” free; And its coeffi-
cients are small.

What is done hereafter relies just on geometric obser-
vations. Given as usual an equiprojectable decomposition
V1 ≺ · · · ≺ Vs of a variety V , that is described by a family of
triangular sets T i = (T i

1(X), T i
2(X, Y )), we want to compute

a minimal Gröbner basis {g1, g2, . . . , gs+1} of I(V ). What
is not trivial is to compute the polynomials ri+1 of Corol-
lary 1. Since the polynomials ri+1 vanish on V1 ∪ . . .∪Vi we
get 〈ri+1 mod T i

1〉 ⊂ 〈T j
2 mod T i

1〉 in Q[X, Y ]/〈T i
1〉 for j ≤ i.

Due to a degree constraint, ri+1 ≡ T i
2 mod T i

1 . This leads
to Algorithm 2.

Input: Family of triangular sets T i = (T i
1(X), T i

2(X, Y ))
with V (T i) = Vi

Output: A minimal ordered Gröbner basis {g1, . . . , gs+1} of V

1: ps+1 ← 1 ; q0 ← 1
2: for i = s, . . . , 1 do
3: pi(X) ← pi+1(X)T i

1(X)
4: qi(X) ← qi−1(X)T i

1(X)
5: end for
6: G ← [p1(X) ; T i

2(X, Y )p2(X)]
7: for i = 2, . . . , s do
8: ui(X), vi(X) ← Bézout(T i

1(X), qi−1(X))
9: ri+1←

`
T i

2viqi−1 mod qi

´
+ Y ei−ei−1

`
riuiT

i
1 mod qi

´

10: G ← G cat [pi+1(X)ri+1(X, Y )]
11: end for
12: return G
Algo 2: Equiprojectable decomposition to a Gröbner basis

The additional monomial Y ei−ei−1 at Step 9 is to ensure
the condition that lt(ri+1) must be equal to Y ei . This obvi-
ously does not lead to the reduced Gröbner basis in general.

The reduced Gröbner basis. Given a minimal Gröb-
ner basis with the notations of Corollary 1, for α ∈ π1(Vj),
1 ≤ % ≤ s and 1 ≤ j ≤ %, r$+1(α, Y )/fibα(Y ) is a monic poly-
nomial of degree e$ − ej (no matter what it is). The unicity
of the reduced Gröbner basis implies that only one choice of
these polynomials yields such a basis. We are interested in



the computation of these specific polynomials:

∀1 ≤ % ≤ s, j ≤ %, α ∈ π1(Vj), qα,$+1 :=
r$+1(α, Y )
fibα(Y )

. (6)

Algorithm 3 aims at computing inductively these poly-
nomials. It uses linear algebra. Let us outline the cor-

Input: Equiprojectable decomposition ∪iVi of V
Output: The polynomials qα,$ defined above

1: q ← [] ; A ← ∪$j=1π1(Vj)
2: for % = 1, . . . , s do
3: for α ∈ π1(Vj), j ≤ % let Qα,$+1 be monic polynomials

of degree e$ − ej with indeterminate coefficients.
4: R$+1 ←

P$
j=1

P
α∈π1(Vj) Qα,$+1fibα(Y )%α,A(X),

5: A ← ∪$−1
j=1{(a, b), 1 ≤ a < d≤j , ej ≤ b < ej+1}.

6: cab ← coeff(R$+1, X
aY b), (a, b) ∈ A.

7: Solve the linear system (cab = 0)(a,b)∈A in the inde-
terminate coefficients of Qα,$+1

8: let qα,$+1 be the polynomial with the coefficients
found corresponding to indeterminates of Qα,$+1.

9: q$+1 ← [qα,$+1,α ∈ A] ; q ← q cat [q$+1]
10: end for
11: return q

Algo 3: Reduced Gröbner basis

rectness of the algorithm. First the system cab = 0, with
0 ≤ a < d≤$−1, ej ≤ b < e$ is linear. In fact, the indetermi-
nate coefficients of Qα,$+1 appear in linear combination in
coeff(fibα(Y )Qα,$+1(Y ), Y b). And from Formula (4),

coeff(R$+1, X
aY b) =

X$

j=1

X
α∈π1(Vj)

coeff(%α,A, Xa)

coeff(fibα(Y )Qα,$+1(Y ), Y b), (7)

so they also appear in linear combination in coeff(R$+1, X
aY b).

The cab defined at Step 5 are coefficients of monomials of
r$+1 that are divisible by one of the lt(gj), for j ≤ %. Hence
if the system at Step 6 admits a solution, it corresponds to
the reduced Gröbner basis. This basis exists, so the linear
system admits a solution, and Algorithm 3 is correct.

3.4 Numerical estimate for lucky primes
Computing a Gröbner basis through a modular method

has been settled in [13, 14] and further studied in [1]. It con-
sists in reducing the initial equations modulo a lucky prime
number, run a Gröbner basis computation algorithm, and
lift the basis obtained over Fp to a basis over Q. A lucky
prime that allows such a computation scheme to succeed is
defined as follows:

Definition 2 ([1, Def. 5.1]). Let G(F ) be a minimal
Gröbner basis of polynomial equations F = f1, . . . , ft over
Q. A prime p that does not divide the denominators of the
coefficients of the polynomials in F is lucky if

lt(G(F mod p)) = lt(G(F )).

While such a criterion can be discussed, it is the miminal
condition that a prime should satisfy, and for radical ideals,
it is sufficient. Corollary 1 says that the leading terms of
minimal Gröbner bases correspond to the size of the equipro-
jectable components. A modular algorithm for computing

the equiprojectable decomposition has already been studied
in [5], and the problem of choosing a lucky prime, in this
context, completely solved. Let us summarize the ideas of
the proof therein.

First, since the definition of equiprojectable decomposi-
tion is geometric, the concept of“V mod p”must make sense.
If V ⊂ A2

Q, then p must divide no denominator of any co-
ordinate of any points in V . If there are algebraic points,
there exists a suitable non-ramified finite extension Kp of
Qp (field of p-adic numbers) such that the coordinates of
the points in V lie in the ring of integers Op of Kp. This
last is a free Zp-module of finite type, hence, the coordinates
can be reduced modulo p componentwise.

The equiprojectable decomposition ∪s
i=1Vi of V is said to

specialize well modulo p if (V mod p) admits ∪s
i=1(Vi mod p)

as equiprojectable decomposition, and if Vi and (Vi mod p)
have same size. The above definition implies the following
result:

Proposition 1. A prime p is lucky (following Defini-
tion 2) if and only if the equiprojectable decomposition spe-
cializes well modulo p.

It was shown in [5, Lemma. 7] that for a prime p to be
lucky, it suffices that each projections on the first axes of
V and (V mod p) must have same cardinality. To quantify
numerically this, was introduced primitive element represen-
tations of each projections on the first axes of V , yielding
parametrizations of each of these projections of V . A lucky
prime should not divide the denominators in any polyno-
mials of each parametrizations, and the primitive elements
must have the same number of roots when reduced modulo
p. This lead to a squarefreeness criterion (Cf. hypothesis H2

before Lemma 4 in [5]), expressed through non-vanishing of
a suitable resultant (Cf. Lemma 4 in [5]) when reduced
modulo p. Standard use of theoretical bounds on the size of
coefficients permitted to give the following numerical crite-
rion, given here in our special bivariate situation.

Corollary 2. Let F = f1, . . . , ft be a system of equa-
tions over Q, defining a zero-dimensional and radical ideal.
Let d := maxt

i=1 tdeg(fi), and h := maxt
i=1 h(fi). There

exists an integer A, whose number of digits is bounded by
8d4(h + 4(log d) + 5), such that if p 1 |A, then p is lucky.

Proof. We use with n = 2 a corrected result of [5, Equa-
tion before § 4] stated in [4, p. 139]. !

4. PROOF OF THEOREMS 1 AND 2

4.1 Preliminaries
Height theory. We just outline the main objects that we
use, and refer to [8, § 1] for more details.

Let K be a number field. A set of absolute values MK

is said to verify the product formula with multiplicity Nv

if for any x ∈ K∗,
Q

v∈MK
|x|Nv

v = 1. The height of an
element x ∈ K∗ is defined by:

h(x) :=
1

[K : Q]

X
v∈MK

Nv log max{1, |x|v}, (8)

and for a polynomial f =
P

a∈Nn faX
a in K[X1, . . . , Xn],

h(f) :=
1

[K : Q]

X
v∈MK

Nv log max{1, max
a∈Nn

{|fa|v}}.



Over Q, the set MQ = {|.|∞} ∪ {|.|p, p prime} verifies the
product formula with multiplicity one, and the link with Def-
inition 1 in Introduction is proved in [4, Prop. 1.5, p. 26]. Let
v an absolute value over K that extends an absolute v0 over
Q. We denote by Cv0 the completion of an algebraic closure
of the completion of Q for v0. There exists an embedding
σv : K → Cv0 such that for any x ∈ K∗, |x|v = |σv(x)|v0 .
Let Kv (resp. Qv0) be the completion of K (resp. Q) in
Cv0 and let Nv be the local degree [Kv : Qv0 ]. The canonical
set MK of absolute values over K that extends those MQ
over Q verifies the product formula with multiplicity Nv , in
conformity with Formula (8).

Height of varieties. Let V ⊂ An
Q be a finite Zariski closed

set. The Chow form CV of V is the following polynomial:

CV :=
Y

α∈V
T − α1X1 − · · ·− αnXn.

If V is definable over K, then CV ∈ K[T, X1, . . . , Xn]. More-
over if V and V ′ are disjoint finite Zariski closed sets, then
CV ∪V ′ = CV CV ′ . Let M∞

K the Archimedean absolute values
of the canonical set MK , while M0

K are the non-Archimedean
ones. For v ∈ M∞

K , we define the Mahler measure of f :

mv(f) :=

Z 1

0

· · ·
Z 1

0

log |f(e2iπt1 , . . . , e2iπtn)|vdt1 . . . dtn ,

and the Sn-Mahler measure associated to v: mv(f ; Sn) :=R
Sn

log |f |vµn, where µn is the Haar measure of mass 1 over
the complex sphere Sn of dimension n. The height of the
variety V is:

h(V ) :=
1

[K : Q]

„X
v∈M∞

K

Nvmv(CV ; Sn+1)

+
X

v∈M0
K

Nv log |CV |v
«

+ deg(V )
Xn

i=1

1
2i

. (9)

Inequalities. Following the proof made in [6] for bounds on
triangular sets, we reuse the inequalities relating the behav-
ior of the height under elementary operations proved in [8,
Lemma I.2]. Let f, (fi)i≤t be monic multivariate polynomi-
als. If v is a non-Archimedean absolute value, then:

N× hv(f1 · · · ft) = hv(f1) + · · · + hv(ft).

N+ hv(f1 + · · · + ft) ≤ maxi≤t hv(fi).

Ns hv(f(x)) ≤ hv(f) + (deg f)hv(x) for x ∈ K.
If v is Archimedean, then:

A+ hv(f1 + · · · + ft) ≤ maxi≤t hv(fi) + log t.

A(m;Sn) mv(f) ≤ mv(f ; Sn) + (deg f)(
Pn

i=1 1/2i).

A0 mv(f(X1, . . . , Xn−1, 0)) ≤ mv(f).

For monic univariate polynomials f, (fi)i≤t,we can refine a
bit some Archimedean inequalities of [8] and used in [6]:

Am hv(fi) ≤ mv(fi) + di log 2

A× hv(f1 · · · ft) ≤
P

i hv(fi) + log di.

AΣ
P

i hv(fi) ≤ hv(
Q

i fi) +
P

i(log di + di log 2).

A∧ hv(f) ≤ (1/e)
`
hv(fe) + log(2)(deg f) + log deg f

´
.

As hv(f(x)) ≤ hv(f) + (deg f)hv(x) + log(deg(f) + 1)

If we drop the assumption that f is monic, we have:

E hv(xfi) ≤ hv(x) + hv(fi) for x ∈ K, for any v.
To study reduced Gröbner bases, height of solutions of lin-
ear square systems are required. This is obtained through
Cramer’s rule and Hadamard’s bounds.

Lemma 1. Let A = (Aij)ij be a square regular matrix
of size n over Q and b = (bi)i a vector of Qn. Let H be

an upper bound on the global height of A and b. The unique
solution x = (xi)i ∈ Qn of the linear system Ax = b verifies:

h(xi) ≤ n log n + 2nH, for any 1 ≤ i ≤ n.

Notations. Besides the usual notations of Corollary 1, we
will make use of the additional following ones. A first aim
is to fix an 1 ≤ % ≤ s, and compute the height of r$+1. Let
V≤$ := V1 ∪ . . .∪ V$ and A := π1(V≤$). Let α ∈ π1(Vj) ⊂ A.
The proof follows closely the one of of [6, § 5], with minor
changes that the bivariate case allows. As therein, we note
Eα(X) :=

Q
β∈A
β &=α

X − β, so that %α,A(X) := Eα(X)/Eα(α).

Moreover, let E$ :=
Q
α∈π1(V≤") Eα(α).

Ci(X, Y, T ) =
Q

(α,β)∈Vi
T − αX − βY is the Chow form

of the variety Vi.

Cα(X, Y, T ) :=
Q
β∈Fibα

T − αX − βY is the Chow form
of Fibα.

Cα,j(X, Y, T ) :=
Q

β &=α
β∈π1(Vj )

Q
γ∈Fibβ

T − βX − γY is the

Chow form of Vj − Fibα.

In particular Cα Cα,j = Cj . As usual, (di, ei) is the size of
Vi, qα,$+1(Y ) = r$+1(α, Y )/fibα(Y ), and d≤i = d1 + · · ·+di.

We will make use of the following polynomial:

T$+1 :=
X

α∈π1(V≤")

E$Eαr$+1(α, Y )
Eα(α)

= E$r$+1 (10)

A slight modification of [6, Lemma 2] shows that T$+1 ∈
Q[X, Y ] (the notations are the same, but not exactly the
definition). The interest of T$+1 lies in the fact that r$+1

is obtained by dividing out the leading coefficient of T$+1.
This implies h(r$+1) ≤ h(T$+1) (†). In order to get a bound
on its height the following Lemma is useful:

Lemma 2. For any α ∈ π1(V≤$), and any non-Archimedean
absolute value w, holds the inequality:

hw

„
E$

Eα(α)

«
≤ hw

“
Eα(X)d≤"−2 (Eα(X)(X − α))d≤"−1

”

If w is Archimedean an additional term D$ = d≤$(d≤$ −
1) log 2 + d≤$ log d≤$ must be added to the innermost term.

Proof. Let us start by the easier non-Archimedean case.

hw

„
E$

Eα(α)

«
= hw

“Y
β *=α

Eβ(β)
”

N×
=

X
β *=α

hw(Eβ(β))

Ns

≤
X

β *=α
hw(Eβ(X)) + (d≤$ − 1)hw(X − β). (11)

Two successive applications of Inequality N× shows that the
innermost term above is equal to:

hw

“Y
β *=α

Eβ(X)(X − β)d≤"−1
”

.

The Archimedean case follows the same lines:

hw

„
E$

Eα(α)

«
As
≤

X

β *=α

hw(Eβ)+(d≤$−1)hw(X−β)+log d≤$.

Successive applications of Inequality AΣ and simplifications
with the remaining logarithmic terms, yields the estimate:

hw

“ Y

β *=α

Eβ(X)(X−β)d≤"−1
”
+d≤$(d≤$−1) log 2+d≤$ log d≤$.

But
Q
β *=αEβ(X)(X − β)d≤"−1 is equal to

`
Eα(X)(X −

α)
´d≤"−1

Eα(X)d≤"−2, yielding the conclusion. !



4.2 Main result
We let K be an extension of Q containing all the algebraic

coordinates of all points of V . We let w be an absolute value
over K that extends a given absolute value over Q (if v is
Archimedean or not, so it is for w)

The special Gröbner basis. We start by this easier basis,
and deduce some bounds for the reduced one after. We fix
α ∈ π1(Vj).

Case 1: w is non-Archimedean The computations here-
under comes from Equality N× essentially.

hw(Eα(X)r$+1(α, Y )) = hw(r$+1(α, Y )) + hw(Eα(X))

≤ hw(Cα(0, 1, Y )) + hw(qα,$+1) (12)

+
X$

i=1
i&=j

hw(Ci(1, 0, X)
1
ei ) + hw(Cα,j(1, 0, X)

1
ej )

≤ hw(Cα) +
X$

i=1
i&=j

hw(Ci) + hw(Cα,j)

≤
X$

i=1
hw(Ci) = hw(V≤$). (13)

Taking the maximum over α following Inequality N+, per-
mits to get the bound on the non-Archimedean local heights
of

P
αEα(X)r$+1(α, Y ).

We turn out to the bound on T$+1. With our notations (10),
this leads to:

hw

„
E$Eαr$+1(α, Y )

Eα(α)

«
≤ hw(Eαr$+1(α, Y ))+hw

„
E$

Eα(α)

«
.

(14)
The first term is dealt in Equality (13). As for the second
one, the bound of Lemma 2, with direct applications of In-
equalities Ns, N+ gives:

hw

„
E$

Eα(α)

«
≤ (d≤$−1)hw(Eα(X)(X−α))+(d≤$−2)hw(Eα).

Using hw(Eα(X)) ≤ hw(Eα(X)(X − α)), and the same
computations used to bound hw(Eα(X)) in Equation (12),
comes:

hw

„
E$

Eα(α)

«
≤ (2d≤$ − 3)

“ X$

i=1

1
e i

hw(Ci)
”
.

Combining this and Equation (13) in Equation (14), gives:

hw(T$+1) ≤ hw(V≤$) + (2d≤$ − 3)
“ X$

i=1

1
e i

hw(Vi)
”

(15)

This gives the non-Archimdean part on the bound on the
height of T$+1.

Case 2: w is non-Archimedean In the computations
hereafter, was used first Inequality A×, then A∧.

hw(Eα(X)) ≤
X$

i=1
i&=j

hw(Ci(1, 0, X)
1
ei ) + log di

+ hw(Cα,j(1, 0, X)
1

ej ) + log(dj − 1) (16)

≤
X$

i=1
i&=j

1
ei

hw(Ci(1, 0, X)) +
di

ei
log 2 +

(ei + 1) log di

ei

+
hw(Cα,j(1, 0, X))

ej
+ log(2)

dj − 1
ej

+
(ej + 1) log(dj − 1)

ej

Next we apply Inequality Am where appear the Mahler mea-
sure, and use dj − 1 < dj , it comes that hw(Eα(X)) is

bounded by:

X$

i=1
i&=j

1
e i

“
mw(Ci(1, 0, X)) + 2di log 2 + (ei + 1) log di

”

+
1
e j

“
mw(Cα,j(1, 0, X)) + 2dj log 2 + (ej + 1) log dj

”
. (17)

Inequality A0 reveals the terms mw(Ci) and mw(Cα,j) in the
above. As for the height of r$+1(α, Y ) = fibα(Y )qα,$+1(Y ),
it is only equal to hw(fibα(Y )), since in this case qα,$+1 =
Y ej . Roughly same computations made for the non-Archime-
dean case above, plus an application of Inequality Am yields:

hw(r$+1(α, Y )) ≤ mw(Cα) + ej log 2. (18)

Since r$+1(α, Y ) and Eα(X) have different variables, the
equality

hw(r$+1(α, Y )Eα(X)) ≤ hw(r$+1(α, Y )) + hw(Eα),

holds. Since ei ≥ 1, for all i ≥ 1, we have (1/ei)mw(Ci) ≤
mw(Ci). Plugging Equations (18) and (17) in the above,
then using mw(Cj) = mw(Cα,j) + mw(Cα) and few simplifi-
cations comes:

hw(r$+1(α, Y )Eα(X)) ≤
X$

i=1
mw(Ci) + 1/ei

`
2di log 2

+ (ei + 1) log di

´
+ ej log 2. (19)

In Inequality A+, the maximum over α is reduced here to
take the maximum over j (recall that α is supposed to belong
to π1(Vj)). We use ej ≤ e$ for all j. Inequality A(m;Sn+1)

permits to write the local height of the varieties Vi from the
Mahler measure mw(Ci).

hw

“ X
α

Eαr$+1(α, Y )
”
≤ hw(V≤$)+

X$

i=1

1/ei

`
2di log 2

+ (ei + 1) log di

´
+ e$ log 2 + log d≤$. (20)

We turn now to bound the polynomial T$+1. Similarly to the
non-Archimedean case, we start by estimating the height of
E$/Eα(α). After Lemma 2, necessary computations lead to:

hw(Eα(X)d≤"−2(Eα(X − α))d≤"−1)
A×
≤ hw(E

d≤"−2
α )

+ hw((Eα(X − α))d≤"−1) + 4 log(d≤$ − 1). (21)

Using hw(Eα(X)) ≤ hw(Eα(X)(X − α)):

hw(E
d≤"−2
α ) ≤ (d≤$−2)

`
hw(Eα(X)(X−α))+2 log(d≤$−1)

´
.

(22)
If the above is plugged in the right-hand side of Equation (21),
the left-hand side is bounded, after simplifications, by:

(2d≤$ − 3)
`
hw(Eα(X)(X − α)

´
+ (3d2

≤$ − 5d≤$ + 7) log d≤$.

From Lemma 2, this is also a bound on hw(E$/Eα(α)).
Equality (14) applies also in the Archimedean case from
Equality E, and with Equality (20), the left-hand side of
Equality (14) becomes lower than:

hw(V≤$) + (2d≤$ − 3)
“X$

i=1
hw(Vi)/ei

”

+ (2d≤$ − 2)
“X$

i=1
(1/ei)

`
2di log 2 + (ei + 1) log di

´”

+ ej log 2 + (3d2
≤$ − 5d≤$ + 7) log d≤$. (23)

To get the result on T$+1, following Inequality A+, it re-
mains to take the maximum over α ∈ π1(V≤$) and add



a term in log d≤$. Using e$ > ej , the terms above meet
the definition of the notations Ai and B$ of Theorem 1
in Introduction. Finally, by combining the estimate ob-
tained in that way for the Archimedean case, with the non-
Archimedean equivalent inequality (15), we get the global
bound on h(T$+1). It is greater than h(r$+1) from (†), and
the bound on r$+1 of Theorem 1 follows.

The reduced Gröbner basis. Let us define (ri)2≤i≤$+1

the polynomials of Corollary 1 such that

(p1(X) , p2(X)r′i(X, Y ) , . . . , r′s+1(X, Y ))

is the reduced Gröbner basis of I(V ). We need to take into
account the polynomials qα,$+1 that were equal to Y ei−ej in
the previous computations. Let us investigate the entries of
the linear system of Algorithm 3 used to compute them. To
apply Lemma 1, is needed a bound on the global height of
the entries (Aij)ij and (bi)i, using the notations therein.

Formula (4) shows that any indeterminate coefficient
coeff(Qα,$+1, Y

u) of Qα,$+1 appears linearly, with a coef-
ficient of the form coeff(fibα(Y ), Y v)coeff(%α,A, Xa), for
some integers a, u and v. Besides, the same is true for the
scalar entries of the linear system. Hence, with a bound on
the global height h(fibα(Y )%α,A), Lemma 1 can be applied.
Recalling that %α,A = Eα(X)/Eα(α), the general bound

h(fibα(Y )%α,A(X)) ≤ h(r$+1)

holds. The size of the linear system used at Step 7 of Al-
gorithm 3 is: D$ :=

P$−1
i=1 (e$ − ei)di = d≤$e$ − D$.This is

the number of monomials with exponents in [0, d≤$[×[0, e$[
that are not standard monomials of I(V≤$). We called D$

the complementary degree of V≤$. Lemma 1 provides the
following estimate on the height of the polynomials qα,$+1:

h(qα,$+1) ≤ D$ log D$ + 2D$h(r$+1). (24)

In the previous computations, the additional term hw(qα,$+1)
must be added in Equations (12) (13) (15), for the non-
Archimedean absolute values, and in Equations (18) (19)
(20) and (23) for the Archimedean ones. This yields to:

hv(r′$+1) ≤ hv(r$+1) + hv(qα,$+1) for any v.

The global equivalent also holds: h(r′$+1) ≤ h(r$+1)+h(qα,$+1).
With Equation (24) finally comes:

h(r′$+1) ≤ (2D$ + 1)h(r$+1) + D$ log D$.

Bounds on polynomials g$+1. While the above focuses on
bounds on r$+1 and r′$+1 of Theorems 1 and 2 respectively,
we prove here the statements concerning g$+1 and g′

$+1.
From g$+1 = p$+1r$+1, and Inequalities N× and A×,

comes h(g$+1) ≤ h(p$+1) + h(r$+1) + log d≤$ + log d>$. It is
easily seen that h(p$+1) ≤ h(V>$), and the result for g$+1

follows. The same reasoning holds for g′
$+1.

5. CONCLUSION
Comments on the results. The estimates for the special
(non-reduced) Gröbner basis are “quite sharp”, means that
the simplifications made until Theorem 1 are hardly avoid-
able. The quadratic growth observed in Equation (1) comes
from the Lagrange interpolation polynomials. For the re-
duced Gröbner basis, the linear system in Algorithm 3 can
be in some cases structured and slight improvements in the
bounds of Theorem 2 may be obtained; in the median case,
Bound (3) is satisfactory.

More generally, the representation of polynomial systems
by the equiprojectable triangular decomposition, is shown
to be equivalent to lexicographical Gröbner bases. Their
representation is naturally more compact (like factors of a
polynomial is usually a more compact represntation than
the polynomial itself). Moreover, it is well-suited for mod-
ular computations [5], and optimal algorithms dedicated to
triangular systems are coming out [11, 3]. Implementations
are made in Maple, inside the RegularChains library [10].
Some benchmarks made in two variables are in favor of this
triangular decomposition regarding to the Fgb software [7]
interfaced with Maple.

Toward generalizations. For polynomial systems with
more than 2 variables, the Lagrange interpolation formula
and the“Chinese remaindering maps”between Gröbner bases
and the equiprojectable decomposition of Algorithms 1, 2 is
not difficult, since the elimination property that allow lexi-
cographical orders permits an inductive reasoning. The for-
mula given for the size of the coefficients in Theorem 1 isnot
so easily generalizable, but at least a recursive formula can
certainly be given and used for concrete problems. Yet, a
rough general “quadratic” bound can be easily deducible.

We have assumed that the base field was perfect or equal
to Q, but everything works as well, and are even easier some-
times, for fields of kinds k(Y1, . . . , Ym); we just need to add
an assumption of separability. We let it to future work since
it open ways to comparisons with previous results.
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Gröbner bases (F4). J. Pure Appl. Alg., 139(1-3):61–88,
1999.

[8] T. Krick, L. M. Pardo, and M. Sombra. Sharp estimates for
the arithmetic Nullstellensatz. Duke Math. J., 109:521–598,
2001.

[9] D. Lazard. Ideal bases and primary decomposition: case of
two variables. J. Symb. Comput., 1(3):261–270, 1985.

[10] F. Lemaire, M. Moreno Maza, and Y. Xie. The
RegularChains library. In Maple 10, Maplesoft, Canada.

[11] X. Li, M.Moreno Maza, and É Schost. Fast arithmetic for
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