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Exercise 1 Consider the two following linear systems (S4) and (Sg):

41‘1 + Ty —x3 = 5 —21’1 + T9 + %ZE3 = 4
(SA) —x1 + 3ZE2 +x3 = —4 (SB) Ty — QIQ — %Zbg = —4
201+ 225+ 523 = 1 To+2x3 = 0

. Write the general iteration equation for (1) the Jacobi method and (2) for the

Gauss-Seidel method.
n @ M

. Compute the first iteration x® = (z}”, 25 ,25")7 and the second one x? =

(oD 2, P

Use the initial vector x(© = (0,0, 0)7.

. Write the system (S4) in matrix form A -z = b. Write the decomposition A =

D — L — U in diagonal/lower triangular /upper triangular matrix.

. Write down the matrix form of the Jacobi iteration: x*+1) = zj(k) +c; and of the

Gauss-Seidel x*+) = T, x*) 4 ¢ .

. Compute the characteristic polynomial xr,()) of the matrix T; and xr,(A) the one

of the matrix T},

Deduce the spectral radii p(7}) and p(T}) of the matrices T; and 7},

From Chapter 3, Section 2, Theorem 3, tell whether the Jacobi method converges.
Same question for the Gauss-Seidel method.

Exercise 2  (Review on convergence results)

1.

Tell a necessary and sufficient condition for the Jacobi’s and Gauss-Seidel’s iteration
method to converge.

In general, is this condition easy to verify in practice ?

. What are the two cases (one is in report 3-1 !) we have seen for which it is “easy”

to check the convergence ?

Could we tell easily that the Jacobi and Gauss-Seidel would converge for the systems
(Sa) and (Sp) ?
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Exercise 3 Let A € Mat, «,(R), A € C an eigenvalue and x € C” one of its eigenvector.
Show the following;:

1. If x is an eigenvectorof eigenvalue A of the matrix A, then M\* is an eigenvalue of
the matrix A* and z is an eigenvector for \*.

2. If A is invertible, then X # 0 and % is an eigenvalue of A~! with eigenvector x.

3. If all eigenvalues of A verify |A\| < 1 (that is p(A) < 1) then A —1d is invertible and

. . 1
its eigenvalues are 1.

Exercise 4 Assume that A € Mat, x,(R) C Mat,,»,(C) is symmetric, A € C an eigen-
value with an associated eigenvector x € C".
The purpose of this exercice is to show that A € R (and as a consequence that x € R™)

1. Show that 37 Ay = yT Ay for any y € C"

2. Write 7 Az — 2T AZ in function of \, X, z, Z. Deduce that A = \.

Exercise 5 Gram-Schmidt orthogonalization.
Let (., .) be an inner product on R". Two vectors are orthogonal with respect to

<., > if<U1,1}2>:0.

Example: The dot product: (a,b) = a’b for a,b € R™.

1. Given two linearly independent vectors vy, vy in R?, show that

€1 = UM (1)
= vy — <U2’€1>e
€2 = V2 <€1,61> 1 (2)

are two linealry independent orthogonal vectors.

2. More generally, given any linearly independent vectors vy, ..., v, in R", the Gram-
Schmidt orthogonalization refers to the following computation of vectors ey, ..., e,.
€1 = U (3)
k—1 (V8 €0)
er = Up — B ey, for k=2,...n. (4)
2 e e

Check that (e;,e;) = 0 for i # j (the family ey, ..., e, is orthogonal).

3. Example: Consider v; = (1,0,0)T, vy = (1,1,0)%, v3 = (1,1,1)T. Orthogonalize
the family (vy, vg, v3).



Exercise 6 Orthogonal matrix

Definition 1 A matriz Q € Mat,,«,(R) is orthogonal if its columns are pairwise orthog-
onal (for the natural dot product) and of norm 1.

1. Show that the definition means: QTQ = Id (thus an equivalent definition is Q7 =
Q™).
2. Show that if @) is an orthogonal matrix then, ||Qz||2 = ||z||2. Deduce that [|Q]||, = 1.

Exercise 7 The purpose is to show the spectral theorem:

Theorem 1 Let A € Mat, «,(R) be a symmetric matriz. There exist an orthogonal basis
of eigenvectors of A.

1. According to Exercise 4, A has only real eigenvalues. Assume first that A has at
least two eigenvalues \; # A;, and let z;, (respectively z;) be an eigenvector for \;
(respectively for ;).

Show that x; and x; are orthogonal, that is x7z; = 0.

2. Deduce that if A has no multiple eigenvalue then Theorem 1 is true.

General case (more difficult): Proof by induction on n.

3. How is the case n =17

e Assume now the theorem true for any symmetric matrix of size < n — 1.

e Let A € R be an eigenvalue and x € R™ be an associated eigenvector of norm
17 ”xHQ =1

e Let ()7 be the orthogonal complement of the line (z): (z) & (z)* =R
e Let 4o, ..., ¥y, be an orthonormal basis of (x)* (obtained by Gram-Schmidt in

Exercise 5 for example), so that x,ys, ..., y, is an orthonormal basis of R".

4. Let y € (z)*. Show that Ay € (z)*.

Let P be the change of basis matrix, from the canonical basis of R to the basis x, ys, . .., y»:}}
0
1
0 .
P. . =X, P. 1j-th entry =Yj
0 :
0

5. Show that the matrix P is orthogonal.



6. Show that P~'AP = B’ where
N .- 0

B/

where B € Mat,,_1x,_1(R) is a symmetric matrix.

7. Use induction hypothesis on B to prove there is an orthogonal family of eigenvectors
(1,0,...,0)T, ¢, ...,q, € R" for B’, which is a basis of R".

8. Conclude the proof of Theorem 1

Exercise 8 Prove the following simple Corollary of Theorem 1.

Corollary 1 A matric A € Mat,«,(R) is symmetric, if and only if there exist an or-
thogonal matriz Q and a diagonal matriz D such that A = QT DQ.



