2016, December 8^{th}

連立1次方程式系、反復法:練習問題

Exercise 1 Consider the two following linear systems (S_A) and (S_B) :

$$(S_A) \begin{cases} 4x_1 + x_2 - x_3 = 5\\ -x_1 + 3x_2 + x_3 = -4\\ 2x_1 + 2x_2 + 5x_3 = 1 \end{cases} \qquad (S_B) \begin{cases} -2x_1 + x_2 + \frac{1}{2}x_3 = 4\\ x_1 - 2x_2 - \frac{1}{2}x_3 = -4\\ x_2 + 2x_3 = 0 \end{cases}$$

- 1. Write the general iteration equation for (1) the Jacobi method and (2) for the Gauss-Seidel method.
- 2. Compute the first iteration $\mathbf{x}^{(1)} = (x_1^{(1)}, x_2^{(1)}, x_3^{(1)})^T$ and the second one $\mathbf{x}^{(2)} = (x_1^{(2)}, x_2^{(2)}, x_3^{(2)})^T$.

Use the initial vector $\mathbf{x}^{(0)} = (0, 0, 0)^T$.

- 3. Write the system (S_A) in matrix form $A \cdot x = b$. Write the decomposition A = D L U in diagonal/lower triangular/upper triangular matrix.
- 4. Write down the matrix form of the Jacobi iteration: $\mathbf{x}^{(k+1)} = T_j \mathbf{x}^{(k)} + c_j$ and of the Gauss-Seidel $\mathbf{x}^{(k+1)} = T_g \mathbf{x}^{(k)} + c_g$.
- 5. Compute the characteristic polynomial $\chi_{T_j}(\lambda)$ of the matrix T_j and $\chi_{T_g}(\lambda)$ the one of the matrix T_q .

Deduce the spectral radii $\rho(T_j)$ and $\rho(T_g)$ of the matrices T_j and T_g .

6. From Chapter 3, Section 2, Theorem 3, tell whether the Jacobi method converges. Same question for the Gauss-Seidel method.

Exercise 2 (*Review on convergence results*)

- 1. Tell a necessary and sufficient condition for the Jacobi's and Gauss-Seidel's iteration method to converge.
- 2. In general, is this condition easy to verify in practice ?
- 3. What are the two cases (one is in report 3-1 !) we have seen for which it is "easy" to check the convergence ?
- 4. Could we tell *easily* that the Jacobi and Gauss-Seidel would converge for the systems (S_A) and (S_B) ?

Exercise 3 Let $A \in Mat_{n \times n}(\mathbb{R})$, $\lambda \in \mathbb{C}$ an eigenvalue and $x \in \mathbb{C}^n$ one of its eigenvector. Show the following:

- 1. If x is an eigenvector f eigenvalue λ of the matrix A, then λ^k is an eigenvalue of the matrix A^k and x is an eigenvector for λ^k .
- 2. If A is invertible, then $\lambda \neq 0$ and $\frac{1}{\lambda}$ is an eigenvalue of A^{-1} with eigenvector x.
- 3. If all eigenvalues of A verify $|\lambda| < 1$ (that is $\rho(A) < 1$) then A Id is invertible and its eigenvalues are $\frac{1}{\lambda 1}$.

Exercise 4 Assume that $A \in \operatorname{Mat}_{n \times n}(\mathbb{R}) \subset \operatorname{Mat}_{n \times n}(\mathbb{C})$ is symmetric, $\lambda \in \mathbb{C}$ an eigenvalue with an associated eigenvector $x \in \mathbb{C}^n$.

The purpose of this exercice is to show that $\lambda \in \mathbb{R}$ (and as a consequence that $x \in \mathbb{R}^n$)

- 1. Show that $\overline{y}^T A y = y^T A \overline{y}$ for any $y \in \mathbb{C}^n$
- 2. Write $\overline{x}^T A x x^T A \overline{x}$ in function of $\lambda, \overline{\lambda}, x, \overline{x}$. Deduce that $\lambda = \overline{\lambda}$.

Exercise 5 Gram-Schmidt orthogonalization.

Let $\langle ., . \rangle$ be an inner product on \mathbb{R}^n . Two vectors are orthogonal with respect to $\langle ., . \rangle$ if $\langle v_1, v_2 \rangle = 0$.

Example: The dot product: $\langle a, b \rangle = a^T b$ for $a, b \in \mathbb{R}^n$.

1. Given two linearly independent vectors v_1 , v_2 in \mathbb{R}^2 , show that

$$e_1 = v_1 \tag{1}$$

$$e_2 = v_2 - \frac{\langle v_2, e_1 \rangle}{\langle e_1, e_1 \rangle} e_1 \tag{2}$$

are two linealry independent orthogonal vectors.

2. More generally, given any linearly independent vectors v_1, \ldots, v_n in \mathbb{R}^n , the *Gram-Schmidt* orthogonalization refers to the following computation of vectors e_1, \ldots, e_n .

$$e_1 = v_1 \tag{3}$$

$$e_k = v_k - \sum_{\ell=1}^{k-1} \frac{\langle v_k, e_\ell \rangle}{\langle e_\ell, e_\ell \rangle} e_\ell, \quad \text{for } k = 2, \dots n.$$
(4)

Check that $\langle e_i, e_j \rangle = 0$ for $i \neq j$ (the family e_1, \ldots, e_n is orthogonal).

3. Example: Consider $v_1 = (1, 0, 0)^T$, $v_2 = (1, 1, 0)^T$, $v_3 = (1, 1, 1)^T$. Orthogonalize the family (v_1, v_2, v_3) .

Exercise 6 Orthogonal matrix

Definition 1 A matrix $Q \in Mat_{n \times n}(\mathbb{R})$ is orthogonal if its columns are pairwise orthogonal (for the natural dot product) and of norm 1.

- 1. Show that the definition means: $Q^T Q = \text{Id}$ (thus an equivalent definition is $Q^T = Q^{-1}$).
- 2. Show that if Q is an orthogonal matrix then, $||Qx||_2 = ||x||_2$. Deduce that $|||Q|||_2 = 1$.

Exercise 7 The purpose is to show the *spectral theorem*:

Theorem 1 Let $A \in Mat_{n \times n}(\mathbb{R})$ be a symmetric matrix. There exist an orthogonal basis of eigenvectors of A.

1. According to Exercise 4, A has only real eigenvalues. Assume first that A has at least two eigenvalues $\lambda_i \neq \lambda_j$, and let x_i , (respectively x_j) be an eigenvector for λ_i (respectively for λ_j).

Show that x_i and x_j are orthogonal, that is $x_i^T x_j = 0$.

2. Deduce that if A has no multiple eigenvalue then Theorem 1 is true.

General case (more difficult): Proof by induction on n.

- 3. How is the case n = 1 ?
 - Assume now the theorem true for any symmetric matrix of size $\leq n-1$.
 - Let $\lambda \in \mathbb{R}$ be an eigenvalue and $x \in \mathbb{R}^n$ be an associated eigenvector of norm $1, ||x||_2 = 1.$
 - Let $\langle x \rangle^T$ be the orthogonal complement of the line $\langle x \rangle$: $\langle x \rangle \oplus \langle x \rangle^{\perp} = \mathbb{R}^n$.
 - Let y_2, \ldots, y_n be an orthonormal basis of $\langle x \rangle^{\perp}$ (obtained by Gram-Schmidt in Exercise 5 for example), so that x, y_2, \ldots, y_n is an orthonormal basis of \mathbb{R}^n .
- 4. Let $y \in \langle x \rangle^{\perp}$. Show that $Ay \in \langle x \rangle^{\perp}$.

Let P be the change of basis matrix, from the canonical basis of \mathbb{R}^n to the basis x, y_2, \ldots, y_n :

$$P.\begin{pmatrix} 1\\0\\\vdots\\0 \end{pmatrix} = x, \qquad P.\begin{pmatrix} 0\\\vdots\\1 \text{ j-th entry}\\\vdots\\0 \end{pmatrix} = y_j$$

5. Show that the matrix P is orthogonal.

6. Show that $P^{-1}AP = B'$ where

$$B' = \begin{pmatrix} \lambda & \cdots & 0 & \cdots \\ \vdots & & & \\ 0 & & B & \\ \vdots & & & \end{pmatrix}$$

where $B \in Mat_{n-1 \times n-1}(\mathbb{R})$ is a symmetric matrix.

- 7. Use induction hypothesis on B to prove there is an *orthogonal* family of *eigenvectors* $(1, 0, ..., 0)^T, q_2, ..., q_n \in \mathbb{R}^n$ for B', which is a *basis* of \mathbb{R}^n .
- 8. Conclude the proof of Theorem 1

Exercise 8 Prove the following simple Corollary of Theorem 1.

Corollary 1 A matrix $A \in Mat_{n \times n}(\mathbb{R})$ is symmetric, if and only if there exist an orthogonal matrix Q and a diagonal matrix D such that $A = Q^T D Q$.