数理逍遥 II[16C1115] Topics in Mathematics。 担当:DAHAN Xavier

2016, December 22nd

連立1次方程式系、降下法

復習 $A \in \operatorname{Mat}_{n \times n}(\mathbb{R})$ a symmetric positive definite matrix: $\forall x \in \mathbb{R}^n, \ x \neq 0, \ x^T A x > 0$.

<u>記号:</u> $\langle x,y\rangle:=x^Ty$, \mathbb{R}^n 上の自然な内積。 $\langle x,y\rangle_A:=x^TAy$, Aに対する内積。 $\langle x,y\rangle_A=0$ のとき、xとyとA-直行で、あるいは**共役**だと言う。

$$Ax^* = b \Leftrightarrow g(x^*) = \min_{x \in \mathbb{R}^n} g(x), \qquad \text{ for } U \quad g(x) = \langle x, x \rangle_A - 2\langle x, b \rangle.$$
 (1)

また、 $v \in \mathbb{R}^n$ に対して、もし $\langle v, b-Ax \rangle \neq 0$ ならば、 $t = \frac{\langle v, b-Ax \rangle}{\|v\|_A^2}$ とすると g(x+tv) < g(x) が成り立つ。

一般な降下法

初期化
$$\begin{cases} x^{(0)} \in \mathbb{R}^{n}, \text{ 初期ベクトル. (initial vector)} \\ r^{(0)} = b - Ax^{(0)} \text{ 初期残差 (first residual error)} \\ \text{降下方向 } : v^{(1)} = r^{(0)}, \text{ 最初の反復 (降下方向 } v^{(1)} \text{を選ぶと、} t_{1} \text{も定まる).} \end{cases}$$
(2)
$$x^{(1)} = x^{(0)} + t_{1}v^{(1)}, \text{ ただし } \mathbb{R} \ni t_{1} = \frac{\langle v^{(1)}, r^{(0)} \rangle}{\|v^{(1)}\|_{A}}$$

次の反復は、以下の通りになる:

$$r^{(k)} = b - Ax^{(k)}$$
降下方向 $v^{(k+1)}$ を選んで $t_{k+1} = \frac{\langle v^{(k+1)}, r^{(k)} \rangle}{\|v^{(k+1)}\|_A^2}$ を計算する。
$$x^{(k+1)} = x^{(k)} + t_{k+1}v^{(k+1)}.$$
(3)

降下方向 $v^{(2)}, \dots$ の選択では余裕があるが、その方向にどの程度行く(方向に沿って走る距離)のは定める: t_k の選択では余裕がない。

最速降下(最急降下、勾配降下とも言える)における降下方向の選択:

$$v^{(k+1)} = r^{(k)} \ (=b - Ax^{(k)})$$
 とする. $t_{k+1} = \frac{\|r^{(k)}\|_2^2}{\|r^{(k)}\|_A^2}$ となる. (4)

最速といっても、収束が遅く使われていない。

共役勾配法における降下方向の選択:

$$r^{(k)} = b - Ax^{(k)}$$
. $\langle ., . \rangle_A$ の内積に対する Gram-Schmidt による降下方向 $v^{(k+1)} = r^{(k)} - \sum_{\ell=1}^k \frac{\langle v^{(\ell)}, r^{(k)} \rangle_A}{\|v^{(\ell)}\|_A^2} v^{(\ell)}$. (5)

収束: A は「不良条件」(ill-conditioned) の行列でなけらば、 \sqrt{n} 反復程度だけでよい近似を与える。「不良条件」とは最大固有値と最低固有値の差が大きいという意味である。

ただ、反復ごとに $\langle v^{(\ell)}, r^{(k)} \rangle_A$, $\ell=1,\ldots,k-1$ を計算しなければならないし、また $\|v^{(\ell)}\|_A^2$ の値を記録しなければならない。従って、効率ではない方法である。しかし、共役勾配法では、かなり工夫が入っていて降下方向の $v^{(k)}$ 、それに付随する t_k などの計算を効率化したものである。

取りあえず、以下の結果を証明できるが、やや面倒で省く:

定理6: 公式 (5) による定義した降下方向 $v^{(1)},\ldots,v^{(k)}$ とし、公式 (3) による定まる, $t_1,\ldots,t_k,\,x^{(1)},\ldots,x^{(k)},\,r^{(1)},\ldots,r^{(k)}$ とする。

$$\forall i = 1, \dots, k \quad \langle r^{(k)}, v^{(i)} \rangle = 0.\square$$

降下方向 $v^{(k)}$ の選択に関する効率化:

$$v^{(k)} = r^{(k-1)} + s_{k-1}v^{(k-1)}, \quad \text{for } l = -\frac{\langle v^{(k-1)}, r^{(k-1)} \rangle_A}{\|v^{(k-1)}\|_A^2}$$
 (6)

をすれば、公式 (5) における Gram-Schmidt による $v^{(k)}$ と同値だと証明できる。その上、以下の等式が成立することになる (証明を省く).

$$\begin{cases} \langle v^{(k)}, v^{(i)} \rangle_A = 0, & \forall i = 1, \dots, k-1 \\ \langle v^{(k)}, r^{(k)} \rangle = 0. \\ \langle r^{(i)}, r^{(j)} \rangle = 0 & i \neq j \text{ oden } \forall 1 \leq i \leq k, \ \forall 1 \leq j \leq k, \end{cases}$$

 t_k , s_k , $r^{(k)}$ の計算に関する効率化: 上述された降下方向 $v^{(k)}$ の計算を効率化できるだけではなく、共役勾配法におけるほかの値 t_k , s_k , $r^{(k)}$ も効率化できる。ここも、証明を省く。

$$t_k = \frac{\|r^{(k-1)}\|_2^2}{\|v^{(k)}\|_A^2}, \quad r^{(k)} = r^{(k-1)} - t_k A v^{(k)}, \quad s_k = \frac{\|r^{(k)}\|_2^2}{\|r^{(k-1)}\|_2^2},$$

共役勾配法のステップ(まとめ):

- 1. 最初の反復 (k=0) → 最速降下法と同じ、公式 (2) で $x^{(0)}$, $r^{(0)}$, $v^{(1)}=r^{(0)}$, t_1 , t_2 が定まる。
- 2. 第2回目の反復からk = 1, 2, ...、以下の順番で計算する。

(a)
$$t_k = \frac{\|r^{(k-1)}\|_2^2}{\|v^{(k)}\|_2^2}$$

(b)
$$x^{(k)} = x^{(k-1)} + t_k v^{(k)}$$

(c)
$$r^{(k)} = r^{(k-1)} - t_k A v^{(k)}$$

(d)
$$s_k = \frac{\|r^{(k)}\|_2^2}{\|r^{(k-1)}\|_2^2}$$

(e)
$$v^{(k+1)} = r^{(k)} + s_k v^{(k)}$$

Exercise 1 The purpose of this exercise is to compare the steepest descent method and the conjugate gradient descent method on the following system of linear equation:

$$A = \begin{pmatrix} 4 & 3 \\ 3 & 4 \end{pmatrix}, \quad b = \begin{pmatrix} 2 \\ 5 \end{pmatrix} \qquad A \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = b.$$

- (a) Verify that A is symmetric definite positive (the simplest way may be to use "criterion (iv) of Preliminary 2" in the sheet "Report 3-1" date December 1st).
- (b) (initialization) Use Formula (2) to compute $r^{(0)}$, $v^{(1)}$, t_1 and $x^{(1)}$, starting with initial approximation $x^{(0)} = (0,0)^T$.
- (c) Use the iteration (4) of the steepest descent method to compute $r^{(1)} = v^{(2)}$, t_2 and finally $x^{(2)}$.
- (d) Use Gram-Schmidt orthogonalization (5) on $r^{(0)} = v^{(1)}$, $r^{(1)} = v^{(2)}$ to compute $V^{(1)} = v^{(1)}$ and $V^{(2)}$ such that $\langle V^{(2)}, V^{(1)} \rangle_A \approx 0$. Deduce $T_2 \in \mathbb{R}$ and $X^{(2)} \in \mathbb{R}^2$ using Formula (3).
- (e) Check that you will get the same value $X^{(2)}$ by using directly the conjugate gradient formula (a)-(e) (共役勾配法のステップ(まとめ))

<u>Remark:</u> 10 iterations of the steepest descent gives the approximation: $x^{(10)} = (-0.989, 1.978)^T$. Thus the steepest descent is very slow.

Exercise 2 In the general step of the conjugate gradient iteration (共役勾配法のステップ (まとめ)(a)-(e)), how many products matrix/vector are necessary? How many vector/vector products?

If you would use Gram-Schmidt formula (5), how many matrix/vector products and vector/vector products?

Exercise 3 In the example of Exercise 1 (d)-(e), n = 2 iterations are sufficient to get an *exact* solution.

This is no coincidence, according to the following theorem.

Theorem 1 Consider a system Ax = b, where $b \in \mathbb{R}^n$ and $A \in \operatorname{Mat}_{n \times n}(\mathbb{R})$ is symmetric definite positive.

Suppose that a descent method computes descent directions $v^{(1)}$, $v^{(2)}$,..., $v^{(n)}$ that are parwise conjugate. Then for any initial vector $x^{(0)}$, the sequence of vectors $x^{(1)}$, $x^{(2)}$,..., $x^{(n)}$ computed from Formula (3) exactly, without approximation verify: $Ax^{(n)} = b$ (that is the n-th approximation $x^{(n)}$ is an exact solution).

Remark:

- Here, such a descent method is therefore a *direct method*, not iterative.
- The conjugate gradient method verifies the assumption of the theorem, therefore the conjugate gradient can be seen as a direct method as well.

- However it is never used as a direct method since there are better direct methods for positive definite matrix, and ...
- ...for large n, sparse matrices, and when the eigenvalues of A are not too far away, we expect that only \sqrt{n} iterations yield a good approximation. Therefore the conjugate gradient method is used as an iterative method.
- (a) Show that it suffices to prove that $\langle Ax^{(n)} b, v^{(k)} \rangle = 0$ for all $k = 1, \dots, n$.
- (b) Prove that $Ax^{(n)} = Ax^{(0)} + t_1Av^{(1)} + t_2Av^{(2)} + \cdots + t_nAv^{(n)}$ (use Formula (3) assuming $v^{(i)}, v^{(j)}$ are conjugate when $i \neq j$).
- (c) Deduce that $\langle Ax^{(n)} b, v^{(k)} \rangle = \langle Ax^{(0)} b, v^{(k)} \rangle + t_k \langle v^{(k)}, v^{(k)} \rangle_A$ (Remember that $\langle v^{(i)}, v^{(k)} \rangle_A = \langle v^{(i)}, Av^{(k)} \rangle$)
- (d) (questions (d), (e), (f) are independent of (c)) Use the definition of t_k and the equality $b-Ax^{(k-1)}=b-Ax^{(0)}+Ax^{(0)}-\cdots-Ax^{(k-2)}+Ax^{(k-2)}-Ax^{(k-1)}$ to show that

$$t_k ||v^{(k)}||_A^2 = \langle v^{(k)}, b - Ax^{(0)} \rangle + \sum_{\ell=0}^{k-2} \langle v^{(k)}, A(x^{(\ell)} - x^{(\ell+1)}) \rangle.$$

- (e) Show that $Ax^{(\ell)} Ax^{(\ell+1)} = -t_{\ell+1}Av^{(\ell+1)}$.
- (f) Deduce that $t_k ||v^{(k)}||_A^2 = \langle v^{(k)}, b Ax^{(0)} \rangle \sum_{\ell=0}^{k-2} t_{\ell+1} \langle v^{(k)}, v^{(\ell+1)} \rangle_A$. And then that $t_k ||v^{(k)}||_A^2 = \langle v^{(k)}, b Ax^{(0)} \rangle$.
- (g) Conclude using Questions (c) and (f).