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Exercise 1 The purpose of this exercise is to compare the steepest descent method and
the conjugate gradient descent method on the following system of linear equation:

) ()

(a) Verify that A is symmetric definite positive (the simplest way may be to use “criterion
(iv) of Preliminary 2” in the sheet “Report 3-17 date December 1st ).

(b) (initialization) Use Formula (2) to compute r(®, v, ¢; and (V)| starting with initial
approximation z(®) = (0,0)7.

(c) Use the iteration (4) of the steepest descent method to compute r™ = v ¢, and
finally z(%).

(d) Use Gram-Schmidt orthogonalization (5) on 7(® = v (1) = ¢ to compute V1V =
v and V® such that (V@ V), ~ 0. Deduce T, € R and X € R? using
Formula (3).

(e) Check that you will get the same value X by using directly the conjugate gradient
formula (a)-(e) FHRABNED AT v 7 (L) )

Remark: 10 iterations of the steepest descent gives the approximation: #(1% = (—0.989,1.978)" |}
Thus the steepest descent is very slow.

Exercise 2 In the general step of the conjugate gradient iteration (F:Af&AJELED A
T v 7 (£ & ¥)(a)(e)), how many products matrix/vector are necessary ? How many
vector /vector products?

If you would use Gram-Schmidt formula (5), how many matrix/vector products and
vector /vector products?

Exercise 3 In the example of Exercise 1 (d)-(e), n = 2 iterations are sufficient to get
an exact solution.
This is no coincidence, according to the following theorem.

Theorem 1 Consider a system Ax = b, where b € R" and A € Mat,, «,(R) is symmetric
definite positive.

Suppose that a descent method computes descent directions vV, v ... v™ that are
parwise conjugate. Then for any initial vector 9, the sequence of vectors x™M @ .. . 2]
computed from Formula (3) exactly, without approzimation verify: Az™ = b (that is the

n-th approzimation ™ is an evact solution).
Remark:
e Here, such a descent method is therefore a direct method, not iterative.

e The conjugate gradient method verifies the assumption of the theorem, therefore
the conjugate gradient can be seen as a direct method as well.



e However it is never used as a direct method since there are better direct methods
for positive definite matrix, and ...

e . for large n, sparse matrices, and when the eigenvalues of A are not too far away, we
expect that only y/n iterations yield a good approximation. Therefore the conjugate
gradient method is used as an iterative method.

(a) Show that it suffices to prove that (Az™ —b,v®) =0 for all k=1,...,n.

(b) Prove that Ax™ = Az© 4 Av® 41, Av®@ 4. .. ¢, Av™ (use Formula (3) assuming
v v are conjugate when i # 7).

(c) Deduce that (Az™ — b v®)) = (Az©® — b v®)) + ¢, (v® v#), (Remember that
(0@ RN 4 = (v@ Apk)))

(d) (questions (d), (e), (f) are independent of (c)) Use the definition of ¢; and the equality
b— Ax*D =p — AzO 1 Az© — ... Ag(=2) 4 Ax*=2) _ Az(=1 to show that

o
N

oI = (0,5 = Aa®) + 37 (0, A — 2HD)).
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(e) Show that Az — Az(HD = —¢, | A+,

(f) Deduce that ti]jo® |3 = (v®), b — Az©@) — 424, (0™ D), And then that
tllv® % = (0™, b — A2©).

(g) Conclude using Questions (c¢) and (f).



