MMA 数学特論 I。多項式系のアルゴリズム: グレブナー基底 & 消去法

担当:DAHAN Xavier July 1st, 2010

TRA: 横山 Shun'ichi NAME:_____

Practice test IV: Resultant

• You can use any theorem, proposition or corollary of the class lectures, just by citing its number inside the corresponding lecture: (example: "Lect II, Cor. 1" refers to the Corollary 1 of Lecture II, that is the Primitive Element Theorem).

Exercise 1 Write the Sylvester matrix of the polynomials A and B:

A	$2x^2 + x - 1$	x-1	$x^n + a_{n-1}x^{n-1} + \dots + a_1x + a_0$
B	$30x^3 + 6x^2 + x + 1$	x+1	3

Answer:

Exercise 2 Are the following matrices in row echelon form? (the empty entries mean <u>zero</u>)

$$A_{1} = \begin{pmatrix} 4 & 1 & -1 & 1 & 0 \\ & 4 & 1 & 1 \\ & & 1 & 0 & 0 \end{pmatrix} \qquad A_{2} = \begin{pmatrix} 1 & 1 & -1 & 3 & 1 & 0 \\ & 2 & 3 & -2 & -3 \\ & & & -1 & -2 & 3 \\ & & & & 2 \end{pmatrix}$$

Exercise 3 Consider the 2 polynomials A and B,

$$A = 2x^2 + x - 1$$
 $B = 30x^3 + 6x^2 + x + 1$.

We have Res(A, B) = -1296 (sorry, I wrote 812, it was a mistake...)

Given $n \in \mathbb{N}^*$, we consider the map $\phi_n : \mathbb{Z}[X] \to \mathbb{Z}/n\mathbb{Z}[X], \sum_i a_i X^i \mapsto \sum_i (a_i \mod n) X^i$.

Question 1 Use Proposition 1 to compute:

$$r_5 = \mathsf{Res}(\phi_5(A), \phi_5(B)) = \mathsf{Res}(A \bmod 5, B \bmod 5)$$

Δ	ns	TXT	Or	٠
$\boldsymbol{\Lambda}$	SIL.	w	$c_{\rm I}$	

Same question for $r_3 = \text{Res}(\phi_3(A), \phi_3(B)) = \text{Res}(A \mod 3, B \mod 3)$ Answer:

Question 2 Can we use Proposition 1 (sorry, I wrote Proposition 2) to compute $r_2 = \text{Res}(\phi_2(A), \phi_2(B)) = \text{Res}(A \bmod 2, B \bmod 2)$? Compute anyway r_2 .

Answer:

Exercise 4 Let R be an integral domain (Lect. II, Def. 7...like $R = \mathbb{Z}$ or R = k[Y]) Let $A, B, C \in R[X]$. Show the formula:

$$\mathsf{Res}(AB,C) = \mathsf{Res}(A,C)\mathsf{Res}(B,C).$$

(<u>advice</u>: use the formulas of Theorem 1, Slide 9)
Answer:

Exercise 5 Cf. File "Test5-Ex6-correction.nb" on the webpage !!!