MMA 数学特論 I。多項式系のアルゴリズム: グレブナー基底 & 消去法

担当: DAHAN Xavier May 20th, 2010

TRA: 横山 Shun'ichi NAME:

Practice test: Monomial order and division algorithm

Exercise 1 For each polynomial f hereunder, write the leading monomial $LM_{\prec}(f)$ and the multi-degree $\mathsf{mdeg}_{\prec}(f)$ with respect to the following monomial orders \prec .

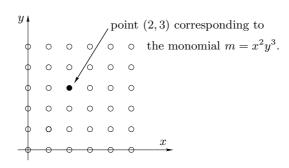
- (i) $f_1 = x^2 + y^5 + xz^4$
- (ii) $f_2 = y^2 + yz + x^2$ (iii) $f_3 = x^{\alpha}y^{\beta}z^{\gamma} x^{\alpha-1}y^{\beta-2}z^{\gamma+3} + x^{\alpha-1}y^{\beta+2}z^{\gamma-1}$, for some $\alpha \ge 1$, $\beta \ge 2$ and $\gamma \ge 1$.

order \prec	$mdeg_{\prec}(f_1)$	$_{ m LM}_{\prec}(f_1)$	$mdeg_{\prec}(f_2)$	$LM_{\prec}(f_2)$	$mdeg_{\prec}(f_3)$	$LM_{\prec}(f_3)$
lex(x, y, z)						
lex(y, x, z)						
grlex(x, y, z)						
grlex(z, y, x)						
grevlex(x, y, z)						
grevlex(z, y, x)						

Exercise 2: graphical representation of monomials

Given a monomial m of a polynomial algebra $k[X_1,\ldots,X_n]$, its multi-degree $\mathsf{mdeg}(m) \in$ \mathbb{N}^n are the *coordinates* of a point in the *n*-space with axes X_1, X_2, \ldots, X_n .

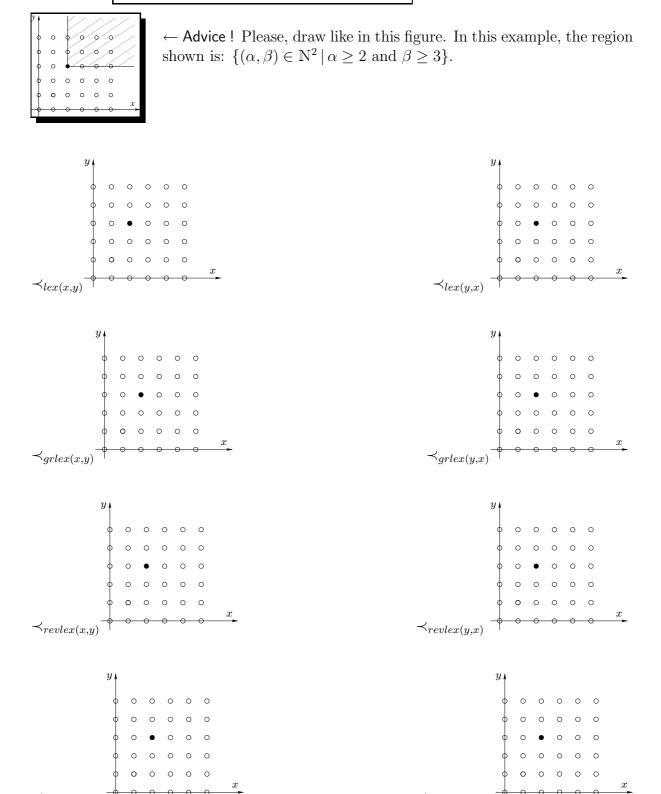
Example: (With n=2, $X_1=x$ and $X_2=y$). Let $m=x^2y^3$ be the monomial of k[x,y]. We have $\mathsf{mdeg}(m) = (2,3)$. The point corresponding to m in the plane (having for axes (x,y) has coordinate (2,3):



Each order on the monomials induce an order on the multi-integers and reciprocally:

monomials: $x^{\alpha_1}y^{\alpha_2} \prec x^{\beta_1}y^{\beta_2} \iff \text{multi-integers: } (\alpha_1, \alpha_2) \prec (\beta_1, \beta_2).$

Question 1: Let $m = x^2y^3$ as above. For each of the 8 following orders \prec , draw the region defined by: $\mathcal{M}(\prec m) := \{(\alpha, \beta) \in \mathbb{N}^2 \mid (\alpha, \beta) \prec (2, 3)\}$.



Question 2: For each of the 8 cases above, circle the largest monomial (for \prec) in $\mathcal{M}(\prec m)$.

Exercice 3 Show that the monomial orders grevlex and grlex are the same in two variables (\iff prove the following equivalence):

$$\forall (\alpha, \beta, \gamma, \delta) \in \mathbb{N}^4, \qquad (x^{\alpha} y^{\beta} \prec_{grlex} x^{\gamma} y^{\delta} \iff x^{\alpha} y^{\beta} \prec_{grevlex} x^{\gamma} y^{\delta}).$$

Is it true in 3 variables (for example x, y, z)?

 \rightarrow Answer:

Exercise 4 Let $\mathbb{k}[X_1,\ldots,X_n]$ be a polynomial in n variables over the field \mathbb{k} . Given to multi-integers $\alpha=(\alpha_1,\ldots,\alpha_n)$ and $\beta=(\beta_1,\ldots,\beta_n)$ we consider the two monomials X^{α} and X^{β} . We denote by $lex(X_1,\ldots,X_n)$ the lexicographic order for which $X_1 \succ X_2 \succ \cdots \succ X_n$ (while for example $lex(X_n,X_{n-1},\ldots,X_1)$ corresponds to $X_n \succ X_{n-1} \succ \cdots \succ X_1$).

Show that: $X^{\alpha} \prec_{revlex(X_1,...,X_n)} X^{\beta} \iff X^{\alpha}_{lex(X_n,...,X_1)} \succ X^{\beta}.$

 \rightarrow Answer:

Exercise 5 Consider the following polynomial in $\mathbb{k}[x, y, z]$. In each of the 4 following cases, compute the division of f by the sequence $[f_1, f_2]$, as indicated.

!!: You need to rewrite f with its monomials ordered according to first: grlex(x,y) (cases 1 and 2) and to, second: lex(x,y) (cases 3 and 4).

$$f = x^{3}y^{2} - x^{2}y^{3} + 1 + x^{2}y^{4} + x^{4} - y + x^{4}y + x^{5}y + x^{4}y^{3}$$

$$\begin{array}{c}
grlex(x,y) \\
f_1 = x^3y^2 + x^4 \\
f_2 = x^2y^3 - 1
\end{array} \qquad r :$$

The remainder and the quotients a_1 and a_2 should be <u>different</u> in the above 2 cases (we have just changes the $[f_1, f_2]$ to $[f_2, f_1]$).

For the lex order, however, you should find the <u>same</u> results whatever we take $[f_1, f_2]$ or $[f_2, f_1]$.

$$f = x^3y^2 - x^2y^3 + 1 + x^2y^4 + x^4 - y + x^4y + x^5y + x^4y^3$$

!!: You need to rewrite the monomials of f in decreasing order for lex(x,y).

lex(x,y)	a_1 :	r
. 2 3	a_2 :	
$f_1 = x^2 y^3 - 1$ $f_2 = x^4 + x^3 y^2$		
$f_2 = x^4 + x^3 y^2$		

$$\begin{array}{c}
lex(x,y) & a_1: & & r: \\
f_1 = x^4 + x^3y^2 & & & \\
f_2 = x^2y^3 - 1 & & & & \\
\end{array}$$