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Algorithms for polynomial systems:
elimination & Grobner bases
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Lecture VI1I: Elimination and Nullstellensatz

(summary of a full lesson given on the blackboard) July, 1st, 8th 2010.
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Review on: Elimination and the Nullstellensatz

All fields are infinite in this chapter

e f1,...,fs Ck|[Xq,...,X,] a polynomial system.
e k1 any field extension k1 |k,

o Vi (f1,...,fs) the set of common solutions in k; of the polynomials f;:

Vi, (fi,--, fs) = {(z1,....2,) €k} | V1 <i<s, fi(x1,...,2,) =0}
= Vi, (fi))N--- NV (fs)

Definition 1 Such sets are called affine varieties defined over k.

Remark: This depends only of the polynomial system f,..., fs and the field
k, not on the field £;. Indeed, we have:

for any field ]C() such that k£ C ]43() C ]{1, Vko (fl, e ooy fs) = Vkl (fl, e v ey fs)ﬂ]{gb



Affine variety over field extensions (example)

Algebraic numbers: Let Q C C, be the algebraic closure of Q (Q is called the

field of algebraic numbers):
Q := {a € C,such that 3P € Q[X], P(a) = 0},

— Cf. Lecture II

Example: Let f; = (XY)?+Y and fo = (Y —1)(Y? —2) a system of 2
equations.

Over Q: {Y = 1} is solution of f3, but fi(X,1) = X? + 1 has no solutions,
hence Vq(f1,f2) =10.

Over k1 = Q(4): Vi, (f1, f2) = {(Z 1) (—7,1)},
Over ko = @(\/\ﬁ): Vi, (f1, f2) = \/7
Over k3 = Q(vV/V/2,4): Vi, (fi, f2) = Vi, (f1, f2) U Vkl(f1,f2)



Affine variety of an ideal

o let I = (f1,...,fs) an ideal of k[ X1,..., X,,]
e for all f € I and field extension ki|k: Vi, (f1,..., fs) C Vi, (f).
o If <gla"'7gt> — <f17"'7f8>7 then V/ﬁ(fl)"'?fS) :V]ﬁ(gla"'agt)'

e = V.. (f1,...,fs) depends only on the ideal I: we denote
Vkl(I) :Vkl(f17°°'7f8)'

Ideals of k| X7,...,X,] — Affine varieties defined over k

I — V., (I) C k2
Porperties:
e V(.) is decreasing: IcJ=V(J)c V().
e If 1 €1, then V(I) =1 (1 has no solution)
e V(.) is not one-one: Ve((X —1)%) = V(X —1) = {1}, but

(X =1)%) € (X —1).



Ideal of a set. Field of definition of a variety

o Let S C K"
I.(S) ={f €kl X,....X] | f(x1,...,2,) =0, V(x1,...,2,) € S}
This is an ideal of k[ X7, ..., X, ] the vanishing ideal of S.

e Let V C k™ be an affine variety.
< dI C k|X4,...,X,] ideal, such that V' = V(I).
Let kg be the smallest field such that:

Ag1,...,9s € ko|X1,...,Xn], and (¢1,...,9s) = I.

Definition 2 The field kg is called the field of definition of V.

It follows that V is defined over k.

Example: n = 1. The field of definition of {v/2} is Q(v/2). But the field of
definition of {£v/2} is Q.



Properties of vanishing ideals

Affine varieties (defined over ky) — Ideals of ko[X1,..., X,]
Vv — I(V)
e Do not care too much about the field £ where is V' C k™. ..
e What is important is its field of definition k.
e I(.) is a decreasing map: VcWw=IW)cCILV).

Lemma 1 Given an ideal I C k| X1,...,X,], holds: I C I(V(I)) (not equal
in general).

PROOF: (on the blackboard, with examples ... )

Lemma 2 Let V and W be 2 affine varieties, then: V. C W < I(W) C (V).
It follows that the map I(.) is one-one: V # W = I(V) # I(W)

PROOF: (on the blackboard)



Elimination ideal

Let S C k™.

For{=1,...,n—1,and s = (81,...,5,) € S let mp(s) := (Spr1,-.-,5n)-
me(S) = {me(s), s € S} — projection that eliminates the first ¢ coordinates.
! If V' is an affine variety, then m,(V') is not an affine variety in general.
Definition 3 Let I C k[X1,...,X,] be an ideal. Let 0 < ¢ <n —1.

(-th elimination ideal of I: Ey(I) := T Nk[Xp11,...,X5]

Eo(I)=1, Ep1(I)=FE1(E)) (F1(.) eliminates the first variable).

Lemma 3 Let V = V(I) the affine variety defined by the ideal
I C k[Xq,...,X,]. The inclusion (V) C V(E¢(I)) holds.

PROOF: (on the balckboard, with counterexamples to equality)



Elimination theorem

Theorem 1 Let < be the monomial order lex(X1,...,X,), and
I C k| Xq,...,X,] an ideal.

Let GG be a Grobner basis of I for <.

Define for 0 < ¢ <n —1 the set Ge=GNEk[Xp1,..., X5
Then (Gy) = Eo(I) (=1Nk[Xp1,...,X45]).

Important remark:

Let I = (A, B) C k| X, Y] — system of 2 polynomials A, B, 2 unknowns X, Y.
Then F;(I) = I N kY] verifies: FEi1(I) = (Resx (A, B))

— Lex. GB. generalizes resultants.



Basic solving

Fact: = ez ¥ >=i1ex 2 Grobner bases eliminate variables; it looks like:

p

gs(z,y)x + - 2% + ... terms of deg(x) < cs — 1

T <

gt(z,y)xt + - -terms of deg(z) < ¢

(

G1 Y gu(2)y™ +---terms of deg(y) < cu

[ ee pzemh 4 terms of deg(z) < ce

2z 4+ .- terms of deg(z) < c1



Basic solving

Fact: = ez ¥ >=i1ex 2 Grobner bases eliminate variables; it looks like:

p

gs(z, )z + - 2% + ... terms of deg(x) < cs — 1

T <

gt(z,y)xt + - -terms of deg(z) < ¢

(

G1 Y gu(2)y™ +---terms of deg(y) < cu

Go z{ 21 4 .. terms of deg(z) < c1

G2 = GNk|z] = G5 can be generated by one polynomial
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Basic solving

Fact: = ez ¥ >=i1ex 2 Grobner bases eliminate variables; it looks like:

p

gs(z, )z + - 2% + ... terms of deg(x) < cs — 1

T <

gt(z,y)xt + - -terms of deg(z) < ¢

(

G1 Y gu(2)y™ +---terms of deg(y) < cu

Case Eo(I) =1Nk[z] =(0) = Gy =)



Basic solving

Strategy:

e Solving univariate polynomials only:
first, in z
second, in y
third, in x

e finding roots of univariate polynomials:

efficient numerical algorithm (like Newton-Raphson or another).

Remark: In practice, works well if the Grobner basis is “purely” triangular,

one polynomial in x ¢+ foo1(z,y)z 4 - -
one polynomial in y Y+ gp_1(2)y 4+ -
one polynomial in z 2% 4 hg 122 4

and there are no multiplicities. ..
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Extension theorem (on a toy example)

Projection 71 (V)

1,

The problem:

projection
>

f(x,y) =yx — 1 is a Grobner basis of I = (f) for lex(y, x).

Clearly, E1(I) = (f) N k[z] = (0). Ve(E((I)) =C.
But (V) =C - {0} = (V) & V(E1(])) = () is a useless solution.
Let us write f(z,y) = a1(x)y + ao(x), ai(x) =z, and ag(x) = —1.

We have that 0 is a root of a1(x) = x. We have V(FE1(I)) =m(V)U V(ay) .
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Extension theorem (in general)

Generalization: Let I = (f1,..., fs) C k[X1,..., X,].
Let E1(I) =1Nk[Xs, ..., X,] (1st elimination ideal of I, eliminate X)

We write:
V1<i<s, fi=a;(Xs,..., X)X N +---terms of degree in X; < Nj,
where a; #£ 0.

Let (z3,...,2,) € Vi (E1(I)) be a partial solution.

Theorem 2 Suppose that (xo,...,z,) & Vi(ai,...,as).

Then there exists x1 € k such that the partial solution can be extended to a
whole solution (z1,...,x,) € V =V (I).

> ((xg,...,a:n) ZVz(ar,...,as) = (x2,...,2p) € 7T1(V))

<~ VE(El(I)) = 7T1(V) UVE(al, Ce ,CLS)

14



Extension theorem (3 comments)

o The equality V¢ (E1(I)) = m(V)U V(ai,...,as) is true only over an

algebraically closed field (like C) — we used k and not k
e Link with resultant: (Lect. VI, Part 2, Prop. 3)

AX,Y) = am(X)Y™ 4 am-1(X)Y™ 1 + ... + a1 (X)Y + ao(X)

B(X)Y) = ba(X)Y" +bp_1(X)Y" L+ 4 b1 (X)Y 4 bo(X)

Let r(X) = Resy (A, B), the resultant that eliminates Y.
z€k, r(x)=0 < (Jy €k, Alz,y) = B(z,y) =0 or a,(z) =b,(z) =0)
< VE(El (A, B)) — VE(T) = 7T1(V) UVE(CLm, bn) , with U diSjOth.

e !! In Theorem 2, the union U is not disjoint in general. "

But, the union U is disjoint if f1,..., fs is a lex GB. (PROOF: points in

V(ay,...,as) are solutions at the infinity. . . requires projective tools. . .)
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Weak Nullstellensatz

Fundamental Theorem of Algebra: Any non-constant polynomial
P(X) € C|X] has at least one root.
P is not constant <= (1 ¢ (P) C C[X] )

P has at least one root <= V¢ (P) # (.

Weak Nullstellensatz: Let fi,..., fs be a polynomial system in C[X7,..., X,].
Theorem 3 1< (f1,...,fs) <= V(f1,....fs) £

Or, the polynomial system f; ..., fs has a solution if and only if the ideal
(f1,...,fs) has no constant.
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Nullstellensatz (1/2): radical ideal

Let I C k[X4,...,X,] be an ideal.
Lemma 1 says that I C I(V(]))... What is I(V (1)) ?

Definition 4 I := {f € k[Xy,...,z,] such that In € N, f™ € I} This is
an ideal, called the radical of I.

For any ideal J, always holds J C \/J. An ideal J is radical, if VJ = J.

Remark: Let f € k[X]| a polynomial.

It has a unique factorization, that is, there exist irreducible polynomials (Cf.
Lect. II, Definition 5) Py, ..., Ps € k[X] such that:

f=Pc ... P

The exponent e; € N is called the multiplicity of P;.
Check that: /(f) = (Py ... Ps) (this is the squarefree part of f).
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Nullstellensatz (2/2)

Theorem 4 Let I be an ideal of k| X1, ..., X,] over an algebraically closed
field k (like k = C). We have I(V(I)) = /1 .

PROOF:(on the blacboard. . .)
Comments:
e True over C, not true over R.
e The radical v/I is difficult to compute in general.

e But, it is easy to test if f € VI (when we know I = (f1,..., fs)):

Rabinovitch’s trick: f € VI <= 1€ (f1,...,fs,1 =Y f), (Y new variable).
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Irreducible varieties and prime ideals

Definition 5 V s irreducible if: V=ViuVo=V=V; orV ="V
V =V (2? — y?) is not irreduiclbe because V = V(z — y) U V(x + y).

Prime ideal: (Lect. II, Def. 6) p is a prime ideal if xty € p = x € p or y € p.
Proposition 1 Let V C k™ be an affine variety.

V is irred. <= I(V) is a prime ideal .

PROOF: (on the blackboard. .. )

Proposition 2 Any affine variety V is a finite union of irreducible

varieties. There exists irred. varieties Vi, ..., Vs such that:

V=Viu...UVs.

PROOF: (It is an indiction proof, that uses the Noetherian property. .. )
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Corollary 1 Ower an algebraically closed field k, any radical ideal I # (1)

1s a finite intersection of prime ideals: I=nN;_1p1

PROOF: (roughly, I =T(V) =1V, U---UVy)=L(Vi)N...NIVy))

The algebra-geometry dictionnary

ALGEBRA GEOMETRY
k[ X1,...,X,] affine spaces k7" (k C k1)
Ideal I ——— affine varieties Vy, (I) C k7

Radical ideals I = /I &

Prime ideals p — irreducible varieties
Elimination ideals F;(I) ——3 Projection varieties my(V)
B S

VIng  «—  VI)uv(J)
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