MMA: sugaku tokuron I. Lecture VI
Resultant and applications (Part II)

Xavier Dahan, 2010, June 17th & 24th

1 Intersection of 2 curves

R is a commutative ring, that is an integral domain (like R = Z, R = k[X] etc.).

We have seen (Slide 2) that the Sylvester matrix of 2 polynomials A and B in R[X]
represents the linear map (f, g) — Af+Bg (in a relevant basis. .. ). Actually the resultant
of A and B is in the image of this linear map. Precisely, there is the following proposition:

Proposition 2 There exists U € R[X|., and V € R[X].,, such that
AU + BV = Res(A, B)
Moreover U and V' are polynomials in 7Z|coefficients of A and coefficients of B].

PROOF: By construction, Syl(A, B) € Mat,,,(R). Let us extend the scalars from R to
R[X], so that Syl(A, B) € Mat,,..,(R[X]).

Let us write Syl(A, B) = ( C, ‘ Cy ‘ . ‘ Chim ), where C; represents the i-th column
in R[X]"*™ of Syl(A, B).

Recall that the determinant of a matrix does not change if we add to a column a linear
combination of the others.

Hence we perform this replacement: C/
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Moreover, the determinant of M is unchanged equal to det Syl(A, B) = Res(A, B).
We compute it by developing along the column C’ Let M; be the (i,n + m) cofactor

m+n’
matrix of M, obtained by removing the i-th line and the m + n-th column of M:

Res(A, B) = (—=1)"™ X Adet My + Y (—1)™ " X" Bdet M, .
/=1 /=1

Let U =, (1)t Xm=tdet M, and let V = Y (—=1)™ X"~ det M., s0
that Res(A, B) = AU + BV. This proves the fist part of the theorem. Next, since X
does not appear in each cofactor matrix M;, we have det M; € R and deg(U) < m and
deg(V') < n, as required.

Finally since det M, € Z[coefficients of A and B] we also have U,V € Z[coefficients of A
and B]. ]

We consider two plane curves C4 and Cp defined by polynomials A and B in k[X.Y].
= Clo(X) + al(X)Y + -+ am,1<X)Ym_l + am(X)Ym

B = by(X)+bi(X)Y + -+ by (X)V" - The follow-

ing proposition 3 gives information about the coordinates of the projection on the X-axis

of the intersection points C4 N Cp. Before, one remark and a lemma:

Let us write

Remark: Resy(A, B) or Resy(A,B) ? If we see A and B as univariate polynomial
in R[Y] with coefficients in R = k[X]| then the Sylvester matrix is constructed with its
entries in R = k[X], and the resultant is an element of R = k[X]. We have eliminated
Y, and we write Resy (A, B) € k[X].

If we see A and B as univariate polynomials R[X] with coefficients in R = k[Y], then
the Sylvester matrix has its entries in R = k[Y], and the resultant is in R = Kk[Y].

Lemma 5 Let A, B € k[X,Y]|. The polynomials A and B have a common factor in
k[X,Y] if and only if Resy (A, B) = 0.

PROOF: Corollary 1 says that A and B have certainly a common factor with coefficients
in k(X) = Frac(k[X]), if Resy (A4, B) = 0. Let D € k(X) be a such a factor, and let us
write:

A=DA, B=DB, with D, A, By k(X)[Y].
The theorem of Gauss permits to conclude:

Gauss theorem: Let A be an unique factorization domain. This means
that factorization into prime is possible (like in Z, k[X, ..., X,]). Let K =
Frac(A) be the field of fractions of A. Assume that P € A[X] with deg(P) >
2, admits the factorization P = QR over K, i.e. Q € K[X] and R € K[X].

Then P admits a factorization over A; more precisely there exists, @) € A[X]
and R € A[X] such that P = QR. Moreover R and () are uniquely determined
by R and @, and have the same degree.
We apply it with A = k[X] and K = k(X). There exists D, Ay and By in k[X,Y]
uniquely determined by D, Ay and By and of the same degree, such that A = DA, and
B = DB,. O
The main result concerning the intersection points of the two curves is:
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Proposition 3 Let r(X) = Resy (A, B) € k[X]. Let x € k be a root of . Then, one of
the two facts is true:

(i) am(z) = 0= b,(z) or
(i1) Jy ek such that (z,y) € CaNCp.

PROOF: Let ¢, : k[ X] — k, P — P(z), be the evaluation map at z.
If ¢.(an,) =0 and ¢,(b,) = 0, so that = is a common root of a,, and b, and we are in
case (7); then:

the first column of the matrix ¢,(Syl(A, B)) is null <= det ¢,(Syl(4, B)) = 0
<~  ¢.(det(Syl(4, B) )
<  ¢.(Resy(A,B))=0= r(x)

If a,,(z) # 0 or by(x) # 0 (not case (i)) say amn(z) # 0, for example. Then by the
specialization of the resultant (Proposition 1, second point) we have

r(w) = ¢x(Resy (A, B)) = ¢ulam)™ & WRes(¢,(A), ¢.(B))
= am(2)'Res(A(x,Y), B(z,Y)).

with ¢ = m — degy (A(x,Y)). Because an,(x) # 0,

r(r) =0 <= Res(A(z,Y),B(z,Y))=0
by Lemma 5, <= A(z,Y) and B(x,Y) have a common factor in k[Y]
<= Iy € k such that A(z,y) = 0 = B(z,y),

which proves that any root = of r not verifying Case (i), verifies Case (7). O
Cf Mathematica file “Syl-2.nb” for examples of intersections of 2 plane

curves.

2 Vanishing polynomial of an algebraic number

(Cf. Mathematica file “VanishPolyOnAlgNbr.nb”).

— Algebraic numbers. . . review Lecture II !
Problem: Given an algebraic number o € @, how to find a vanishing polynomial of o
? (i.e. a polynomial P € Q[X] such that P(«a) = 0).

For a = \/i, then it is X2 — 2. For a = \/§+\/§, then o? = 2—}—2\/6—1—3, SO
(a* —5)? = 24, and « is a root of X* —10X2 + 1.

What about o = 22/3 421341 ? Tt can be more difficult. . . There are automated ways
to find a vanishing polynomial (not necessary the minimal polynomial).

Consider « and [ two algebraic numbers with f and g for vanishing polynomials (i.e.
f(@) = 0 and g(8) = 0).

We write («;); and (;); the conjugate roots of & and 5 (note that there is an ¢ such
that o; = a and a j such that 8; = ):

f=1[x-a g=]]X-5; (1)
i J



e Addition: a+3? Let f(X) = f(Y — X). By Equation (1) above, f = [[, Y — (X +
;). Eq (1) of Slide 9 gives: 7(Y) := Resx(f,9) = [[, ;Y — a; — 3;. In particular
rla+ ) =0.

Application (Cf. Mathematica file “VanishPolyOnAlgNbr.nb”): take o = v/2 and
B =1+/3,then f = X>~2and g = X?>—3: Resy((Y —X)?—3,X%2-2) = Y*-10Y?+1.

e Multiplication a3 ? Let f(X) = f(%). By Equation (1), it arrives f(X) =TI, r—

a; and X2 f(X) © [[,Y —a;X. Recall that the sum of the roots ) . a; and the
product [ [, o verify

f(X) _ Xdcg(f) _ (Oél et adeg(f))Xdcg(f)_l 4+ .4 (_1)d0g(f)(H ai);

= Xdeslf) f — ydesl/) _ (Z ai)ydeg(f)*lX 4ot (—1)desD ( H ai)Xdeg(f).

If we use the equality (4) of the main theorem 1 (Slide 9), we have:

Y

r(Y) = Resz(Xdeg(f)f<Y),g(X)) = (—1)des() deg(f)(H a;)eg(9) Hﬁjeg(f)f(ﬁj).

Equality (e) gives: ﬁjeg(f)f(ﬁj) =[LY — @, we get: 7(Y) ==][,;Y —a;8;. In
particular (o) = 0.

Application: o = v2+ /3 (so f = X* —10X2+1) and 8 = 197 (so g = X7 — 19).
Then Resy (Y7 — 19X7, X4 — 10X2 4+ 1) = Y28 — 3362329730Y ™ + 130321.

e Composition by a polynomial h € Q[X]. What is a vanishing polynomial of h(«) ?
By the equality (3) of the main theorem (Slide 9) we have:

r(Y) =Resx (Y — h(X), f(X)) = (=1)*D [ Y = h(w).

1<i<deg(f)
In particular r(h(«)) = 0.

Application: h(X) = X2+ X + 1, and a = 25. Then Resx (Y — h(X), X3 — 1) is a
vanishing polynomial of h(a) = 2%/3 +21/3 4 1.

3 Computation of the resultant

We focus on resultants of bivariate polynomials in X, Y over a field K. Often, a similar
reasoning holds for resultants of polynomials in Z[X].

Determinant of the Sylvester matrix. Not a good idea, the matrix is too large,
and computing the determinant is too costly in general.



Euclidean algorithm for resultant A better method consists in using the Euclidean
algorithm, that is authorized by the following Corollary of the main theorem 1.

Corollary 3 Let A, B € k|X], k being a field, with deg A > deg B. Let A= BQ + R be
the Fuclidean division of A by B, deg R < deg B. We have:

Res(A, B) = (—1)dee) dee(B),

o(B)deeN)-dee(RIRes( B, R).

Proor: This follows from the formulas of the main theorem Slide 9:

deg HA 6]
deg HB 6]
deg HR ﬂ]

Res(4, B) = (—1)desl)desB)pc

_ ( 1)deg(A) deg(B

(6;) + R(5;)

but B(3) =0, = (-1l

On the other hand, Res(B, R) LC( )dee(B) [I; R(B;). We replace this formula in the
equation above, and obtain the requlred formula. U

This formula permits to compute the resultant in an Euclidean style, like hereunder
(Cf. Mathematica file “Syl-2.nb” and the function ResEucl at the end).
In the left-hand side below, d; means the degree of A;.

Standard Euclidean algorithm Euclidean algorithm for the resultant
Al — A
Al A A2 — B
A, — B Ry —1
P2 L2
while(4; # 0){ while(deg 4; > 0){ . .
A;_1 =bA;+r J/Euclidean division Aiy =bAi+r  //Euclidean division
- ' Aiyr <1
i Ry = (—1)%ono(A) b By
) 1+—1+1
return A; } d;
if (A; # 0) then return R;_jLC(A4;)%
else return 0

Correctness: While deg A; > 0 we have Res(A, B)
induction on ¢ > 2, using Corollary 4).

®) R;Res(A;, A;_1) (exercise: proof by

If deg A; = 0, we exit the while loop and if A; = 0, then Res(A;, A;_1) = 0, hence

Res(A, B) = 0 by Equality (x). If A; # 0, then deg(A;) = 0 says that A; is a constant
and the Sylvester matrix of A; ; and A; is diagonal with A; = LC(4;) on the diagonal,
and Syl(A;, A;_1) has size d;_1 = deg(A;—1).



