
MMA: sugaku tokuron I. Lecture VI
Resultant and applications (Part II)

Xavier Dahan, 2010, June 17th & 24th

1 Intersection of 2 curves

R is a commutative ring, that is an integral domain (like R = Z, R = k[X] etc.).
We have seen (Slide 2) that the Sylvester matrix of 2 polynomials A and B in R[X]

represents the linear map (f, g) 7→ Af+Bg (in a relevant basis. . . ). Actually the resultant
of A and B is in the image of this linear map. Precisely, there is the following proposition:

Proposition 2 There exists U ∈ R[X]<n and V ∈ R[X]<m such that

AU + BV = Res(A,B)

Moreover U and V are polynomials in Z[coefficients of A and coefficients of B].

Proof: By construction, Syl(A,B) ∈ Matn+m(R). Let us extend the scalars from R to
R[X], so that Syl(A,B) ∈ Matn+m(R[X]).

Let us write Syl(A,B) =
(

C1 C2 · · · Cn+m

)
, where Ci represents the i-th column

in R[X]n+m of Syl(A,B).
Recall that the determinant of a matrix does not change if we add to a column a linear

combination of the others.
Hence we perform this replacement: C ′

m+n ↔ C1X
n+m−1+C2X

n+m−2+· · ·+Cn+m−1X+
Cn+m, to obtain:

.

.

..am ..am−1 .. ..a1 ..a0 . . . ..amXn+m−1 + · · ·+ a1X
n + a0X

n−1

. ..am .. . . ..a0 . . ..amXn+m−2 + · · ·+ a0X
n−2

. . .. ..am . . . ..a1 ..amXm + · · ·+ a1X + a0

..bn ..bn−1 .. . ..b0 . . . ..bnXn+m−1 + · · ·+ b0X
m−1

. ..bn .. . . ..b0 . . ..bnXn+m−2 + · · ·+ b0X
m−2

. . .. ..bn . . . ..b1 ..bnXn + · · ·+ b1X + b0

.


.


.M =

We can see that: C ′
m+n = t(Xn−1A,Xn−1A, . . . , XA,A︸ ︷︷ ︸

n

, Xm−1B, . . . , XB, B︸ ︷︷ ︸
m

).
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Moreover, the determinant of M is unchanged equal to det Syl(A,B) = Res(A,B).
We compute it by developing along the column C ′

m+n. Let Mi be the (i, n + m) cofactor
matrix of M , obtained by removing the i-th line and the m + n-th column of M :

Res(A,B) =
n∑

ℓ=1

(−1)m+n+ℓXm−ℓA det Mℓ +
m∑

ℓ=1

(−1)m+n+ℓXn−ℓB det Mn+ℓ.

Let U =
∑n

ℓ=1(−1)m+n+ℓXm−ℓ det Mℓ and let V =
∑m

ℓ=1(−1)m+n+ℓXn−ℓ det Mn+ℓ, so
that Res(A,B) = AU + BV . This proves the fist part of the theorem. Next, since X
does not appear in each cofactor matrix Mi, we have det Mi ∈ R and deg(U) < m and
deg(V ) < n, as required.

Finally since det Mℓ ∈ Z[coefficients of A and B] we also have U, V ∈ Z[coefficients of A

and B]. �
We consider two plane curves CA and CB defined by polynomials A and B in k[X.Y ].

Let us write

∣∣∣∣ A = a0(X) + a1(X)Y + · · ·+ am−1(X)Y m−1 + am(X)Y m

B = b0(X) + b1(X)Y + · · ·+ bn(X)Y n . The follow-

ing proposition 3 gives information about the coordinates of the projection on the X-axis
of the intersection points CA ∩ CB. Before, one remark and a lemma:

Remark: ResX(A,B) or ResY (A, B) ? If we see A and B as univariate polynomial
in R[Y ] with coefficients in R = k[X] then the Sylvester matrix is constructed with its
entries in R = k[X], and the resultant is an element of R = k[X]. We have eliminated
Y , and we write ResY (A,B) ∈ k[X].

If we see A and B as univariate polynomials R[X] with coefficients in R = k[Y ], then
the Sylvester matrix has its entries in R = k[Y ], and the resultant is in R = k[Y ].

Lemma 5 Let A,B ∈ k[X, Y ]. The polynomials A and B have a common factor in
k[X, Y ] if and only if ResY (A,B) = 0.

Proof: Corollary 1 says that A and B have certainly a common factor with coefficients
in k(X) = Frac(k[X]), if ResY (A,B) = 0. Let D̃ ∈ k(X) be a such a factor, and let us
write:

A = D̃Ã0 B = D̃B̃0, with D̃, Ã0, B̃0 ∈ k(X)[Y ].

The theorem of Gauss permits to conclude:

Gauss theorem: Let A be an unique factorization domain. This means
that factorization into prime is possible (like in Z, k[X1, . . . , Xn]). Let K =
Frac(A) be the field of fractions of A. Assume that P ∈ A[X] with deg(P ) ≥
2, admits the factorization P = Q̃R̃ over K, i.e. Q̃ ∈ K[X] and R̃ ∈ K[X].

Then P admits a factorization over A; more precisely there exists, Q ∈ A[X]
and R ∈ A[X] such that P = QR. Moreover R and Q are uniquely determined
by R̃ and Q̃, and have the same degree.

We apply it with A = k[X] and K = k(X). There exists D, A0 and B0 in k[X, Y ]
uniquely determined by D̃, Ã0 and B̃0 and of the same degree, such that A = DA0 and
B = DB0. �

The main result concerning the intersection points of the two curves is:
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Proposition 3 Let r(X) = ResY (A,B) ∈ k[X]. Let x ∈ k be a root of r. Then, one of
the two facts is true:

(i) am(x) = 0 = bn(x) or
(ii) ∃ y ∈ k such that (x, y) ∈ CA ∩ CB.

Proof: Let ϕx : k[X]→ k, P 7→ P (x), be the evaluation map at x.
If ϕx(am) = 0 and ϕx(bn) = 0, so that x is a common root of am and bn and we are in

case (i); then:

the first column of the matrix ϕx(Syl(A,B)) is null ⇐⇒ det ϕx(Syl(A,B)) = 0
⇐⇒ ϕx(det(Syl(A,B))) = 0
⇐⇒ ϕx(ResY (A,B)) = 0 = r(x)

If am(x) ̸= 0 or bn(x) ̸= 0 (not case (i)) say am(x) ̸= 0, for example. Then by the
specialization of the resultant (Proposition 1, second point) we have

r(x) = ϕx(ResY (A,B)) = ϕx(am)m−degY (ϕx(A))Res(ϕx(A), ϕx(B))

= am(x)ℓRes(A(x, Y ), B(x, Y )).

with ℓ = m− degY (A(x, Y )). Because am(x) ̸= 0,

r(x) = 0 ⇐⇒ Res(A(x, Y ), B(x, Y )) = 0

by Lemma 5, ⇐⇒ A(x, Y ) and B(x, Y ) have a common factor in k[Y ]

⇐⇒ ∃ y ∈ k such that A(x, y) = 0 = B(x, y),

which proves that any root x of r not verifying Case (i), verifies Case (ii). �
Remark: Cf Mathematica file “Syl-2.nb” for examples of intersections of 2 plane

curves.

2 Vanishing polynomial of an algebraic number

(Cf. Mathematica file “VanishPolyOnAlgNbr.nb”).
→ Algebraic numbers. . . review Lecture II !

Problem: Given an algebraic number α ∈ Q, how to find a vanishing polynomial of α
? (i.e. a polynomial P ∈ Q[X] such that P (α) = 0).

For α =
√

2, then it is X2 − 2. For α =
√

2 +
√

3, then α2 = 2 + 2
√

6 + 3, so
(α2 − 5)2 = 24, and α is a root of X4 − 10X2 + 1.

What about α = 22/3 +21/3 +1 ? It can be more difficult. . . There are automated ways
to find a vanishing polynomial (not necessary the minimal polynomial).

Consider α and β two algebraic numbers with f and g for vanishing polynomials (i.e.
f(α) = 0 and g(β) = 0).

We write (αi)i and (βj)j the conjugate roots of α and β (note that there is an i such
that αi = α and a j such that βj = β):

f =
∏

i

X − αi, g =
∏

j

X − βj, (1)
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• Addition: α+β ? Let f̃(X) = f(Y −X). By Equation (1) above, f̃ =
∏

i Y − (X +

αi). Eq (1) of Slide 9 gives: r(Y ) := ResX(f̃ , g) =
∏

i,j Y − αi − βj. In particular
r(α + β) = 0.

Application (Cf. Mathematica file “VanishPolyOnAlgNbr.nb”): take α =
√

2 and

β =
√

3, then f = X2−2 and g = X2−3: ResX((Y−X)2−3, X2−2) = Y 4−10Y 2+1.

• Multiplication αβ ? Let f̃(X) = f( Y
X

). By Equation (1), it arrives f̃(X) =
∏

i
Y
X
−

αi and Xdeg(f)f̃(X)
(•)
=

∏
i Y −αiX. Recall that the sum of the roots

∑
i αi and the

product
∏

i αi verify

f(X) = Xdeg(f) − (α1 + · · ·+ αdeg(f))X
deg(f)−1 + · · ·+ (−1)deg(f)(

∏
i

αi),

⇒ Xdeg(f)f̃ = Y deg(f) −
( ∑

i

αi

)
Y deg(f)−1X + · · ·+ (−1)deg(f)

( ∏
i

αi

)
Xdeg(f).

If we use the equality (4) of the main theorem 1 (Slide 9), we have:

r(Y ) = Resx(X
deg(f)f

(Y

X

)
, g(X)) = (−1)deg(g) deg(f)(

∏
i

αi)
deg(g)

∏
j

β
deg(f)
j f̃(βj).

Equality (•) gives: β
deg(f)
j f̃(βj) =

∏
i Y − αiβj, we get: r(Y ) = ±

∏
i,j Y − αiβj. In

particular r(αβ) = 0.

Application: α =
√

2 +
√

3 (so f = X4 − 10X2 + 1) and β = 19
1
7 (so g = X7 − 19).

Then ResX(Y 7 − 19X7 , X4 − 10X2 + 1) = Y 28 − 3362329730Y 14 + 130321.

• Composition by a polynomial h ∈ Q[X]. What is a vanishing polynomial of h(α) ?
By the equality (3) of the main theorem (Slide 9) we have:

r(Y ) = ResX(Y − h(X), f(X)) = (−1)deg(f)
∏

1≤i≤deg(f)

Y − h(αi).

In particular r(h(α)) = 0.

Application: h(X) = X2 + X + 1, and α = 2
1
3 . Then ResX(Y − h(X), X3 − 1) is a

vanishing polynomial of h(α) = 22/3 + 21/3 + 1.

3 Computation of the resultant

We focus on resultants of bivariate polynomials in X,Y over a field K. Often, a similar
reasoning holds for resultants of polynomials in Z[X].

Determinant of the Sylvester matrix. Not a good idea, the matrix is too large,
and computing the determinant is too costly in general.
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Euclidean algorithm for resultant A better method consists in using the Euclidean
algorithm, that is authorized by the following Corollary of the main theorem 1.

Corollary 3 Let A,B ∈ k[X], k being a field, with deg A > deg B. Let A = BQ + R be
the Euclidean division of A by B, deg R < deg B. We have:

Res(A,B) = (−1)deg(A) deg(B)lc(B)deg(A)−deg(R)Res(B, R).

Proof: This follows from the formulas of the main theorem Slide 9:

Res(A,B)
eq. (2)

= (−1)deg(A) deg(B)lc(B)deg(A)
∏

j

A(βj)

= (−1)deg(A) deg(B)lc(B)deg(A)
∏

j

B(βj)Q(βj) + R(βj)

but B(βj) = 0, = (−1)deg(A) deg(B)lc(B)deg(A)
∏

j

R(βj)

On the other hand, Res(B, R)
eq. (3)

= lc(B)deg(B)
∏

j R(βj). We replace this formula in the
equation above, and obtain the required formula. �

This formula permits to compute the resultant in an Euclidean style, like hereunder
(Cf. Mathematica file “Syl-2.nb” and the function ResEucl at the end).

In the left-hand side below, di means the degree of Ai.

Standard Euclidean algorithm Euclidean algorithm for the resultant

A1 ← A
A2 ← B
i← 2
while(Ai ̸= 0){
Ai−1 = bAi + r //Euclidean division
Ai+1 ← r
i← i + 1
}
return Ai

A1 ← A
A2 ← B
R1 ← 1
i← 2
while(deg Ai > 0){
Ai−1 = bAi + r //Euclidean division
Ai+1 ← r
Ri ← (−1)didi−1lc(Ai)

di−1−di+1Ri−1

i← i + 1
}
if (Ai ̸= 0) then return Ri−1lc(Ai)

di−1

else return 0

Correctness: While deg Ai > 0 we have Res(A,B)
(⋆)
= RiRes(Ai, Ai−1) (exercise: proof by

induction on i ≥ 2, using Corollary 4).
If deg Ai = 0, we exit the while loop and if Ai = 0, then Res(Ai, Ai−1) = 0, hence

Res(A,B) = 0 by Equality (⋆). If Ai ̸= 0, then deg(Ai) = 0 says that Ai is a constant
and the Sylvester matrix of Ai−1 and Ai is diagonal with Ai = lc(Ai) on the diagonal,
and Syl(Ai, Ai−1) has size di−1 = deg(Ai−1).
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