Algorithms for polynomial systems: elimination & Gröbner bases

Lecture VI: Resultant and applications

June, 10th, 17th 2010. Part I: definition

Part II: Main formula

Part III: Applications

Xavier Dahan

Sylvester matrix

Definition 1 The resultant of A and B is the determinant of the Sylvester matrix of A and B: $\operatorname{Res}(A, B) = \det \operatorname{Syl}(A, B)$.

Sylvester matrix as a linear map

Let A and B in R[X] as in the previous slide.

 $F = \operatorname{Frac}(R)$, field of fractions of R $(R = \mathbb{Z} \Rightarrow F = \mathbb{Q}, R = k[X] \Rightarrow F = k(X))$. $R[X]_{<\ell} \to \text{poly.}$ of degree strictly smaller than ℓ .

Let
$$\psi : R[X]_{\leq n} \times R[X]_{\leq m} \rightarrow R[X]_{\leq n+m}$$
.
 $(f, g) \mapsto Af + Bg$

$$\mathcal{B} = \bigcup_{i=1}^{n} \{ (X^{n-i}, 0) \} \bigcup_{j=1}^{m} \{ (0, X^{m-j}) \} = \{ (X^{n-1}, 0), \dots, (1, 0), (0, X^{m-1}), \dots, (0, 1) \}$$

 $\mathcal{B} \to \text{canonical basis of the } R\text{-}module \text{ }^{\text{a}} \quad R[X]_{\leq n} \times R[X]_{\leq m}.$

$$\mathcal{B}' \to (X^{n+m-1}, \dots, X, 1)$$
 canonical basis of $R[X]_{\leq n+m}$.

Claim: The matrix of the linear map ψ written in the bases \mathcal{B} and \mathcal{B}' is the $transpose^b$ of the Sylvester matrix of A and B. $\mathsf{Mat}_{\mathcal{B},\mathcal{B}'}(\psi) = {}^t\mathsf{Syl}(A,B)$

^aor F-vector space $F[X]_{\leq n} \times F[X]_{\leq m}$, if the reader is not familiar with modules ^bsome authors do not take the transpose to define the Sylvester matrix

Sylvester matrix and GCD

Row d=number of zero lines,
$$\Rightarrow$$
 d = dim ker(matrix). echelon 0 \Rightarrow d = dim ker(matrix). Either \Rightarrow d = dim ker(matrix). Either \Rightarrow d = dim ker(matrix). Some of the sign of the first non-zero element of the above lines.

Gaussian elimination (without "pivot"): Every matrix over a field admits an equivalent^a matrix in row echelon form.

Lemma 1 The vector on the last non-zero line of the row echelon form of the Sylvester matrix of A and B corresponds to a gcd of A and B (in F[X])

Example:
$$A = 1x^4 - 1x^3 - 7x^2 + 2x + 3$$
 and $B = 1x^3 - 4x^2 + 2x + 3$.

^arepresent the same linear application in different bases

Sylvester matrix and GCD

PROOF:Since GCDs are defined with coefficients in a field, and Gaussian elimination is done over a field we can work over F = Frac(R).

The last non-zero line has for coordinate the coefficients of a polynomial of minimal degree in the image of the map ψ . By definition (Cf. Lecture I),

h is s gcd of A and $B \Leftrightarrow \langle A, B \rangle = \langle h \rangle$ in F[X]

 $\Leftrightarrow h$ is of minimal degree among polynomials in $\langle A, B \rangle$

Finally, by the Bézout identity, a gcd of A and B is always in $\operatorname{Image}(\psi) \subset \langle A, B \rangle$ that permits to conclude the proof of Lemma 1.

Corollary 1 Let A and B be two polynomials in F[X] (F a field). Then A and B have a (non-trivial) common factor iff Res(A, B) = 0.

PROOF: A and B have a common factor $\Leftrightarrow \deg \gcd(A, B) > 0$

$$\Leftrightarrow \dim \ker(\mathsf{Syl}(A,B)) > 0$$

$$\Leftrightarrow \operatorname{Res}(A, B) = \det(\operatorname{Syl}(A, B)) = 0. \square$$

Specialization of the resultant

Map of rings: Let R_1 and R_2 be 2 integral domains, and let $\phi: R_1 \to R_2$ be a ring morphism.

This map extends to $\phi: R_1[X] \to R_2[X]$:

$$\forall i, \ a_i \in R_1, \qquad \phi\left(\sum_i a_i X^i\right) = \sum_i \phi(a_i) X^i \in R_2[X].$$

And more generally to a map $\phi: R_1[X_1, \ldots, X_n] \to R_2[X_1, \ldots, X_n]$, or to a map $\phi: \operatorname{Mat}_{n \times m}(R_1) \to \operatorname{Mat}_{n \times m}(R_2)$.

Example: $\phi_p: \mathbb{Z}[X] \to \mathbb{F}_p[X]$ or for a prime p, or $\phi_a: k[X,Y] \to k[Y]$, $P(X,Y) \mapsto P(a,Y)$, for $a \in \bar{k}$.

Proposition 1 Let $f, g \in R_1[X]$ and let $\phi : R_1 \to R_2$ a ring morphism.

- If $\phi(LC(f))\phi(LC(g)) \neq 0$, then $\phi(Res(f,g)) = Res(\phi(f),\phi(g))$.
- If $\phi(LC(f)) \neq 0$, then $\phi(Res(f,g)) = \phi(LC(f))^{\deg(g) \deg(\phi(g))} Res(\phi(f), \phi(g))$.

PROOF: (of Prop. 1) In the first case, we have $\deg(f) = \deg(\phi(f))$, and $\deg(g) = \deg(\phi(g))$, hence $\operatorname{Syl}(f,g) \in \operatorname{Mat}(R_1)$ and $\operatorname{Syl}(\phi(f),\phi(g)) \in \operatorname{Mat}(R_2)$ have same size, namely $\deg(f) + \deg(g)$.

It follows that $\phi(\mathsf{Syl}(f,g)) = \mathsf{Syl}(\phi(f),\phi(g))$. The determinant is defined by + and \times operations only, hence $\phi(\det(\mathsf{Syl}(f,g))) = \det(\phi(\mathsf{Syl}(f,g)))$, which is equal to $\det(\mathsf{Syl}(\phi(f),\phi(g))) = \mathsf{Res}(\phi(f),\phi(g))$ as just seen.

In the second case, maybe $\phi(LC(g)) = 0$. This implies $\deg(\phi(g)) < \deg(g)$, and $Syl(\phi(f), \phi(g))$ is a *smaller matrix* than $\phi(Syl(f, g))$.

Let
$$f = f_m X^m + \cdots$$
 and $g = g_n X^n + \cdots$.

We denote $\phi(a) = \bar{a} \in R_2$, for $a \in R_1$.

Let $n' = \deg(\bar{g})$, (n' < n in this case), so that:

$$\phi(g) = \bar{g}_{n'}X^{n'} + \cdots$$
 and $\phi(f) = \bar{f}_mX^m + \cdots$.

The image by ϕ of the Sylvester matrix of f and g is written hereunder.

$$\phi(\operatorname{Syl}(f,g)) = \begin{pmatrix} \bar{f}_m & \cdots & \cdots & \bar{f}_1 & \bar{f}_0 & \stackrel{n-1}{\longleftrightarrow} \\ \bar{f}_m & \cdots & \cdots & \cdots & \bar{f}_0 \\ & & \bar{f}_m & \cdots & \cdots & \cdots & \bar{f}_0 \\ & & & \bar{g}_{n'} & \cdots & \bar{g}_1 & \bar{g}_0 \\ & & & & & \bar{g}_{n'} & \cdots & \bar{g}_0 \end{pmatrix}$$

We compute the determinant along the first column:

$$\phi(\mathsf{Res}(f,g)) = \bar{f}_m \\ \downarrow \\ n \\ -n'-1 \\ \downarrow \\ n-n'+m-2 \\ \hline \bar{f}_m \cdot \dots \cdot \dots \cdot \bar{f}_0 \\ \downarrow \\ \bar{f}_m \cdot \dots \cdot \bar{f}_0 \\ \downarrow \\ \bar{f}_m \cdot \dots \cdot \bar{f}_0 \\ \downarrow \\ \bar{f}_m \cdot \dots \cdot \bar{f}_1 \quad \bar{f}_0 \xrightarrow{n'-1} \\ \downarrow \\ \bar{f}_m \cdot \dots \cdot \bar{f}_1 \quad \bar{f}_0 \xrightarrow{n'-1} \\ \downarrow \\ \bar{f}_m \cdot \dots \cdot \bar{f}_1 \quad \bar{f}_0 \xrightarrow{n'-1} \\ \downarrow \\ \bar{f}_m \cdot \dots \cdot \bar{f}_1 \quad \bar{f}_0 \xrightarrow{n'-1} \\ \downarrow \\ \bar{f}_m \cdot \dots \cdot \bar{f}_1 \quad \bar{f}_0 \xrightarrow{n'-1} \\ \downarrow \\ \bar{f}_m \cdot \dots \cdot \bar{f}_1 \quad \bar{f}_0 \xrightarrow{n'-1} \\ \downarrow \\ \bar{f}_m \cdot \dots \cdot \bar{f}_1 \quad \bar{f}_0 \xrightarrow{n'-1} \\ \downarrow \\ \bar{f}_m \cdot \dots \cdot \bar{f}_1 \quad \bar{f}_0 \xrightarrow{n'-1} \\ \downarrow \\ \bar{f}_m \cdot \dots \cdot \bar{f}_1 \quad \bar{f}_0 \xrightarrow{n'-1} \\ \downarrow \\ \bar{f}_m \cdot \dots \cdot \bar{f}_1 \quad \bar{f}_0 \xrightarrow{n'-1} \\ \downarrow \\ \bar{f}_m \cdot \dots \cdot \bar{f}_1 \quad \bar{f}_0 \xrightarrow{n'-1} \\ \downarrow \\ \bar{f}_m \cdot \dots \cdot \bar{f}_1 \quad \bar{f}_0 \xrightarrow{n'-1} \\ \downarrow \\ \bar{f}_m \cdot \dots \cdot \bar{f}_1 \quad \bar{f}_0 \xrightarrow{n'-1} \\ \downarrow \\ \bar{f}_m \cdot \dots \cdot \bar{f}_1 \quad \bar{f}_0 \xrightarrow{n'-1} \\ \downarrow \\ \bar{f}_m \cdot \dots \cdot \bar{f}_1 \quad \bar{f}_0 \xrightarrow{n'-1} \\ \downarrow \\ \bar{f}_m \cdot \dots \cdot \bar{f}_1 \quad \bar{f}_0 \xrightarrow{n'-1} \\ \downarrow \\ \bar{f}_m \cdot \dots \cdot \bar{f}_1 \quad \bar{f}_0 \xrightarrow{n'-1} \\ \downarrow \\ \bar{f}_m \cdot \dots \cdot \bar{f}_1 \quad \bar{f}_0 \xrightarrow{n'-1} \\ \bar{f}_m \cdot \dots \cdot \bar{f}_1 \quad \bar{f}_0 \xrightarrow{n'-1} \\ \bar{f}_m \cdot \dots \cdot \bar{f}_1 \quad \bar{f}_0 \xrightarrow{n'-1} \\ \bar{f}_m \cdot \dots \cdot \bar{f}_1 \quad \bar{f}_0 \xrightarrow{n'-1} \\ \bar{f}_m \cdot \dots \cdot \bar{f}_1 \quad \bar{f}_0 \xrightarrow{n'-1} \\ \bar{f}_m \cdot \dots \cdot \bar{f}_1 \quad \bar{f}_0 \xrightarrow{n'-1} \\ \bar{f}_m \cdot \dots \cdot \bar{f}_1 \quad \bar{f}_0 \xrightarrow{n'-1} \\ \bar{f}_m \cdot \dots \cdot \bar{f}_1 \quad \bar{f}_0 \xrightarrow{n'-1} \\ \bar{f}_m \cdot \dots \cdot \bar{f}_1 \quad \bar{f}_0 \xrightarrow{n'-1} \\ \bar{f}_m \cdot \dots \cdot \bar{f}_1 \quad \bar{f}_0 \xrightarrow{n'-1} \\ \bar{f}_m \cdot \dots \cdot \bar{f}_1 \quad \bar{f}_0 \xrightarrow{n'-1} \\ \bar{f}_m \cdot \dots \cdot \bar{f}_1 \quad \bar{f}_0 \xrightarrow{n'-1} \\ \bar{f}_m \cdot \dots \cdot \bar{f}_1 \quad \bar{f}_0 \xrightarrow{n'-1} \\ \bar{f}_m \cdot \dots \cdot \bar{f}_1 \quad \bar{f}_0 \xrightarrow{n'-1} \\ \bar{f}_m \cdot \dots \cdot \bar{f}_1 \quad \bar{f}_0 \xrightarrow{n'-1} \\ \bar{f}_m \cdot \dots \cdot \bar{f}_1 \quad \bar{f}_0 \xrightarrow{n'-1} \\ \bar{f}_m \cdot \dots \cdot \bar{f}_1 \quad \bar{f}_0 \xrightarrow{n'-1} \\ \bar{f}_m \cdot \dots \cdot \bar{f}_1 \quad \bar{f}_0 \xrightarrow{n'-1} \\ \bar{f}_m \cdot \dots \cdot \bar{f}_1 \quad \bar{f}_0 \xrightarrow{n'-1} \\ \bar{f}_m \cdot \dots \cdot \bar{f}_1 \quad \bar{f}_0 \xrightarrow{n'-1} \\ \bar{f}_m \cdot \dots \cdot \bar{f}_1 \quad \bar{f}_0 \xrightarrow{n'-1} \\ \bar{f}_m \cdot \dots \cdot \bar{f}_1 \quad \bar{f}_0 \xrightarrow{n'-1} \\ \bar{f}_m \cdot \dots \cdot \bar{f}_1 \quad \bar{f}_0 \xrightarrow{n'-1} \\ \bar{f}_m \cdot \dots \cdot \bar{f}_1 \quad \bar{f}_0 \xrightarrow{n'-1} \\ \bar{f}_m \cdot \dots \cdot \bar{f}_1 \quad \bar{f}_0 \xrightarrow{n'-1} \\ \bar{f}_m \cdot \dots \cdot \bar{f}_1 \quad \bar{f}_0 \xrightarrow{n'-1} \\ \bar{f}_m \cdot \dots \cdot \bar{f}_1 \quad \bar{f}_0 \xrightarrow{n'-1} \\ \bar{f}_m \cdot \dots \cdot \bar{f}_1 \quad \bar{f}_0 \xrightarrow{n'-1} \\ \bar{f}_m \cdot \dots \cdot \bar{f}_1 \quad \bar{f}_0 \xrightarrow{n'-1} \\ \bar{f}_m \cdot \dots \cdot \bar{f}_1 \quad \bar{f}_0 \xrightarrow{n'-1} \\ \bar{$$

This last matrix is equal to $Syl(\phi(f), \phi(g))$. This shows that

$$\phi(\operatorname{Res}(f,g)) = \overline{f}_m^{n-n'}\operatorname{Res}(\phi(f),\phi(g)).$$

We conclude by seeing that $\bar{f}_m = \phi(LC(f))$, and $n - n' = \deg(g) - \deg(\phi(g))$.

Main Theorem

Let $\mathfrak{A}, \mathfrak{a}_1, \ldots, \mathfrak{a}_m$ and $\mathfrak{B}, \mathfrak{b}_1, \ldots, \mathfrak{b}_n$ be n + m + 2 indeterminates.

And let $R = \mathbb{Z}[\mathfrak{A}, \mathfrak{a}_1, \dots, \mathfrak{a}_m, \mathfrak{B}, \mathfrak{b}_1, \dots, \mathfrak{b}_n]$ be the polynomial ring in these n + m + 2 indeterminates.

Theorem 1 Let A and B be polynomials in R[X]:

$$A = \mathfrak{A}(X - \mathfrak{a}_1)(X - \mathfrak{a}_2) \cdots (X - \mathfrak{a}_m)$$

$$B = \mathfrak{B}(X - \mathfrak{b}_1)(X - \mathfrak{b}_2) \cdots (X - \mathfrak{b}_n),$$

with a and b the leading coefficients in R. Then:

$$\operatorname{Res}(A,B) \stackrel{(1)}{=} \mathfrak{A}^n \mathfrak{B}^m \prod_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}} (\mathfrak{a}_i - \mathfrak{b}_j) \stackrel{(2)}{=} (-1)^{mn} \mathfrak{B}^m \prod_{1 \leq j \leq n} A(\mathfrak{b}_j)$$

$$\stackrel{(3)}{=} \mathfrak{A}^n \prod_{1 \leq i \leq m} B(\mathfrak{a}_i) \stackrel{(4)}{=} (-1)^{mn} \operatorname{Res}(B,A).$$

Corollary 2 Let $p_A(X)$ and $p_B(X)$ be two polynomials in $R_0[X]$, that are completely factorized in R: $p_A(X) = a(X_m - \alpha_1) \cdots (X - \alpha_m)$ and $p_B(X) = b(X - \beta_1) \cdots (X - \beta_n)$ with a and b the leading coefficients in R_0 as well. Then:

$$\operatorname{Res}(p_A, p_B) = a^n b^m \prod_{i,j} (\alpha_i - \beta_j) \tag{1}$$

Proof: We consider the ring morphism defined by:

$$\varphi: \mathbb{Z}[\mathfrak{A}, \mathfrak{a}, \mathfrak{a}_1, \dots, \mathfrak{a}_m, \mathfrak{B}, \mathfrak{b}_1, \dots, \mathfrak{b}_n] \longrightarrow R_0$$

$$\mathfrak{A} \text{ or } \mathfrak{B} \text{ or } \mathfrak{a}_i \text{ or } \mathfrak{b}_j \longmapsto a \text{ or } b \text{ or } \alpha_i \text{ or } \beta_j.$$

We notice that $\varphi(A) = p_A$ and $\varphi(B) = p_B$. By Theorem 1, we have:

$$\varphi\left(\operatorname{Res}(A,B)\right) = \varphi\left(\mathfrak{A}^n\mathfrak{B}^m\prod_{i,j}(\mathfrak{a}_i - \mathfrak{b}_j)\right) = a^nb^m\prod_{i,j}(\alpha_i - \beta_j).$$

Since $0 \neq a = LC(p_A) = LC(\varphi(A))$ and $0 \neq b = LC(p_B) = LC(\varphi(B))$, we are in the first ("good") case of the *specialization property* of the resultant, and it follows that $\varphi(\text{Res}(A, B)) = \text{Res}(\varphi(A), \varphi(B))$.

Proof of the main theorem (1/4)

First, let us prove that the 4 equalities are equivalent.

$$\stackrel{(1)\Leftrightarrow(2)}{\bullet} \prod_{j} A(\mathfrak{b}_{j}) = \prod_{j} \mathfrak{A} \prod_{i} (\mathfrak{b}_{j} - \mathfrak{a}_{i}) = (-1)^{mn} \mathfrak{A}^{n} \prod_{i,j} (\mathfrak{a}_{i} - \mathfrak{b}_{j})$$

- $\stackrel{(1)\Leftrightarrow(3)}{\bullet}$ Similar calculations as above.
- $\stackrel{(1)\Leftrightarrow (4)}{\bullet} \operatorname{Res}(B,A) \stackrel{\operatorname{by}}{=} \mathfrak{B}^m \mathfrak{A}^n \prod_{j,i} (\mathfrak{b}_j \mathfrak{a}_i) = (-1)^{mn} \mathfrak{A}^n \mathfrak{B}^m \prod_{i,j} (\mathfrak{a}_i \mathfrak{b}_j) = (-1)^{mn} \operatorname{Res}(A,B).$

Hence, we only need to prove Equality (1). Next we can assume $\mathfrak{A} = \mathfrak{B} = 1$. Indeed, if $A = \mathfrak{A}\tilde{A}$ and $B = \mathfrak{B}\tilde{B}$ (\tilde{A} and \tilde{B} are monic), then:

for
$$1 \le i \le n$$
 i -th line of $\mathsf{Syl}(A,B) = \mathfrak{A} \times (i$ -th line of $\mathsf{Syl}(\tilde{A},\tilde{B}))$ for $1 \le j \le m$ j -th line of $\mathsf{Syl}(A,B) = \mathfrak{B} \times (j$ -th line of $\mathsf{Syl}(\tilde{A},\tilde{B}))$

Since the determinant is multilinear with respect to the lines, it comes: $Res(A, B) = \mathfrak{A}^n \mathfrak{B}^m Res(\tilde{A}, \tilde{B})$. Regarding the equality (1) we only need to prove $Res(A, B) = \prod_{i,j} (\mathfrak{a}_i - \mathfrak{b}_j)$, where A and B are monic $\mathfrak{A} = \mathfrak{B} = 1$

Proof of the main theorem (2/4)

Hence, we write $A = (X - \mathfrak{a}_1) \cdots (X - \mathfrak{a}_m)$ and $B = (X - \mathfrak{b}_1) \cdots (X - \mathfrak{b}_n)$.

Lemma 2 The resultant Res(A, B) is a polynomial in $\mathbb{Z}[\mathfrak{a}_1, \dots, \mathfrak{a}_n, \mathfrak{b}_1, \dots, \mathfrak{b}_m]$.

PROOF: We have $A = X^m + \sum_{i=1}^m (-1)^i \mathfrak{s}_{i,m}(\mathfrak{a}_1, \dots, \mathfrak{a}_m) X^{m-i}$, where $\mathfrak{s}_{i,m}$ is the *i*-th elementary symmetric polynomials in m variables.

$$\mathfrak{s}_{i,m}(\mathfrak{a}_1,\ldots,\mathfrak{a}_m) = \sum_{1 \le \ell_1 < \ell_2 < \cdots < \ell_i \le m} \mathfrak{a}_{\ell_1} \mathfrak{a}_{\ell_2} \cdots \mathfrak{a}_{\ell_i}. \tag{6}$$

Similarly, $B = X^n + \sum_{j=1}^n (-1)^j \mathfrak{s}_{j,n}(\mathfrak{b}_1, \dots, \mathfrak{b}_n) X^{n-j}$.

Note that by Equation (6), $\mathfrak{s}_{i,m}$ and $\mathfrak{s}_{i,n}$ are in $\mathbb{Z}[\mathfrak{a}_1,\ldots,\mathfrak{a}_m,\mathfrak{b}_1,\ldots,\mathfrak{b}_n]$.

Hence the matrix $\mathsf{Syl}(A,B)$ has its entries in $\mathbb{Z}[\mathfrak{a}_1,\ldots,\mathfrak{a}_m,\mathfrak{b}_1,\ldots,\mathfrak{b}_n]$. Now since the determinant is a polynomial of $\mathbb{Z}[(n+m)^2]$ entries of the matrix, it follows that $\mathsf{Res}(A,B) \in \mathbb{Z}[\mathfrak{a}_1,\ldots,\mathfrak{a}_m,\mathfrak{b}_1,\ldots,\mathfrak{b}_n]$.

Proof of the main theorem (3/4)

Lemma 3 In the polynomial ring $\mathbb{Z}[\mathfrak{a}_1,\ldots,\mathfrak{a}_m,\mathfrak{b}_1,\ldots,\mathfrak{b}_n]$, holds:

$$\prod_{i,j} (\mathfrak{a}_i - \mathfrak{b}_j) \mid \mathsf{Res}(A,B).$$

PROOF:Let $r(\mathfrak{a}_1, \ldots, \mathfrak{a}_m, \mathfrak{b}_1, \ldots, \mathfrak{b}_n) \in \mathbb{Z}[\mathfrak{a}_1, \ldots, \mathfrak{a}_m, \mathfrak{b}_1, \ldots, \mathfrak{b}_n]$ be a shorthand notation to denote the resultant: $\operatorname{Res}(A, B) = r$.

For each $1 \leq i \leq m$, let $R_i = \mathbb{Z}[\mathfrak{a}_1, \dots, \mathfrak{a}_{i-1}, \mathfrak{a}_{i+1}, \dots, \mathfrak{a}_m, \mathfrak{b}_1, \dots, \mathfrak{b}_n]$, and $p_i \in R_i[\mathfrak{a}_i]$ be the univariate polynomial in \mathfrak{a}_i so that $p_i(\mathfrak{a}_i) = r$.

Suppose that for some i, j, $\mathfrak{a}_i = \mathfrak{b}_j$. Then $X - \mathfrak{a}_i = X - \mathfrak{b}_j$ is a common factor of A and B and by Corollary 1, $\operatorname{Res}(A, B)|_{\mathfrak{a}_i = \mathfrak{b}_j} = 0$. This means:

$$r(\mathfrak{a}_1,\ldots,\mathfrak{b}_j,\ldots,\mathfrak{a}_m,\mathfrak{b}_1,\ldots,\mathfrak{b}_n)=p_i(\mathfrak{b}_j)=0,$$

in R_i and $\mathfrak{a}_i - \mathfrak{b}_j | p_i(\mathfrak{a}_i)$ in $R_i[\mathfrak{a}_i] = \mathbb{Z}[\mathfrak{a}_1, \dots, \mathfrak{a}_m, \mathfrak{b}_1, \dots, \mathfrak{b}_n]$.

The i, j were arbitrarily chosen, so for each i, j, $\mathfrak{a}_i - \mathfrak{b}_j | p_i(\mathfrak{a}_i) = r = \text{Res}(A, B)$ in $R_i[\mathfrak{a}_i] = \mathbb{Z}[\mathfrak{a}_1, \dots, \mathfrak{b}_n]$, and hence $\prod_{i,j} \mathfrak{a}_i - \mathfrak{b}_j | \text{Res}(A, B)$, as required.

Let $s(\mathfrak{a}_1,\ldots,\mathfrak{a}_m,\mathfrak{b}_1,\ldots,\mathfrak{b}_n):=\prod_{i,j}(\mathfrak{a}_i-\mathfrak{b}_j)$ (as polynomials in $\mathbb{Z}[\mathfrak{a}_1,\ldots,\mathfrak{b}_n]$).

The previous Lemma shows that $\frac{r}{s} \in \mathbb{Z}[\mathfrak{a}_1, \ldots, \mathfrak{b}_n]$. The next Lemma shows that actually $\frac{r}{s} \in \mathbb{Z}$.

Lemma 4 For $1 \le i \le m$, holds $\deg_{\mathfrak{a}_i}(s) = \deg_{\mathfrak{a}_i}(r)$, and for $1 \le j \le n$, holds $\deg_{\mathfrak{b}_j}(s) = \deg_{\mathfrak{b}_j}(r)$.

PROOF:Let $\mathfrak{a} = \mathfrak{a}_1, \ldots, \mathfrak{a}_m$ and $\mathfrak{b} = \mathfrak{b}_1, \ldots, \mathfrak{b}_n$. By Equation (6), we have: $\deg_{\mathfrak{a}_i}(\mathfrak{s}_{i,m}(\mathfrak{a})) = 1$ for $1 \leq i \leq m$, and $\deg_{\mathfrak{b}_j}(\mathfrak{s}_{j,n}(\mathfrak{b})) = 1$ for $1 \leq j \leq n$. Denote $\mathsf{Syl}_{i,j}$ be at the *i*-th line and *j*-th column of $\mathsf{Syl}(A, B)$.

$$\operatorname{Res}(A,B) = \sum_{\sigma \in \mathfrak{S}_{n+m}} (-1)^{\epsilon(\sigma)} \underbrace{\prod_{1 \leq i \leq n} \operatorname{Syl}_{i,\sigma(i)}}_{n \ first \ lines} \underbrace{\prod_{n+1 \leq j \leq m+n} \operatorname{Syl}_{j,\sigma(j)}}_{m \ last \ lines} \tag{7}$$

Now if we look at the Sylvester matrix, we see that:

$$\operatorname{Syl}(A,B) = \begin{pmatrix} 1 & -\mathfrak{s}_{1,m}(\mathfrak{a}) & ----- & (-1)^m \mathfrak{s}_{m,m}(\mathfrak{a}) \\ 1 & ------ & (-1)^m \mathfrak{s}_{m,m}(\mathfrak{a}) \\ 1 & ------ & (-1)^n \mathfrak{s}_{n,n}(\mathfrak{b}) \end{pmatrix}$$

Either $\mathsf{Syl}_{i,j} = 0$ or 1 or $\deg_{\mathfrak{a}_u}(\mathsf{Syl}_{i,j}) = 1 \ \forall 1 \leq u \leq m$ or $\deg_{\mathfrak{b}_v}(\mathsf{Syl}_{i,j}) = 1 \ \forall 1 \leq v \leq n.$

Hence for each permutation $\sigma \in \mathfrak{S}_{n+m}$ such that $\prod_{1 \leq i \leq n} \mathsf{Syl}_{i,\sigma(i)} \prod_{m+1 \leq j \leq m+n} \mathsf{Syl}_{j,\sigma(j)} \neq 0$, we have:

$$\begin{split} \forall 1 \leq i \leq m, \ \deg_{\mathfrak{a}_i} \left(\prod_{1 \leq i \leq n} \mathsf{Syl}_{i,\sigma(i)} \prod_{m+1 \leq j \leq m+n} \mathsf{Syl}_{j,\sigma(j)} \right) & \leq & n \\ \forall 1 \leq j \leq n, \ \deg_{\mathfrak{b}_j} \left(\prod_{1 \leq i \leq n} \mathsf{Syl}_{i,\sigma(i)} \prod_{m+1 \leq j \leq m+n} \mathsf{Syl}_{j,\sigma(j)} \right) & \leq & m \end{split}$$

It follows that $\deg_{\mathfrak{a}_i}(\mathsf{Res}(A,B)) \leq n$ and $\deg_{\mathfrak{b}_j}(\mathsf{Res}(A,B)) \leq m$. But by definition, $\deg_{\mathfrak{a}_i}(s) = n$ and $\deg_{\mathfrak{b}_j}(s) = m$, and since s|r, the \leq are actually "=", and the lemma follows.

Let us write $r = C_0 s$, $C_0 \in \mathbb{Z}$. We must show that $C_0 = 1$ to conclude the proof of Theorem 1.

Let us put $\mathfrak{b}_1 = \cdots = \mathfrak{b}_m = 0$. We get: $s(\mathfrak{a}_1, \ldots, \mathfrak{a}_m, 0, \ldots) = (\prod_i \mathfrak{a}_i)^n$ and $r(\mathfrak{a}_1, \ldots, \mathfrak{a}_m, 0, \ldots) \stackrel{(\star)}{=} C_0(\prod_i \mathfrak{a}_i)^n$. The Sylvester matrix can be rewritten as follows (where $A = X^m + a_{m-1}X^{m-1} + \cdots + A_1X + a_0$), and we compute the determinant along the last line. Only one coefficient is not zero, hence:

$$\begin{vmatrix} 1 \star \cdots & a_{1} & a_{0} \\ 1 & \star & \ddots & a_{1} & a_{0} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & \ddots & \ddots & \vdots \\ 1 & 0 & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & \ddots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & \ddots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ n-\text{th column} \end{vmatrix} = (-1)^{2m+n} \begin{vmatrix} 1 \star \cdots & a_{2} & a_{0} \\ 1 & \cdots & a_{3} & a_{1} & a_{0} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & \cdots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & \cdots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ (-1)^{n} \end{vmatrix} = (-1)^{n} (-1)^{2(m-1)+n} \dots$$

$$\begin{vmatrix} 1 \star \cdots & a_{3} & a_{0} \\ 1 \cdots & a_{4} & a_{1} & a_{0} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \star & \cdots & a_{1} & a_{0} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 0 \cdots & \vdots & \vdots \\ \end{vmatrix} = (-1)^{2n} (-1)^{2(m-2)+n} \begin{vmatrix} 1 \star \cdots & a_{4} & a_{0} \\ 1 \cdots & a_{5} & a_{1} & a_{0} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 0 \cdots & \vdots & \ddots \\ \vdots & \vdots & \ddots & \vdots \\ (-1)^{3n} \end{vmatrix} = (-1)^{2n} (-1)^{2(m-2)+n} \begin{vmatrix} 1 \star \cdots & a_{4} & a_{0} \\ 1 \cdots & a_{5} & a_{1} & a_{0} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 0 \cdots & \vdots & \ddots \\ \vdots & \vdots & \ddots & \vdots \\ (m-3)\text{-th column} \end{vmatrix} = (-1)^{2n} (-1)^{2(m-2)+n} \begin{vmatrix} 1 \star \cdots & a_{1} & a_{0} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 0 \cdots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ (m-3)\text{-th column} \end{vmatrix} = (-1)^{2n} (-1)^{2(m-2)+n} \begin{vmatrix} 1 \star \cdots & a_{1} & a_{0} \\ \vdots & \vdots & \ddots & \vdots \\ (n-3)\text{-th column} \end{vmatrix} = (-1)^{2n} (-1)^{2(m-2)+n} \begin{vmatrix} 1 \star \cdots & a_{1} & a_{0} \\ \vdots & \vdots & \ddots & \vdots \\ (n-3)\text{-th column} \end{vmatrix} = (-1)^{2n} (-1)^{2(m-2)+n} \begin{vmatrix} 1 \star \cdots & a_{1} & a_{0} \\ \vdots & \vdots & \ddots & \vdots \\ (n-3)\text{-th column} \end{vmatrix} = (-1)^{2n} (-1)^{2(m-2)+n} \begin{vmatrix} 1 \star \cdots & a_{1} & a_{0} \\ \vdots & \vdots & \vdots \\ (n-3)\text{-th column} \end{vmatrix} = (-1)^{2n} (-1)^{2(m-2)+n} \begin{vmatrix} 1 \star \cdots & a_{1} & a_{0} \\ \vdots & \vdots & \vdots \\ (n-3)\text{-th column} \end{vmatrix} = (-1)^{2n} (-1)^{2(m-2)+n} \begin{vmatrix} 1 \star \cdots & a_{1} & a_{0} \\ \vdots & \vdots & \vdots \\ (n-3)\text{-th column} \end{vmatrix}$$

$$= (-1)^{3n} (-1)^{2(m-3)+n}$$

$$\begin{vmatrix} \dots \\ \vdots \\ (-1)^{4n} \end{vmatrix} = \dots = (-1)^{(m-1)n}$$

$$\begin{vmatrix} 1 & a_0 \\ 0 & a_1 & a_0 \\ \vdots & \ddots & \vdots \\ 0 & a_{n-1} & a_{n-2} & \cdots & a_1 \\ \hline 1 & 0 & \cdots & 0 \end{vmatrix}$$

$$= (-1)^{(m-1)n} \begin{pmatrix} a_0 \\ a_1 & a_0 \\ \vdots & \ddots \\ a_{n-1} & \cdots & a_1 & a_0 \end{pmatrix} = (-1)^{nm} a_0^n.$$

Finally, $r(\mathfrak{a}_1, \dots, \mathfrak{a}_m, 0, \dots) = (-1)^{mn} a_0^n$, where $a_0 = (-1)^m \mathfrak{s}_{m,m}(\mathfrak{a}) = (-1)^m \prod_i \mathfrak{a}_i$.

So
$$r(\mathfrak{a}_1, \dots, \mathfrak{a}_m, 0, \dots) = (-1)^{mn} (-1)^{mn} (\prod_i \mathfrak{a}_i)^n = (\prod_i \mathfrak{a}_i)^n \stackrel{(\star)}{\Rightarrow} C_0 = 1$$
.