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Sylvester matrix

Alz) = amx™ 4+ am_12™ 4+ Fax+ag, am #0, m>1
B(z) = by +bp_12" P4+ +bix+by, b, #0, n>1.
n —1
( am, ... ai ao

o < )
Syl(A’ B) — n — 1V T ao (/n/ _|_ m) 1Ines

b, Q ...... b1 bo (n +m) columns

—> bn, bo )

m — 1

Definition 1 The resultant of A and B is the determinant of the Sylvester
matrixz of A and B: Res(A, B) = det Syl(A, B) .



Sylvester matrix as a linear map

Let A and B in R|X]| as in the previous slide.
F = Frac(R), field of fractions of R (R=Z = F =Q, R=k[X]| = F = k(X)).
R[X]<¢ — poly. of degree strictly smaller than /.
Let ¢:R[X|<n X R[X|cm — R[X|cnim .
(f . 9 — Af+By

B— igl{(X”‘i,O)}jCJl{(O,Xmj)} — {(X"1,0),...,(1,0), (0, X™1). .. (0,1)}
B — canonical basis of the R-module * R[X]<n X R[X]<m.

B — (Xntm=1  X,1) canonical basis of R[X]|ytm.

Claim: The matrix of the linear map v written in the bases B and B’ is the

transpose® of the Sylvester matrix of A and B. |Matg g/ (1) = tSyl(A, B)

2or F-vector space F[X|<n X F|[X]|<m, if the reader is not familiar with modules

Psome authors do not take the transpose to define the Sylvester matrix



Sylvester matrix and GCD

Row d=number of zero lines, = d = dim ker(matrix).
echelon Either x # 0, or * = 0 and the first non-zero element of this line
form: is on the right of the the first non-zero element of the above lines.

Gaussian elimination (without “pivot”): Every matrix over a field admits an
equivalent® matrix in row echelon form.

Lemma 1 The vector on the last non-zero line of the row echelon form of the
Sylvester matrix of A and B corresponds to a ged of A and B (in F|X])

Example: A = 1z*—123—72% + 22 4+ 3 and B = 123 — 422 + 2z + 3.

1 -1-7 92 3 00 (1) —11 —I 27 2 g 8 The last non-zero
01 —1-=72230 q line gives a gcdof
S R 00 1 1 -7 2 3
1 -4 2 3 0 00 Gaussian elimination 0O 0 0 —14 455 Is —918 A and B.
0 1 —4 2 3 00 00 0 0 —% % = d(AB)—x
00 1 —4 2 30 00 0o o ol _3 gc ) = 10
00 0 1 —423 10 10 3

O o0 O 0 0 0 0 10

arepresent the same linear application in different bases



Sylvester matrix and GCD

PrOOF:Since GCDs are defined with coefficients in a field, and Gaussian
elimination is done over a field we can work over F' = Frac(R).

The last non-zero line has for coordinate the coefficients of a polynomial of
minimal degree in the image of the map . By definition (Cf. Lecture I),

hiss ged of Aand B < (A, B) = (h) in F[X]

< h is of minimal degree among polynomials in (A, B)

Finally, by the Bézout identity, a gcd of A and B is always in
Image()) C (A, B) that permits to conclude the proof of Lemma 1. O

Corollary 1 Let A and B be two polynomials in F|X]| (F a field). Then A
and B have a (non-trivial) common factor iff Res(A, B) = 0.

PROOF: A and B have a common factor < deggcd(A, B) > 0
< dim ker(Syl(A4, B)) > 0
& Res(A, B) = det(Syl(A, B)) = 0. O



Specialization of the resultant

Map of rings: Let Ry and Ry be 2 integral domains, and let ¢ : Ry — Rs be

a ring morphism.

This map extends to ¢ : R1[X]| — Ro[X]:

Vi, a; € Ry, ¢ (> a,X") =, d(a;) X" € Ro[X].
And more generally to a map ¢ : R1[X1,...,X,] — Ro[X1,...,X,], or to a
map ¢ : Mat,, xm(R1) — Mat, xm(Rs2).

Example: ¢, : Z|X]| — F,|X] or for a prime p, or ¢, : k[X,Y]| — k[Y],
P(X,Y)+ P(a,Y), for a € k.

Proposition 1 Let f,g € R1[X] and let ¢ : Ry — Ry a ring morphism.
o If p(rc(f))¢p(Lc(g)) # 0, then ¢(Res(f,g)) = Res(é(f), ¢(g))-
o If ¢(Lc(f)) # 0, then d(Res(f, g)) = ¢(Lc(f)) =P~ Res(¢( ), ¢(9))-



PROOF: (of Prop. 1) In the first case, we have deg(f) = deg(¢(f)), and
deg(g) = deg(¢(g)), hence Syl(f, g) € Mat(R;) and
Syl(¢(f), #(g)) € Mat(Rs) have same size, namely deg(f) + deg(g).

It follows that ¢ (Syl(f,g)) = Syl(¢(f), #(g)). The determinant is defined by
+ and X operations only, hence ¢(det(Syl(f,g))) = det(o(Syl(f,g))) , which

is equal to det(Syl(o(f), #(g))) = Res(o(f), ¢(g)) as just seen.

In the second case, maybe ¢(LC(g)) = 0. This implies deg(¢(g)) < deg(g),
and Syl(¢(f), #(g)) is a smaller matriz than ¢(Syl(f,g)).

Let f=fn X"+ and g=g, X" +---.

We denote ¢(a) = a € Ry, for a € R;.

Let n’ = deg(g), (n’ < n in this case), so that:

8(9) = Gur X7 4+ and B(f) = fruX™ + -

The image by ¢ of the Sylvester matrix of f and ¢ is written hereunder.



( Fr vve eee e fi fo
¢(Sy|(f,g)) — - fm -_-- ) e fO
> Gn’ *° g1 9o
Gop ove - . do
\ n —n' 4+ m — 1 gn 7 )
We compute the determinant along the first column:
Fim SRREREE f1 fo \”@2 Foeonnn B fo ot
~ - \ \\\
5 fm ............ fO <.
¢(Res(f,9)) = fm H/ G,/ - g1 Go — JFQ } ‘ — f;tz—n’ G,/ 91 Jo
nl—n" —1 — — T T
gn/ ...... gO «— gn/ ...... g()
n —n' + m — 2 m =1

This last matrix is equal to Syl(¢(f), #(g)). This shows that

d(Res(f, g)) = fr"" Res(s(f), ¢(9)).
s(Lc(f)), and n —n' = deg(g) — deg(¢(g)).D

We conclude by seeing that f,



Main Theorem

Let A, a4,...,a,, and °B,by,...,b,, be n +m + 2 indeterminates.

And let R=Z[A,a1,...,a,,98,b1,...,b,] be the polynomial ring in these
n + m + 2 indeterminates.

Theorem 1 Let A and B be polynomials in R|X]:

A = Ql(X—al)(X—ag)---(X—am)
B = B(X —b)(X —ba)--- (X —by,),

with a and b the leading coefficients in R. Then:

Res(A, B) D grogm H (a; — by) 2 (=1)" ™ H A(b;)
25 tsasn

(3) " H B(a;) @ (—1)™"Res(B, A).

1<2<m



Corollary 2 Let pa(X) and pp(X) be two polynomials in Ry[X], that are
completely factorized in R: pa(X) =a(X,, —ay) - (X — au,) and
p(X) =b(X — (1) - (X — Bn) with a and b the leading coefficients in Ry

as well. Then:

Res(pa, pp) = a"b™ [ [, (ai = 5;) (1)
PROOF:We consider the ring morphism defined by:

gp:Z[Ql,a,al,...,am,%,bl,...,bn] — RO

AorBora;orb; —— aorborao;orf.
We notice that p(A) = pa and p(B) = pg. By Theorem 1, we have:

o (Res(A, B)) = (m%m [ (s v, ) =a [, (@

Since 0 # a = LC(pa) = LC(p(A)) and 0 # b = Lc(pr) = LC(p(B)), we are in the
first (“good”) case of the specialization property of the resultant, and it
follows that ¢(Res(A, B)) = Res(¢(A), p(B)) . O

10



Proof of the main theorem (1/4)

First, let us prove that the 4 equalities are equivalent.
(1)=(2)

¢ Hj A(bj) - Hj Q[Hz'(bj —a;) = (=1)"mA" Hq;,j(a'i - bj)

(1)?(3) Similar calculations as above.

1)< (4

WY Res(B, 4) "LV A T (b; — a,) = (1) 2w BT [T, (o — by) =
(—1)™"Res(A, B).

Hence, we only need to prove Equality (1). Next we can assume 2l =5 = 1.
Indeed, if A =AA and B = BB (A and B are monic), then:

for 1 <i<n i-th line of Syl(A4, B) = Ax (i-th line of Syl(4, B))

for 1 <j<m j-th line of Syl(A, B) = Bx (j-th line of Syl(A, B))
Since the determinant is multilinear with respect to the lines, it comes:
Res(A, B) = A™B™Res(A, B). Regarding the equality (1) we only need to
prove Res(A, B) =[], ;(a; —b;) , where A and B are monic :2l =B = 1

11



Proof of the main theorem (2/4)

Hence, we write A = (X —a1)--- (X —am) and B = (X —b1)--- (X — by).

Lemma 2 The resultant Res(A, B) is a polynomial in
Z[al,. . .,an,bl,. . .,bm].

PROOF:We have A = X" + 37" (=1)"s;,m(a1,...,am)X™ ", where s, ., is the
1-th elementary symmetric polynomials in m variables.

Sim(01,. .., 0m) = Z (g, Opy - -+ Op, . (6)
1<l <l < <l; <m

Similarly, B = X" + 3" | (=1)?s;,n(b1,...,b,) X",
Note that by Equation (6), s; ,, and s; ,, are in Z[ay, ..., 0y, b1, ..., b,].
Hence the matrix Syl(A, B) has its entries in Z|ay, ..., tmn, b1,...,0,]. Now

since the determinant is a polynomial of Z[(n 4+ m)? entries of the matrix], it
follows that Res(A, B) € Z|a1,...,0m,b1,...,b,]. O

12



Proof of the main theorem (3/4)

Lemma 3 In the polynomial ring Z[ay, ..., 0y, b1,...,b,], holds:
H(aq; —b;)|Res(A4, B).
,J

PROOF:Let r(al, ey O, 0, bn) < Z[Cll, U s PR « P bn] be a

shorthand notation to denote the resultant: Res(A, B) = r.

Foreach 1 <i<m,let R, =Z[ay,...,8;_1,0;11,...,0my,0b1,...,b,], and
p; € R;[a;] be the univariate polynomial in a; so that p;(a;) = r.

Suppose that for some %, j, a; = b;. Then X —a; = X — b; is a common
factor of A and B and by Corollary 1, Res(A, B)|a,—p, = 0. This means:

T(ala'“abja-'°7am761,---,bn):p@'(bj):(),

in RZ and a;, — bj|pi(ai) in Rz[az] = Z[Cu, ceey Omy, bl, Cee bn].

13



The 4,7 were arbitrarily chosen, so for each 1, j,
a; — b;|pi(a;) =r = Res(A, B) in R;[a;] = Zlay,...,b,], and hence
[1;; @ — bj|Res(A, B), as required. U

Let s(ai,...,am,b1,...,b,) 1= Hi,j(ai —b;) (as polynomials in Zl[a, ..., b,]).

The previous Lemma shows that £ € Z[ay,...,b,]. The next Lemma shows
that actually © € Z.

Lemma 4 For 1 <i <m, holds deg, (s) = deg, (r), and for 1 < j <n,
holds degy (s) = degy, (7).

PrOOF:Let a = ay,...,a,, and b = by,...,b,. By Equation (6), we have:
deg, (5i,m(a)) =1 for 1 <7 <m, and degy_ () (b)) =1 for 1 <j <n.
Denote Syl ; be at the i-th line and j-th column of Syl(A, B).

Res(A,B) = > (—1)6(0) H SYl; o (i) H Yl 0(5)

o€EGntm 1<i<n n+1<j<m+n

A\ A J/

TV WV
n first lines m last lines

Now if we look at the Sylvester matrix, we see that:

14
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1 \_51,n(b) —

1

\\\
~~
~~

~

— (_1)m5m,m(a)

— (=1)"spn, n(b)

(—1)™sp.n(b)

Either Syl, ; =0 or 1 or deg, (Syl, ;) =1Vl <u <m or
degy, (Syl; ;) =1Vl <v <n.

Hence for each permutation o € &,,1,, such that

ngzgn Syli,a(z’) Hm+1§j§m+n Syljﬂ(])# 0, we have:

Vl<i1<m, degai

V]- S ] S n, degbj

H Syli,a(i)

1<i<n

H SYl; o (i)

1<i<n

15

11

m+1<j<m-+n

[1

m+1<j<m+n

Syl

Syl

3,0(3)

3,0 (3)

IA

IN



It follows that deg,, (Res(4, B))<n and deg, (Res(4, B))<m. But by
definition, deg,,(s) =n and deg, (s) = m, and since s|r, the < are actually

“="_and the lemma follows. -

Let us write r = Cys, Cy € Z. We must show that Cy =1 to conclude the
proof of Theorem 1.

Let us put by =--- =b,, =0. We get: s(ai,...,am,0,...) = (][, a:)" and
r(ai,...,am,0,...) = Co(] I, @:)™. The Sylvester matrix can be rewritten as
follows (where A = X™ + a1 X" '+ -+ 4+ A1 X +ao), and we compute the

determinant along the last line. Only one coefficient is not zero, hence:

m-th column

16

1 x--- a1 aop 1
1*"a1_a0 1 .-+ a3 a1 ag
Pl [0y H
...... (—»)™ (—1)2"
1 q 0 ...
(m — 1)-th column



1x--- a3z ap 1% - a
1---ayg a1 ao 1 .
1 4 --- a1 ag = (-1)27 (=1)2(m=2)+n 1 4
10 --- -4- I 10 --- -1.
PPN (_1)3n
0
(m — 2)-th column
— (—1)3n(—1)2(m=3)+n — — (—1)(m=1)n
[
(-1 1
ao
al ao
= (~p)(m=Dn(_qn = (=1)"™ag.
An—1 - a1 Go
Finally, r(a1,...,am,0,...) = (—=1)""a{, where ap = (—1)"5m.m(a)

So r(a,...,am,0,...) =

4 Qo
5 a1

0

ao

- a1 aog

(m — 3)-th column

17

ao

ai

an—-1 An—2 * -

N

ao

al aop

(=)™ (=)™ (1 ]; a)" = (11; @)"




