
MMA数学特論 I

Algorithms for polynomial systems:
elimination & Gröbner bases
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Part I: S-polynomials Introduction

Gröbner bases exist → Dickson Lemma + Hilbert finite basis (Lect. IV)

Gröbner bases are useful → Ideal membership (Theo. 4), and several other
applications (next lectures).
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Part I: S-polynomials Introduction

Gröbner bases exist → Dickson Lemma + Hilbert finite basis (Lect. IV)

Gröbner bases are useful → Ideal membership (Theo. 4), and several other
applications (next lectures).

Let F = {f1, f2, . . . , fs} polynomial system in k[X1, . . . , Xn], and let
I = 〈f1, . . . , fs〉 the ideal it generates.

Problem 1: Is F a Gröbner basis for I (w.r.t. to a monomial order ≺) ?

Problem 2: If not, how to compute a Gröbner basis for I, starting from F ?

→ Answer: use “S-polynomials” and Buchberger’s criterion.

Problem 3: Is it easy to compute a Gröbner basis ? (efficiency)

→ Answer: Very hard. Many improvements possible → still active research
topic.
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The problem

Let F = {f1, . . . , fs} be a finite set of polynomials, ≺ a monomial order.

If F is not a Gröbner basis for I = 〈F 〉, then:

∃f ∈ I, but lm(f) 6∈ 〈lm(F )〉 (⇔ lm(fi) - lm(f), ∀ i).

→ lm(F ) is “too small” for being a Gröbner basis (⇔ 〈lm(F )〉 ( 〈lm(I)〉).

→ (graphic of the example on Slide 5, Lect. IV on the blackboard. . . )
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The problem

Let F = {f1, . . . , fs} be a finite set of polynomials, ≺ a monomial order.

If F is not a Gröbner basis for I = 〈F 〉, then:

∃f ∈ I, but lm(f) 6∈ 〈lm(F )〉 (⇔ lm(fi) - lm(f), ∀ i).

→ lm(F ) is “too small” for being a Gröbner basis (⇔ 〈lm(F )〉 ( 〈lm(I)〉).

→ (graphic of the example on Slide 5, Lect. IV on the blackboard. . . )

How to extend lm(F ) ? (Try to) find f ∈ I, such that lm(f) 6∈ 〈lm(F )〉.

=⇒ f =
s∑

i=1

hifi such that lm(f) = lm
( s∑

i=1

fihi

)
≺ max

1≤i≤s
lm(fihi) (?)

Remember that. . . lm≺(a1 + a2) 4 max{lm≺(a1), lm≺(a2)}, with equality if
lm(a1) 6= lm(a2) . . . and that lm(f) ≺ lm(fi)⇒ lm(fi) - lm(f).

Conclusion: There is a term cancellation idenitity in (?).

3



S-polynomials

Definition 1 Given two non-zero polynomials f, g ∈ k[X1, . . . , Xn], and a
monomial order ≺, let Xα = lm≺(f), and Xβ = lm≺(g).

The least common multiple of Xα and Xβ is Xγ , where
γ = (max{α1, β1}, . . . ,max{αn, βn}), denoted lcm(lm≺(f), lm≺(g)) = Xγ .

The polynomial S≺(f, g) := Xγ

lt≺(f)f −
Xγ

lt≺(g)g , is called the S-polynomial of

f and g (if it is clear what is ≺, we use simply S(f, g) instead of S≺(f, g)).
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S-polynomials

Definition 1 Given two non-zero polynomials f, g ∈ k[X1, . . . , Xn], and a
monomial order ≺, let Xα = lm≺(f), and Xβ = lm≺(g).

The least common multiple of Xα and Xβ is Xγ , where
γ = (max{α1, β1}, . . . ,max{αn, βn}), denoted lcm(lm≺(f), lm≺(g)) = Xγ .

The polynomial S≺(f, g) := Xγ

lt≺(f)f −
Xγ

lt≺(g)g , is called the S-polynomial of

f and g (if it is clear what is ≺, we use simply S(f, g) instead of S≺(f, g)).

Comment: The S-polynomials control the “term cancellation identities”:

Proposition 1 Let T =
∑s

i=1 cifi, with ci ∈ k, and δ = mdeg≺(fi) for all i.
If mdeg≺(T ) ≺ δ , then there exists cj,k ∈ k such that

T =
∑

1≤j,k≤s

cj,kS≺(fj , fk) . Moreover mdeg≺(S≺(fj , fk)) ≺ δ.

Proof: (On the balckboard. . . ) 2
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Main theorem: Buchberger’s criterion

The previous Proposition 1 is important for the following criterion
(Theo. 1). Before, a definition. . . Let G = {g1, . . . , gs} be a polynomial
system and ≺ a monomial order:

Definition 2 A polynomial f is said to reduce to 0 modulo G, denoted
f →G 0 if there exists a1, . . . , as ∈ k[X1, . . . , Xn] such that:

f = a1g1 + · · ·+ asgs, with lm(aigi) 4 lm(f) if ai 6= 0.

Remark: If there exists (at least) one permutation σ ∈ Ss, such that:

nf≺(f, [gσ(1), gσ(2), . . . , gσ(s)]) = 0,

then f →G 0, but the reciprocal is not true in general.

Theorem 1 G is a Gröbner basis of 〈G〉, iff for all pairs i 6= j,
S(gi, gj)→G 0 .

Proof:(On the blackboard. . . )

5



Is a polynomial system a Gröbner basis ?

This is the problem 1 of Introduction.

The Buchberger criterion (Theorem 1), implies this algorithm to decide if a
polynomial system F is a Gröbner basis or not.

# Inputs: A polynomial system F = {f1, . . . , fs}. A monomial order ≺.
# Output: true if F is a Gröbner basis for 〈F 〉, false else.

1: for p, q ∈ F, p 6= q do

2: if nf≺(S≺(p, q), F ) 6= 0 then return false ; end if

3: end for

4: return true

Remark: It is just to show the power of S-polynomials. Else, it is very
inefficient in practice, and not very useful.
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Part II: The Algorithm Version 1

Version 1: very naive and slow.

# Inputs: Non-zero polynomial system F = {f1, . . . , fs}. A monomial
order ≺.
# Output: A Gröbner basis G = {g1, . . . , gt} for 〈F 〉, w.r.t. ≺.

1: G ← F

2: do{ G′ ← G

3: for p, q ∈ G′, p 6= q do

4: S ← nf(S(p, q), G′) // computed for any sequence order of G′

5: if S 6= 0 then G← G ∪ {S} ; end if

6: end for

7: } until (G = G′) // repeat from Step 2
8: return G
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Correctness - Termination

Correctness: Claim 1: we always have F ⊂ G ⊂ I ( proof on the
blackboard. . . )

So, if 〈F 〉 = I, then 〈G〉 = I.

Claim 2: When G = G′ (⇔ exit the do/until loop ⇔ end of algorithm), we
have S = nf(S(p, q), G′) = 0 for all p 6= q in G. By Buchberger’s criterion
(Theo. 1), G is a Gröbner basis.

Termination: If lm(G′) = lm(G) then G = G′.
We have 〈lm(G′)〉 ⊂ 〈lm(G)〉, so the sequence {lm(G′)} verifies the
“ascending chain condition” (Definition 4, Lect. IV), in k[X1, . . . , Xn].
Because it is Nœtherian (Lect. IV, Theo. 3), after a finite number of steps,
we have lm(G) = lm(G′).
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Efficiency: detect useless S-polynomial

! Computing a division (or normal form) can be slow: the size of the
numbers can grow a lot.

!! If S(p, q) reduces to 0 modulo G, then nothing happens in the algorithm !

→ computing the division of S(p, q) that gives a 0 remainder is useless .

⇒ Need to decrease as much as possible the number of divisions of
S-polynomials computed at Step 4 of the Algo. version 1 (Slide 7)
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Efficiency: detect useless S-polynomial

! Computing a division (or normal form) can be slow: the size of the
numbers can grow a lot.

!! If S(p, q) reduces to 0 modulo G, then nothing happens in the algorithm !

→ computing the division of S(p, q) that gives a 0 remainder is useless .

⇒ Need to decrease as much as possible the number of divisions of
S-polynomials computed at Step 4 of the Algo. version 1 (Slide 7)

Unnecessary pairs (1): Since S(p, q) = −S(q, p): pair (p, q) already tested ⇒
need not consider the pair (q, p) (see definition of set B at Step 1, next slide).

Unnecessary pairs (2): If S(p, q)→G′ 0, then S(p, q)→G′∪{S(a,b)} 0 for any
S-polynomial of a, b ∈ G′.

→ Hence, the pair (p, q) needs not to be kept in the set B of all indices of
pairs to be tested (see Step 10, next slide).
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Buchberger algorithm: Version 2

# Inputs: A polynomial system F = {f1, . . . , fs}
# Output: A Gröbner basis G = {g1, . . . , gt} for I = 〈F 〉.

1: G ← F ; t← s

B ← {(i, j) , 1 ≤ i < j ≤ s} // indices of pairs fi, fj to be tested
2: while B 6= ∅ do
3: for (i, j) ∈ B do

4: S ← nf(S(fj , fi), G)
6: if S 6= 0 then // the S-pol. has not a 0 remainder
7: t← t + 1 ; ft ← S

8: G← G ∪ {ft} // then we add this remainder to G. . .
9: B ← B ∪ {(i, t) , 1 ≤ i ≤ t− 1} // and the new indices.

10: else B ← B − {(i, j)} ; end if // else the pair of index i, j. . .
11: end for ; end while . . . will allways reduced to 0
12: return G
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Another criterion to detect useless pairs

This Proposition 2 permits to detect some pairs of polynomials p, q such
that S(p, q) will reduce to 0 modulo G.

→ permits to avoid useless computations (see Slide 14).

Proposition 2 Let G be finite set of polynomials. For a pair f, g ∈ G and a
monomial order ≺, if lcm(lm≺(f), lm≺(g)) = lm≺(f)lm≺(g), then
S≺(f, g)→G 0.

Proof: (On the blackboard. . . )

Application: This criterion is easy to check. (comparing to do a division).

Buchberger: Version 2.1

# Inputs: A polynomial system F = {f1, . . . , fs}
# Output: A Gröbner basis G = {g1, . . . , gt} for I = 〈F 〉.
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1: G ← F ; t← s

B ← {(i, j) , 1 ≤ i < j ≤ s} // indices of pairs fi, fj to be tested
2: while B 6= ∅ do
3: for (i, j) ∈ B do

3’: if lcm(lm(fi), lm(fj)) 6= lm(fi)lm(fj) then
4: S ← nf(S(fj , fi), G)
6: if S 6= 0 then // the S-pol. has not a 0 remainder
7: t← t + 1 ; ft ← S

8: G← G ∪ {ft} // then we add this remainder to G. . .
9: B ← B ∪ {(i, t) , 1 ≤ i ≤ t− 1} // and the the new indices

10: else B ← B − {(i, j)} ; end if // else the pair of index i, j. . .
end if

11: end for ; end while . . . will allways reduced to 0
12: return G
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Part III: Syzygies Module over a ring

Let R be a commutative ring with 1R for unit element, with addition + and
multiplication ·.

An abelian group (M, +) is an R-module if, there is a map:
R×M →M, (r,m) 7→ rm, such that:

• 1Rm = m

• (r + r′)m = rm + r′m

• (r · r′)m = r(r′m) = r(r′m)

• r(m + m′) = rm + rm′

Facts: If R is a field then R-modules are the vector spaces over R.

If R is not a field, then a module M has no base in general.

An R-module M is finitely generated if there exists some elements
m1, . . . ,ms in M such that ∀m ∈M , ∃r1, . . . , rs elements in R with:
m = r1m1 + · · ·+ rsms.

Examples: Let I ⊂ R be an ideal. The quotient ring R/I is an R-module. . .
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Syzygy (1/3)

Given an R-module M , the first syzygy module or the syzygies of M on a set
of generators (m1, . . . , ms) is the kernel the following presentation of M :

Rs ×(m1,...,ms)−−−−−−−−→ M → 0,

(r1, . . . , rs) 7−→ r1m1 + · · ·+ rsms.

then Syz(m1, . . . , ms) := {(r1, . . . , rs) ∈ Rs |
∑

i aimi = 0}, so that
M ' Rs/Syz(m1, . . . ,ms).

Definition 3 Let F = (f1, . . . , fs) a family of s polynomials. We simply
denoted by Syz(F ) the syzygies on the leading terms of F :

Syz(lt(f1), . . . , lt(fs)) := {(h1, . . . , hs) ∈ k[X1, . . . , Xn]s |
∑

i

hilt(fi) = 0}.
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Syzygy (2/3)

Homogeneous syzygy in Syz(F ) of (multi)degree α ∈ Nn:

(c1X
α(1), . . . , csX

α(s)), where ci 6= 0⇒ Xα(i)lm(fi) = Xα.

Lemma 1 Every syzygy of Syz(F ) can be written uniquely as a linear
combination over k of homogeneous syzygies.

Proof: (On the blackboard. . . )

Proposition 3 Let F = (f1, . . . , fs) be a family of polynomials, and Syz(F )
be the syzygy module on the leading terms of F . For 1 ≤ i < j ≤ s, consider
the pair fi, fj of F , and let Xγ := lcm(lm(fi), lm(fj)). Define
e1 = (1, 0, . . . , 0) , e2 = (0, 1, 0, . . .), . . . , er = (. . . , 0, 1) and

Sij :=
Xγ

lt(fi)
ei −

Xγ

lt(fj)
ej ∈ (k[X1, . . . , Xn])r,

The syzygies {Sij}1≤i,j≤s generate Syz(F ) as a k[X1, . . . , Xn]-module.
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Syzygy (3/3)

Proof:First we must check that Sij are effectively syzygies on the leading
terms of F (easy).

Next, we must show that each syzygy S ∈ Syz(F ) can be written:

S =
∑
i<j

pijSij , pij ∈ k[X1, . . . , Xn]

By Lemma 1 of the previous slide, we can assume that S is homogeneous of
(multi)degree α. A syzygy S ∈ Syz(F ) must have at least two non-zero
components, say ciX

α(i) and cjX
α(j) with i < j. By definition, we have

Xα(i)lm(fi) = Xα(j)lm(fj) = Xα, so Xγ |Xα.

Claim: S − cilc(fi)Xα−γSij has its i-th component equal to zero, so has
more zero components than S. By repeating this, we obtain that S is a
k[X1, . . . , Xn]-linear combination of the Sij , as required. 2
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The syzygy criterion

It gives another refinement of the Buchberger criterion that precises
Theorem 1.

Theorem 2 Let G = {g1, . . . , gs} be a family of polynomials, and Syz(G)
the Syzygy module on the leading terms of G. Let S be a homogeneous
generating set of Syz(G). We have:

G is a Gröbner basis iff for all S ∈ S, S ·G =
∑s

i=1 higi →G 0 .

Proof:(On the blackboard. . . )

Remark: If we choose S = {Sij , i < j}, as indicated in Proposition 3, then
Sij ·G = S(gi, gj). Hence, Theorem 1 is a special case of the above one.

Practically ? The advantage of using this criterion is the possiblity to take a
smaller generating set for Syz(G) than the {Sij}.

→ then we can avoid more useless pairs than the criterion of Proposition 2.
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Choosing a smaller generating set

1) Start form {Sij , i < j} for a generating set of Syz(G).

2) Suppose we have constructed a (smaller generating set) S ⊂ Syz(G).

Proposition 4 If lm(g`)|lcm(lm(gi), lm(gj)) and Si`, Sj` ∈ S, then
S − {Sij} is a (smaller) basis of Syz(G).

Proof:Suppose i < j < `, and let Xγi` := lcm(lm(gi), lm(g`)) (and also let
Xγj` , Xγij for the corresponding lcm). By assumption, both Xγj` and Xγi`

divides Xγij .

Sij =
Xγij

Xγi`
Si` −

Xγij

Xγj`
Sj`

so Sij is generated by Si` and Sj` and can be removed from S. 2

Aim: We want to reduce the number of pairs to test. Let [i, j] = (i, j) if
i < j and [i, j] = (j, i) if i > j. Let B ⊂ {(i, j), 1 ≤ i < j ≤ s}, such that
{Sab, (a, b) ∈ B} generate Syz(G).
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Buchberger algorithm: Version 3

Define the boolean Criterion(fi, fj , B) as true if [i, `] and [j, `] are not in
B, and if lm(f`)|lcm(lm(fi), lm(fj)) and false else.

1: G ← F ; B ← {(i, j) , 1 ≤ i < j ≤ s} ; t← s

2: while B 6= ∅ do
3: for (i, j) ∈ B do

4: if lcm(lm(fi), lm(fj)) 6= lm(fi)lm(fj) and !Criterion(fi, fj , B) then
5: S ← nf(S(fj , fi), G)
6: if S 6= 0 then

7: t← t + 1 ; ft ← S

8: G← G ∪ {ft}
9: B ← B ∪ {(i, t) , 1 ≤ i ≤ t− 1}

10: end if ; end if

11: B ← B − {(i, j)}
12: end for ; end while ; return G
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Conclusion: Remarks about efficiency

. . . still a lot of research to compute Gröbner bases quickly. . .

(Buchberger, 1985) , (Gebauer-Möller, 1988) → “Normal strategy” for
choosing pairs to reduce and good reductors (will give a zero quickly).

(Giovanni, Mora et al., 1991 ) “Sugar” and “Double sugar” strategy,
refinement and heuristics.

J.-C. Faugère. A new efficient algorithm for computing Gröbner bases (F4).
J. Pure Appl. Algebra, pp:75–83, (1999, updated 2002).

Gröbner bases for grevlex are usually faster to compute
(Bayer-Stillman, 1987) → monomial order conversion algorithm (to
compute a lex GB, first compute a grevlex one and convert it into a lex).

(Faugère, Gianni et al., 1993) , FGLM, change of order by linear algebra,

(Collart, Kalkbrener et al., 1993 97) , “Gröbner walk” on different orders.
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