MMA B ram 1

Algorithms for polynomial systems:
elimination & Grobner bases

ZIERZDOT7NTY XL 7L 7 F—HE & §EiE

Lecture V: The Buchberger Algorithm

June, 3rd 2010. Part I: S-polynomials
Part II: The algorithm
June 10th. Part III: Syzygies

Xavier Dahan

Part I: S-polynomials Introduction

Grobner bases exist — Dickson Lemma + Hilbert finite basis (Lect. IV)

Grobner bases are useful — Ideal membership (Theo. 4), and several other

applications (next lectures).

Part I: S-polynomials Introduction

Grobner bases exist — Dickson Lemma + Hilbert finite basis (Lect. IV)

Grobner bases are useful — Ideal membership (Theo. 4), and several other
applications (next lectures).

Let F = {f1, fo,..., fs} polynomial system in k[X7,...,X,], and let
I ={f1,...,fs) the ideal it generates.

Problem 1: Is F' a Grobner basis for I (w.r.t. to a monomial order <) ?

Problem 2: If not, how to compute a Grobner basis for I, starting from F' 7

Problem 3: Is it easy to compute a Groébner basis 7 (efficiency)

Part I: S-polynomials Introduction

Grobner bases exist — Dickson Lemma + Hilbert finite basis (Lect. IV)

Grobner bases are useful — Ideal membership (Theo. 4), and several other
applications (next lectures).

Let F = {f1, fo,..., fs} polynomial system in k[X7,...,X,], and let
I ={f1,...,fs) the ideal it generates.

Problem 1: Is F' a Grobner basis for I (w.r.t. to a monomial order <) ?
Problem 2: If not, how to compute a Grobner basis for I, starting from F' 7
— Answer: use “S-polynomials” and Buchberger’s criterion.

Problem 3: Is it easy to compute a Groébner basis 7 (efficiency)

Part I: S-polynomials Introduction

Grobner bases exist — Dickson Lemma + Hilbert finite basis (Lect. IV)

Grobner bases are useful — Ideal membership (Theo. 4), and several other
applications (next lectures).

Let F = {f1, fo,..., fs} polynomial system in k[X7,...,X,], and let
I ={f1,...,fs) the ideal it generates.

Problem 1: Is F' a Grobner basis for I (w.r.t. to a monomial order <) ?
Problem 2: If not, how to compute a Grobner basis for I, starting from F' 7
— Answer: use “S-polynomials” and Buchberger’s criterion.

Problem 3: Is it easy to compute a Grobner bais ? (efficiency)

— Answer: Very hard. Many improvements possible — still active research
topic.

The problem

Let FF ={f1,..., fs} be a finite set of polynomials, < a monomial order.

If F is not a Grobner basis for I = (F), then:

df € I, but LM(f) € (LM(F)) (< LM(f;) 1LM(f), Vi).

— LM(F) is “too small” for being a Grobner basis (< (LM(F)) C (LM(1))).

— (graphic of the example on Slide 5, Lect. IV on the blackboard. ..)

The problem

Let FF ={f1,..., fs} be a finite set of polynomials, < a monomial order.
If F' is not a Grobner basis for I = (F), then:

df € I, but LM(f) € (LM(F')) (< LM(f;) 1 LM(f), V).
— LM(F) is “too small” for being a Grobner basis (< (LM(F)) C (LM(1))).
— (graphic of the example on Slide 5, Lect. IV on the blackboard. ..)

How to extend LM(F') ? (Try to) find f € I, such that LM(f) & (LM(F)).

— f = Z h;fi such that LM(f) = (Z::)< max LM(fih;) (x)

=1 1<i<s

Remember that... LM< (a1 + a2) < max{LM<(a1),LM<(az)}, with equality if
LM(aj) # LM(az) ...and that LM(f) < LM(f;) = LM(f;) 1 LM(f).

Conclusion: There is a term cancellation idenitity in (x).

S-polynomials
Definition 1 Given two non-zero polynomials f,g € k| X1, ..., X,], and a
monomial order <, let X = LML (f), and XP = LM<(g).
The least common multiple of X® and XP is X7, where

v = (max{ay, f1},...,max{an,, Bn}), denoted LCM(LM<(f),LM<(g)) = X7 .

The polynomial S<(f,q) := LT{(f)f T (@9 s called the S-polynomial of
f and g (if it is clear what is <, we use simply S(f,g) instead of S<(f,g)).

S-polynomials

Definition 1 Given two non-zero polynomials f,g € k[X1, ..., X,], and a
monomial order <, let X = LML (f), and XP = LM(g).

The least common multiple of X® and XP is X7, where
v = (max{ay, 01}, ...,max{ay,, B,}), denoted LCM(LM<(f),LM<(g)) = X7 .

The polynomial S<(f,g) := %Zf)f — %g , 15 called the S-polynomial of

f and g (if it is clear what is <, we use simply S(f,g) instead of S<(f,g)).
Comment: The S-polynomials control the “term cancellation identities”:

Proposition 1 Let T =Y., ¢;fi, with ¢; € k, and 6 = mdeg_(f;) for all .
If mdeg_(T') <, then there exists ¢ € k such that

T= > ¢jxS<(fj, fx). Moreover mdeg_(S<(f;, fr)) < 0.
1<9,k<s

PROOF: (On the balckboard. . .) O

Main theorem: Buchberger’s criterion

The previous Proposition 1 is important for the following criterion
(Theo. 1). Before, a definition...Let G = {g1,...,9s} be a polynomial
system and < a monomial order:

Definition 2 A polynomial f is said to reduce to 0 modulo GG, denoted
f —c 0 if there exists aq,...,as € k[X1,...,X,] such that:

f=a191 + -+ asgs, with LM(a;g;) < LM(f) if a; # 0.
Remark: If there exists (at least) one permutation o € G, such that:

NF-<<f7 [90(1)796(2)7 IR 790(3)]) — 07
then f — g 0, but the reciprocal is not true in general.

Theorem 1 G is a Grobner basis of (G), iff for all pairs i # j,
S(9i>95) —c 0 .
PROOF: (On the blackboard. ..)

Is a polynomial system a Grobner basis ?

This is the problem 1 of Introduction.
The Buchberger criterion (Theorem 1), implies this algorithm to decide if a

polynomial system F'is a Grobner basis or not.

Inputs: A polynomial system F' = {fi,..., fs}. A monomial order <.
Output: true if F'is a Grobner basis for (F'), false else.

1: for p,qe F,p# qdo
2: if NF<(S<(p,q), F') # 0 then return false ; end if
3

end for

4: return true

Remark: It is just to show the power of S-polynomials. Else, it is very

inefficient in practice, and not very usetul.

Part II: The Algorithm Version 1

Version 1: very naive and slow.

Inputs: Non-zero polynomial system F' = {f1,..., fs}. A monomial
order <.
Output: A Grobner basis G = {¢1,...,g:} for (F), w.r.t. <.
1. G «F
2: do{ G —(
3: for p,q € G',p # ¢q do
4: S — NF(S(p,q),G’) // computed for any sequence order of G’
5: if S # 0 then G «+— GU{S} ; end if
6: end for
7. }until (G =G') // repeat from Step 2
8: return G

Correctness - Termination

Correctness: Claim 1: we always have F' C G C I (proof on the
blackboard. . .)

So, if (F) = I, then (G) = 1.

Claim 2: When G = G’ (& exit the do/until loop < end of algorithm), we
have S = NF(S(p, q), G') = 0 for all p # ¢ in G. By Buchberger’s criterion
(Theo. 1), G is a Grobner basis.

Termination: If LM(G’) = LM(G) then G = G’.

We have (LM(G")) C (LM(G)), so the sequence {LM(G’)} verifies the
“ascending chain condition” (Definition 4, Lect. IV), in k[X1, ..., X,].
Because it is Neetherian (Lect. IV, Theo. 3), after a finite number of steps,
we have LM(G) = LM(G").

Efficiency: detect useless S-polynomial

' Computing a division (or normal form) can be slow: the size of the

numbers can grow a lot.
' If S(p, q) reduces to 0 modulo GG, then nothing happens in the algorithm !
— computing the division of S(p, q) that gives a 0 remainder is useless .

= Need to decrease as much as possible the number of divisions of
S-polynomials computed at Step 4 of the Algo. version 1 (Slide 7)

Efficiency: detect useless S-polynomial

' Computing a division (or normal form) can be slow: the size of the

numbers can grow a lot.

' If S(p, q) reduces to 0 modulo GG, then nothing happens in the algorithm !
— computing the division of S(p, q) that gives a 0 remainder is useless .

= Need to decrease as much as possible the number of divisions of
S-polynomials computed at Step 4 of the Algo. version 1 (Slide 7)

Unnecessary pairs (1): Since S(p,q) = —S(q,p): pair (p, q) already tested =
need not consider the pair (g, p) (see definition of set B at Step 1, next slide).

Unnecessary pairs (2): If S(p,q) —¢+ 0, then S(p,q) — ¢ u{s(a,b)y 0 for any
S-polynomial of a,b € G'.

— Hence, the pair (p, ¢) needs not to be kept in the set B of all indices of
pairs to be tested (see Step 10, next slide).

Buchberger algorithm: Version 2

Inputs: A polynomial system F' = {f1,..., fs}
Output: A Grébner basis G = {g1,...,g:} for I = (F).

1:

10:
11:
12:

G «— F;t—s
B —A{(i,7), 1<i<j<s} //indices of pairs f;, f; to be tested
while B # () do
for (i,7) € B do
S — NE(S(f;, £1), G)

if S # 0 then // the S-pol. has not a 0 remainder
t—t+1; f; <S5
G — GUA{f:} // then we add this remainder to G. . .
B— BU{(i,t), 1<i<t—1} // and the new indices.
else B+— B —{(i,j)} ; end if // else the pair of index i, j. ..
end for ; end while ... will allways reduced to 0
return GG

10

Another criterion to detect useless pairs

This Proposition 2 permits to detect some pairs of polynomials p, ¢ such
that S(p, q) will reduce to 0 modulo G.

— permits to avoid useless computations (see Slide 14).

Proposition 2 Let G be finite set of polynomials. For a pair f,g € G and a
monomial order <, if LCM(LM<(f),LM<(g)) = LM< (f)LM<(g), then

S-<(f7 g) —¢ 0.
PROOF: (On the blackboard. ..)

Application: This criterion is easy to check. (comparing to do a division).

Buchberger: Version 2.1

Inputs: A polynomial system F' = {f1,..., fs}
Output: A Grobner basis G ={¢g1,...,g:} for [= (F).

11

1:

AR

3’

L o> H

10:

11:
12:

G «— F;t«s
B —{(i,5), 1<i<j<s} // indices of pairs f;, f; to be tested
while B # () do
for (i,j) € B do
LF LOM(LM(f,), LM(f;)) # LM(f;)LM(f;) then
S — NE(S(f;, f1), G)

if S # 0 then // the S-pol. has not a 0 remainder
t—t+1; fi S
G — GUA{f:} // then we add this remainder to G. ..

B«— BU{(i,t), 1<i<t-—1} // and the the new indices

else B« B —{(i,j)} ; end if // else the pair of index 1, j. ..
end if

end for ; end while ... will allways reduced to 0

return G

12

Part III: Syzygies Module over a ring

Let R be a commutative ring with 1z for unit element, with addition 4+ and

multiplication -.

An abelian group (M, +) is an R-module if, there is a map:
Rx M — M, (r,m) — rm, such that:

e lpm=m o (r-rYm=r(r'm)=r('m)
o (r+r')y m=rm+1r'm e r(m+m')=rm+rm’
Facts: If R is a field then R-modules are the vector spaces over R.

If R is not a field, then a module M has no base in general.

An R-module M is finitely generated if there exists some elements
mi,...,mg in M such that Vm € M, drq,...,rs elements in R with:

m=riml+---4+ryms.

Examples: Let I C R be an ideal. The quotient ring R/I is an R-module. ..

13

Syzygy (1/3)

Given an R-module M, the first syzygy module or the syzygies of M on a set

of generators (ms, ..., my) is the kernel the following presentation of M:
RS X(m17'°'7m8) M N 07
(ri,...,75) o rimi 4 -+ rsmsg.

then Syz(mq,...,ms) :={(r1,...,rs) € R®| Y_.a;m; = 0}, so that
M ~ R*/Syz(mq,...,ms).

Definition 3 Let F = (f1,..., fs) a family of s polynomials. We simply
denoted by Syz(F') the syzygies on the leading terms of F':

Syz(LT(f1),...,LT(fs)) == {(h1,..., hs) € k[X1,..., X.]°| Z h:LT(f;) = 0}.

14

Syzygy (2/3)
Homogeneous syzygy in Syz(F') of (multi)degree a € N™:
(1 XD e, X)) where ¢; # 0 = X“WLM(f;) = X©

Lemma 1 Fvery syzygy of Syz(F) can be written uniquely as a linear

combination over k of homogeneous syzygies.
PROOF: (On the blackboard. ..)

Proposition 3 Let F = (f1,..., fs) be a family of polynomials, and Syz(F)
be the syzygy module on the leading terms of F'. For 1 <1 < j <'s, consider
the pair f;, f; of F', and let X7 := LoM(LM(f;), LM(f;)). Define
e; = (1,0,...,0) , e =(0,1,0,...), ..., e, =(...,0,1) and

X7 X7
wr(f) " ()

The syzygies {Si;j }1<i j<s generate Syz(F') as a k| X4, ..., X,]-module.

Sij =

e; © (E{[Xl, c. ,Xn])r,

15

Syzygy (3/3)

PROOF:First we must check that 5;; are effectively syzygies on the leading
terms of F' (easy).

Next, we must show that each syzygy S € Syz(F') can be written:

S = sz'jsija pij € k| X1,..., X,

1<J

By Lemma 1 of the previous slide, we can assume that S is homogeneous of
(multi)degree a. A syzygy S € Syz(F') must have at least two non-zero
components, say ¢; X" and ¢; X*U) with i < j. By definition, we have
XOrm(f;) = XULm(f;) = X*, so X7| X<,

Claim: S — ¢;Le(f;) X*77S;; has its i-th component equal to zero, so has
more zero components than S. By repeating this, we obtain that S is a
k|X1,...,X,]-linear combination of the S;;, as required. O

16

The syzygy criterion

It gives another refinement of the Buchberger criterion that precises

Theorem 1.

Theorem 2 Let G = {g1,...,9s} be a family of polynomials, and Syz(G)
the Syzygy module on the leading terms of G. Let S be a homogeneous
generating set of Syz(G). We have:

G is a Grobner basis iff for all S €S, S-G=>,_, higi —c 0.
PROOF: (On the blackboard. ..)

Remark: If we choose S = {S;;, ¢ < j}, as indicated in Proposition 3, then
Sii -G = S(gi,g5). Hence, Theorem 1 is a special case of the above one.

Practically 7 The advantage of using this criterion is the possiblity to take a
smaller generating set for Syz(G) than the {S;;}.

— then we can avoid more useless pairs than the criterion of Proposition 2.

17

Choosing a smaller generating set

1) Start form {.S;;, ¢ < j} for a generating set of Syz(G).
2) Suppose we have constructed a (smaller generating set) S C Syz(G).

Proposition 4 If LM(gs)|LCM(LM(g;),LM(g;)) and Sy, Sje € S, then
S —{Si;} is a (smaller) basis of Syz(G).

PROOF:Suppose i < j < £, and let X7 := r.cM(LM(g;),LM(gr)) (and also let
X"t X7 for the corresponding LCM). By assumption, both X7¢ and X7
divides X7,

X Vij X Vij
Sij = e D1 T X
so S;; is generated by S;» and S;, and can be removed from S. O

Aim: We want to reduce the number of pairs to test. Let |7, j| = (4, 7) if
i < jand [i,j] = (5,¢) if ¢ > j. Let BC {(4,5), 1 <1< j <s},such that
{Saup, (a,b) € B} generate Syz(G).

18

Buchberger algorithm: Version 3

Define the boolean Criterion(f;, f;, B) as true if [z, /] and |j, ¢] are not in
B, and if L™M(f,)|LeM(LMm(f;), LM(f;)) and false else.

G «—F;B—{(,j), 1<i<j<s}ites
while B # () do
for (¢,7) € B do
if LeM(LM(f;), LM(f;)) # LM(fi)LM(f;) and |Criterion(f;, f;, B) then
S — NE(S(f;, £i), G)
if S # 0 then
t—t+1; f <S5
G — GU{fi}
B~ BU{(i,t), 1<i<t-—1}
end if ; end if
B — B —1{(i,7)}

end for ; end while ; return G

—_
I

19

Conclusion: Remarks about efficiency

... still a lot of research to compute Grobner bases quickly. . .

(Buchberger, 1985) , (Gebauer-Moller, 1988) — “Normal strategy” for

choosing pairs to reduce and good reductors (will give a zero quickly).

(Giovanni, Mora et al., 1991) “Sugar” and “Double sugar” strategy,

refinement and heuristics.

J.-C. Faugere. A new efficient algorithm for computing Grobner bases (Fy).
J. Pure Appl. Algebra, pp:75-83, (1999, updated 2002).

Grobner bases for grevlex are usually faster to compute
(Bayer-Stillman, 1987) — monomial order conversion algorithm (to

compute a lex GB, first compute a grevlex one and convert it into a lex).

(Faugere, Gianni et al., 1993) , FGLM, change of order by linear algebra,
(Collart, Kalkbrener et al., 1993 97) , “Grobner walk” on different orders.

20

