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Part I: Generalities

The polynomial ring R|X;,..., X,] (1/3)

Notation: A multi-integer « is an element of N™, for a given n: hence,
a=(ag,...,qn), with a; € N.

Addition: Given a = (aq,...,a,) and 8 = (b1, ..., B,) two multi-integers,
we denote by a + 8 the multi-integer (a1 + 51, ..., n + Bn).

For n > 1, P € R[X1,...,X,] is a multivariate or n-variate polynomial, or a

polynomial in n variables, with coefficients in (a commutative) ring R.

We write: P =) _xn PaX®, where X = X" ... X and p, # 0 only for

a finite number of multi-integers «.

Monomial: It is a polynomial P with all p, = 0 except for a multi-integer J3,
for which pg = 1. This means P = Xlﬁ1 .. XPn,



The polynomial ring R|Xy,..., X,]| (2/3)

Coefficient: the ring R is called the coefficient ring of R[X7,..., X,].
For a polynomial P =) p,X®, the elements (p,) are the coefficients of P.

Given a multi-integer «, the coefficient p, is the coefficient of (the

monomial) X of P.
If p, # 0, we say that the monomial X occurs in P.

The coeflicient p(g .. oy is called the constant term of P.

Multiplication: PQ = > >, psgy | X° (notice that PQ = QP).
aeN™ B,y ENT
Bty=«a

Ring structure: With the addition and multiplication above, R|X1,..., X,] is

a commutative ring.



The polynomial ring R|Xy,..., X,]| (3/3)

Proposition 1 If R is an integral domain, then R[X1,....X,] is also

integral.

PROOF:By induction on n. When n = 1, it is proven in Lect. II. If this is
true for polynomials in n — 1 variables over R, then let

R’ = R[Xy,...,X,_1] in integral.

The case in 1 variable done in Lect. II shows that R'[X,,] is integral. But
R'[X,] = R[Xy,..., X,]. O

Remark 1: Assume R = k is a field. Then k[X1,..., X,] is a k-vector space.
As a ring, it is also a k-algebra.



The degree

Given a multi-integer a@ = (a1, ..., q,) € N the sum of « is

o) =a1 4+ + ay
The degree of a monomial X% is |a].

The degree of a polynomial P € R[X1,...,X,] is the maximal degree of one

of the monomials occuring in P.

For any polynomials P and @ in R[X1, ..., X,], we have:
(i) deg(P + Q) < max{deg(P), deg(Q)}, with equality if deg(P) # deg(Q).

(ii) deg(PQ) = deg(P) + deg(Q) (not true over any ring, but true over any

integral domain)

Remark: Assume R =k is a field, and let L € N*. Let k| X1,..., X,]<1 be
the set of polynomials of degree < L.

This is a sub-vector space of finite dimension (Exercise: what is the dimension 7)



The degree

By the 2 previous sildes, the following map is k-bilinear:

Mult © k[X1,..., Xpler, xk[X1,..., Xnlcr, — Kk[Xi,...

(A, B) — AB

It follows that k| X1,...,X,] is a graded commutative algebra.

Remark 1: There are several monomials of same degree.

Remark 2: There is no Euclidean division !

7Xn]<L1-|—L2

Comment: The degree is sometimes called the total degree of a polynomial P.

The partial degree in X; of P, denoted degy. (P) is the maximal exponent

«; of X, among all the monomials occuring in P.

The partial degree is the degree of the univariate polynomial P seen in

Rz[Xz]a whith Rz — E{[Xl, ce 7X'L'—17Xi—|—17 ce ,Xn]



Polynomial function

Here we assume R = k is a field. Let P € k| X4, ..., X,,] be a polynomial.

Function: The map k™ — k, (z1,...,2,) — P(x1,...,x,) is the function
defined by P.

A zero of P is a point (x1,...,x,) such that P(x1,...,z,) = 0.
!!: There are some non-zero polynomials P, that defined the zero function.

Example, even with n = 1: the non-zero polynomial X? — X € | X] define
the null function of F, — I,

Lemma 1 Assume that k is infinite, and that there are some infinite
subsets S1,...,S5, of k such that:

Va; € S;, f(al, e ,an) = 0.
Then f =0 (the null polynomial).
PROOF:When n =1 it is (Lect. I, Corollary 1). Then by induction on n. O



Ideals of k[ X1,...,X,]

Definition of an ideal — Lect. II, Definiton 3.

Example: Finitely generated ideals. The subset (f1,..., fs) of k[X1,..., X},]
defined by:

(froeees fo) = {Zfigi, gi € lk[Xl,...,Xn]},
1=1

is an ideal of k[ X7, ..., X,]|. Its basis fi,..., fs is finite (it s a finitely
generated ideal)

All the ideals of k[ X1, ..., X,]| are finitely generated ! (Hilbert. Proof, next

class).



A geometric interpretation

Suppose k is infintite (polynomials <= polynomial functions).

Let F' = {fl(Xl,...,Xn), fQ(Xl,...,Xn),..., fs(le---aXn)} a
polynomial system.

A solution of F' is a common zero of all the polynomials f; (be careful:

depends on the field extension).
Let = (x1,...,2,) be a solution of F' (in a field extension of k).
Then for any polynomial f € (f1,..., fs), = is also a solution of f.

Consequence: Looking for solutions of a polynomial system I’ is the same as
looking for solution of the ideal (F') generated by F.

Comment: It is actually a bit more complicated (problem of multiplicities
especially — Hilbert’s Nullstellensatz).



Parts II & III: Division for multivariate polynomials

Introduction

Aim: Given f, f1,..., fs € k[ X1,..., X,], write:

f:a1f1+"'+asfs+ra

with r have “smaller” monomials than those of fi,..., fs.

— monomial orders

Unicity of the remainder r in Equation (1) ?
— INNo in general.

— Yes if the polynomials (f;); are ordered.

Ideal Membership: if f € (f1,..., fs), so we have r =0 7
— INo in general.

— Yes if the polynomials (f;); form a Grobner basis.
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Part 1I: Monomial orders

Definition 1 A monomial order (or ordering) < on k| X1,...,X,], is a
relation on the set of monomials X%, a = (aq,...,a,) € N, such that:

(i) < is a total order (2 monomials can always be compared: if o # 3, then
either X < XP, or XP < X).

(ii) if X* < XP, then X*X7 < XP X7, for all v € N,

(iii) < is a well-order: any non-empty subset of monomials has a smallest

element.
Before giving examples, an useful lemma.

Lemma 2 An order relation < on the monomials of k[ X1,..., X,] is a

well-order iff every strictly decreasing sequence
xo) o xa@) o xaB) o ...

eventually terminates (<= I | a(N) = a(f) VN > ).
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Example I: lexicographic orders

Let us order the n variables: X,, < X,,_1 < --- < X (there are n! such
possible orders: X,,_1 < X,, < -+ < X9 < X; is another one, corresponding
to the permutation (n — 1, n), while X,, < X,,_1 <+ < X7 < X5

corresponds to the permutation (1, 2)).

Definition 2 The lexicographic order <j., on the monomaials of

k[X1,...,X,]| relatively to < is characterized by: For all multi-integers

a7 3,

XY Zer XP & if b= min{l <i<n|a; # B;}, then ay < (.
Example: XZX3 <., X?X3, since (2,3) — (2,4) = (0,—1) and —1 < 0
Proposition 2 The lex order is a monomaal order.

PROOF:(i) and (ii) of Definition 1 are clearly verified, (iii) is proved using
Lemma 2. O

12



Example II: graded lex orders

The next two orders are called degree orders, or they are said to refine the

degree. Recall that for a multi-integer o« = (v, ..., ay), we have
af =371 a; = deg(X?).

Definition 3 Given two distinct multi-integers a = (;)1<i<n and
B = (Bi)1<i<n € N", the graded lex order is characterized by

X <1ex XP & |al < |B], or|al =8| and a <iex 8.

Example: X1 < rer X7 X35, while X3P X3 <0, X7

' A grlex order relies on a choice of a lex order <., among the n! possible.

In the example, it is the one for which X, < Xj. !

Proposition 3 The graded lex orders are monomial orders.
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Counter-example: revlex order

We give an example of total order on the monomials, that s not a monomial

order.

Definition 4 Given two distinct multi-integers a and 3, the revlex order is

defined by:
XY Zevien XP < if 0= max{l <i<n| a; #G;}, then ap > 0y,
Example: X22 <revlex X%XZ <revlex X1X2 <revlex X2 <revlex X%

Proposition 4 The revlex order is not a monomzial order.

PROOF:The strictly decreasing (X3);>1 does not terminate. With Lemma 2,
this contradicts Property (iii) of Definition 1. O
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Example III: graded reverse lex order

Definition 5 Let two distinct multi-integers a = (aq, ..., qn) and
B=(B1,...,0n) in N"; we define the graded reverse lex order as:

X <grevlex Xﬁ <~ |&‘ < |ﬁ’ or |C¥‘ — |5’ and o ~revlex 6

Example: X3 < XoX2 - < X1 XoX3 < X2X3--- < X3-.. < X3,
Proposition 5 The greviex order is a monomaial order.

PROOF:It is a degree refinement of the revlex order. This prevents infinite
decreasing sequences as in Proposition 4 O

Other monomial orders: Weighted degree orders, block orders. . .

Remark: A monomial order < defines an order relation on the multi-integer
of N™ (by taking the exponent). We may use freely the notation:

a,3eN" a<f — X*<X°
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Multi-degree. Leading term, monomial, coefficient. ..

Let < be a monomial order on k| X1,..., X,].
Let f € k| Xq,...,X,] (as usual given a multi-integer o, X% = X" --- Xn).

Multi-degree: mdeg~(f) = max_{«a € N” | the monomial X“ occurs in f}.

Let 8 = mdeg_(f) € N". We write f = > yn fa X
Leading monomial: LM_(f) := X7,
Leading coefficient: LC<(f) := pg.

Leading term: LT (f) := pgXP (= Lo<(f) LM< (f)).

!!: These 4 definitions depend on the monomial order <.

If it is clear what is <, we write simply: mdeg(f),LM(f),LC(f),LT(f).
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Multi-degree. Leading term. .. (examples)

f=a2°+2y’z + xyz® + 23 + ¢°

order =< mdeg_(f) | LM<(f)

lex(x,y, 2) ( )
lex(y,x, 2) ( )
grlex(x,y, z) ( )
grlex(z,y,x) (2,1,1) 22y
(1,2,1)
(2,1,1)

grevlex(x,y, 2)

Sy Ot s W N -

grevlex(z,y, x)

Exercise: Over k[X7, ..., X,], prove that

X <revleac(Xl ..... Xn )XB — X“ }lex(Xn

.....
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Part 11I: The division algorithm

1 variable: The Euclidean algorithm works because a degree is strictly

decreasing.

Multivariate polynomials: the monomial order permits to have a similar

decreasing property.

Let < be a monomial order.

# Inputs:  f and [f1,..., fs] polynomial in k[ X1,..., X,]
(the sequence [f1, ..., fs] is ordered, it is not a set)

# Outputs: 7, a1 ...,as] such that (a) f=a1f1+ - asfs+ 7
(b) LM(f;) 1 m, for any monomial m occuring in r

(c) if a; f; # 0, then LM(f) = LM(a, f;)

When n = s = 1, it is the Euclidean algorithm (by conditions (a) and (b)).
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la1,...,as] «— [0,...

p—f;r<0
while (p # 0) do

1 +— 1

70]

while (¢ < s and LM(f;) 1 LM(p)) do: i+ i+ 1; end while

if (¢ < s) then

//LM(f;) divides LM(p)

LT(p)

A )

pHp‘ﬁ%

else
r <« r+ LT(p)
p — p—LT(p)
end if

end while

fi
//there is no LM(f;) that divides LM(p)
// the remainder is updated

return |ay,...,0as],T
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About unicity (1/3)

A-sets: The exponents of the monomials in r and in aq,...,as are
constrained to take certain values, defined by the following A-sets .

Let (i) := mdeg_(f;) € N* . We define the following partition of N":
Ai=a(l)+N", Ag=a(2)+ N"— Ay, ...,
A =a(i)+ N — (UZ14;) , ..., Ay =a(s) + N" — (UZ14)) .
and finally A = N" — Ui_1Aj. We have N" =UZ_;A; U A

Proposition 6 Any monomial X occuring in the remainder r verifies

a € A . If XP is a monomial occuring in a;, then [+ af(i) € A; .

PROOF: (On the blackboard. .. )
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About unicity (2/3)

Corollary 1 Let < be a monomial order on a polynomzial algebra in n
variables k[ X1, ..., X,]. Given a polynomial f and a sequence of
polynomials [f1, ..., fs], the remainder r and the sequence |aq, ... .a]

computed by the division algorithm, are unique.
PROOF: (On the blackboard. .. )

Corollary 2 If we fix the sequence |f1,..., fs] as above, then the map:

k[X1,...,Xn] — Kk[Xi,...,X]

fo=o

is well-defined (unicity of the previous Corollary) and linear.

PROOF: (On the blackboard. .. )
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About unicity (3/3)
Let I = (f1,..., fs) be the ideal generated by the polynomial system
(fi)1<i<s (as in the previous slide).
Aim: Like for the Euclidean division, we would like a linear map

k[ X1,....,X,|/ T — Kk[Xq,...,X,] (this map is not

f+1 +— correct in general!)

The ideal I would be the kernel of the map of Corollary 2.

But it doesn’t work in general: the remainder » depends on the sequence

|f1,- .., fs] and not on the ideal (f1,..., fs) (easy counter-examples).

Also, if r = 0 then f € I, but there are some g € I whose division by

|f1,-.., fs] does not give a remainder r = 0.

However, if f1,..., fs is a Grobner basis, it is OK. ..

22



