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Part I: Generalities

The polynomial ring R[X1, . . . , Xn] (1/3)

Notation: A multi-integer α is an element of Nn, for a given n: hence,
α = (α1, . . . , αn), with αi ∈ N.

Addition: Given α = (α1, . . . , αn) and β = (β1, . . . , βn) two multi-integers,
we denote by α + β the multi-integer (α1 + β1, . . . , αn + βn).

For n > 1, P ∈ R[X1, . . . , Xn] is a multivariate or n-variate polynomial, or a
polynomial in n variables, with coefficients in (a commutative) ring R.

We write: P =
∑

α∈Nn pαXα, where Xα = Xα1
1 · · ·Xαn

n , and pα 6= 0 only for
a finite number of multi-integers α.

Monomial: It is a polynomial P with all pα = 0 except for a multi-integer β,
for which pβ = 1. This means P = Xβ1

1 · · ·Xβn
n .
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The polynomial ring R[X1, . . . , Xn] (2/3)

Coefficient: the ring R is called the coefficient ring of R[X1, . . . , Xn].

For a polynomial P =
∑

α pαXα, the elements (pα) are the coefficients of P .

Given a multi-integer α, the coefficient pα is the coefficient of (the
monomial) Xα of P .

If pα 6= 0, we say that the monomial Xα occurs in P .

The coefficient p(0,...,0) is called the constant term of P .

Multiplication: PQ =
∑

α∈Nn

 ∑
β,γ∈Nn

β+γ=α

pβqγ

 Xα (notice that PQ = QP ).

Ring structure: With the addition and multiplication above, R[X1, . . . , Xn] is
a commutative ring.
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The polynomial ring R[X1, . . . , Xn] (3/3)

Proposition 1 If R is an integral domain, then R[X1, . . . .Xn] is also
integral.

Proof:By induction on n. When n = 1, it is proven in Lect. II. If this is
true for polynomials in n− 1 variables over R, then let
R′ = R[X1, . . . , Xn−1] in integral.

The case in 1 variable done in Lect. II shows that R′[Xn] is integral. But
R′[Xn] = R[X1, . . . , Xn]. 2

Remark 1: Assume R = k is a field. Then k[X1, . . . , Xn] is a k-vector space.
As a ring, it is also a k-algebra.
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The degree

Given a multi-integer α = (α1, . . . , αn) ∈ Nn, the sum of α is
|α| := α1 + · · ·+ αn

The degree of a monomial Xα is |α|.

The degree of a polynomial P ∈ R[X1, . . . , Xn] is the maximal degree of one
of the monomials occuring in P .

For any polynomials P and Q in R[X1, . . . , Xn], we have:

(i) deg(P + Q) ≤ max{deg(P ) , deg(Q)}, with equality if deg(P ) 6= deg(Q).

(ii) deg(PQ) = deg(P ) + deg(Q) (not true over any ring, but true over any
integral domain)

Remark: Assume R = k is a field, and let L ∈ N∗. Let k[X1, . . . , Xn]<L be
the set of polynomials of degree < L.

This is a sub-vector space of finite dimension (Exercise: what is the dimension ?)
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The degree

By the 2 previous sildes, the following map is k-bilinear:

Mult : k[X1, . . . , Xn]<L1 × k[X1, . . . , Xn]<L2 −→ k[X1, . . . , Xn]<L1+L2

(A, B) 7−→ AB

It follows that k[X1, . . . , Xn] is a graded commutative algebra.

Remark 1: There are several monomials of same degree.

Remark 2: There is no Euclidean division !

Comment: The degree is sometimes called the total degree of a polynomial P .

The partial degree in Xi of P , denoted degXi
(P ) is the maximal exponent

αi of Xi among all the monomials occuring in P .

The partial degree is the degree of the univariate polynomial P seen in
Ri[Xi], whith Ri = k[X1, . . . , Xi−1, Xi+1, . . . , Xn].
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Polynomial function

Here we assume R = k is a field. Let P ∈ k[X1, . . . , Xn] be a polynomial.

Function: The map k
n → k, (x1, . . . , xn) 7→ P (x1, . . . , xn) is the function

defined by P .

A zero of P is a point (x1, . . . , xn) such that P (x1, . . . , xn) = 0.

!!: There are some non-zero polynomials P , that defined the zero function.

Example, even with n = 1: the non-zero polynomial Xp −X ∈ Fp[X] define
the null function of Fp → Fp.

Lemma 1 Assume that k is infinite, and that there are some infinite
subsets S1, . . . , Sn of k such that:

∀ai ∈ Si, f(a1, . . . , an) = 0.

Then f = 0 (the null polynomial).

Proof:When n = 1 it is (Lect. I, Corollary 1). Then by induction on n. 2
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Ideals of k[X1, . . . , Xn]

Definition of an ideal → Lect. II, Definiton 3.

Example: Finitely generated ideals. The subset 〈f1, . . . , fs〉 of k[X1, . . . , Xn]
defined by:

〈f1, . . . , fs〉 :=

{
s∑

i=1

figi, gi ∈ k[X1, . . . , Xn]

}
,

is an ideal of k[X1, . . . , Xn]. Its basis f1, . . . , fs is finite (it s a finitely
generated ideal)

All the ideals of k[X1, . . . , Xn] are finitely generated ! (Hilbert. Proof, next
class).
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A geometric interpretation

Suppose k is infintite (polynomials ⇐⇒ polynomial functions).

Let F := {f1(X1, . . . , Xn) , f2(X1, . . . , Xn) , . . . , fs(X1, . . . , Xn)} a
polynomial system.

A solution of F is a common zero of all the polynomials fi (be careful:
depends on the field extension).

Let x = (x1, . . . , xn) be a solution of F (in a field extension of k).

Then for any polynomial f ∈ 〈f1, . . . , fs〉, x is also a solution of f .

Consequence: Looking for solutions of a polynomial system F is the same as
looking for solution of the ideal 〈F 〉 generated by F .

Comment: It is actually a bit more complicated (problem of multiplicities
especially → Hilbert’s Nullstellensatz).
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Parts II & III: Division for multivariate polynomials

Introduction

Aim: Given f, f1, . . . , fs ∈ k[X1, . . . , Xn], write:

f = a1f1 + · · ·+ asfs + r, (1)

with r have “smaller” monomials than those of f1, . . . , fs.
→ monomial orders

Unicity of the remainder r in Equation (1) ?
→ No in general.
→ Yes if the polynomials (fi)i are ordered.

Ideal Membership: if f ∈ 〈f1, . . . , fs〉, so we have r = 0 ?
→ No in general.
→ Yes if the polynomials (fi)i form a Gröbner basis.
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Part II: Monomial orders

Definition 1 A monomial order (or ordering) ≺ on k[X1, . . . , Xn], is a
relation on the set of monomials Xα, α = (α1, . . . , αn) ∈ Nn, such that:

(i) ≺ is a total order (2 monomials can always be compared: if α 6= β, then
either Xα ≺ Xβ, or Xβ ≺ Xα).

(ii) if Xα ≺ Xβ, then XαXγ ≺ XβXγ , for all γ ∈ Nn.

(iii) ≺ is a well-order: any non-empty subset of monomials has a smallest
element.

Before giving examples, an useful lemma.

Lemma 2 An order relation ≺ on the monomials of k[X1, . . . , Xn] is a
well-order iff every strictly decreasing sequence

Xα(1) � Xα(2) � Xα(3) � · · ·

eventually terminates (⇐⇒ ∃` | α(N) = α(`) ∀N ≥ `).
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Example I: lexicographic orders

Let us order the n variables: Xn ≺ Xn−1 ≺ · · · ≺ X1 (there are n! such
possible orders: Xn−1 ≺ Xn ≺ · · · ≺ X2 ≺ X1 is another one, corresponding
to the permutation (n− 1 , n), while Xn ≺ Xn−1 ≺ · · · ≺ X1 ≺ X2

corresponds to the permutation (1 , 2)).

Definition 2 The lexicographic order ≺lex on the monomials of
k[X1, . . . , Xn] relatively to ≺ is characterized by: For all multi-integers
α 6= β,

Xα ≺lex Xβ ⇔ if ` := min{1 ≤ i ≤ n |αi 6= βi}, then α` < β`.

Example: X2
1X3

2 ≺lex X2
1X4

2 , since (2, 3)− (2, 4) = (0,−1) and −1 < 0

Proposition 2 The lex order is a monomial order.

Proof:(i) and (ii) of Definition 1 are clearly verified, (iii) is proved using
Lemma 2. 2
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Example II: graded lex orders

The next two orders are called degree orders, or they are said to refine the
degree. Recall that for a multi-integer α = (α1, . . . , αn), we have
|α| =

∑n
i=1 αi = deg(Xα).

Definition 3 Given two distinct multi-integers α = (αi)1≤i≤n and
β = (βi)1≤i≤n ∈ Nn, the graded lex order is characterized by

Xα ≺grlex Xβ ⇔ |α| < |β|, or |α| = |β| and α ≺lex β.

Example: X4
1 ≺grlex X3

1X3
2 , while X3

1X3
2 ≺lex X4

1 .

! A grlex order relies on a choice of a lex order ≺lex among the n! possible.
In the example, it is the one for which X2 ≺ X1. !

Proposition 3 The graded lex orders are monomial orders.
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Counter-example: revlex order

We give an example of total order on the monomials, that is not a monomial
order.

Definition 4 Given two distinct multi-integers α and β, the revlex order is
defined by:

Xα ≺revlex Xβ ⇔ if ` := max{1 ≤ i ≤ n | αi 6= βi}, then α` > β`,

Example: X2
2 ≺revlex X2

1X2 ≺revlex X1X2 ≺revlex X2 ≺revlex X3
1

Proposition 4 The revlex order is not a monomial order.

Proof:The strictly decreasing (Xi
2)i≥1 does not terminate. With Lemma 2,

this contradicts Property (iii) of Definition 1. 2
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Example III: graded reverse lex order

Definition 5 Let two distinct multi-integers α = (α1, . . . , αn) and
β = (β1, . . . , βn) in Nn; we define the graded reverse lex order as:

Xα ≺grevlex Xβ ⇔ |α| < |β| or |α| = |β| and α ≺revlex β

Example: X3
3 ≺ X2X

2
3 · · · ≺ X1X2X3 ≺ X2

1X3 · · · ≺ X3
2 · · · ≺ X3

1 .

Proposition 5 The grevlex order is a monomial order.

Proof:It is a degree refinement of the revlex order. This prevents infinite
decreasing sequences as in Proposition 4 2

Other monomial orders: Weighted degree orders, block orders. . .

Remark: A monomial order ≺ defines an order relation on the multi-integer
of Nn (by taking the exponent). We may use freely the notation:

α , β ∈ Nn α ≺ β ⇐⇒ Xα ≺ Xβ .
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Multi-degree. Leading term, monomial, coefficient. . .

Let ≺ be a monomial order on k[X1, . . . , Xn].

Let f ∈ k[X1, . . . , Xn] (as usual given a multi-integer α, Xα = Xα1
1 · · ·Xαn

n ).

Multi-degree: mdeg≺(f) = max≺{α ∈ Nn | the monomial Xα occurs in f}.

Let β = mdeg≺(f) ∈ Nn. We write f =
∑

α∈Nn fαXα.

Leading monomial: lm≺(f) := Xβ .

Leading coefficient: lc≺(f) := pβ .

Leading term: lt≺(f) := pβXβ (= lc≺(f) lm≺(f)).

!!: These 4 definitions depend on the monomial order ≺.

If it is clear what is ≺, we write simply: mdeg(f), lm(f), lc(f), lt(f).
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Multi-degree. Leading term. . . (examples)

f = x2z2 + xy2z + xyz2 + x3 + y3

order ≺ mdeg≺(f) lm≺(f)

1 lex(x, y, z) (3, 0, 0) x3

2 lex(y, x, z) (3, 0, 0) y3

3 grlex(x, y, z) (2, 0, 2) x2z2

4 grlex(z, y, x) (2, 1, 1) z2yx

5 grevlex(x, y, z) (1, 2, 1) xy2z

6 grevlex(z, y, x) (2, 1, 1) z2yx

Exercise: Over k[X1, . . . , Xn], prove that

Xα ≺revlex(X1,...,Xn) Xβ ⇐⇒ Xα �lex(Xn,...,X1) Xβ .
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Part III: The division algorithm

1 variable: The Euclidean algorithm works because a degree is strictly
decreasing.

Multivariate polynomials: the monomial order permits to have a similar
decreasing property.

Let ≺ be a monomial order.

# Inputs: f and [f1, . . . , fs] polynomial in k[X1, . . . , Xn]
(the sequence [f1, . . . , fs] is ordered, it is not a set)

# Outputs: r, [a1 . . . , as] such that (a) f = a1f1 + · · · asfs + r

(b) lm(fi) - m, for any monomial m occuring in r

(c) if aifi 6= 0, then lm(f) < lm(aifi)

When n = s = 1, it is the Euclidean algorithm (by conditions (a) and (b)).
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1: [a1, . . . , as]← [0, . . . , 0]
2: p← f ; r ← 0
3: while (p 6= 0) do
4: i← 1
5: while (i ≤ s and lm(fi) - lm(p)) do: i← i + 1; end while

6: if (i ≤ s) then //lm(fi) divides lm(p)
7: ai ← ai + lt(p)

lt(fi)

8: p← p− lt(p)
lt(fi)

fi

9: else //there is no lm(fi) that divides lm(p)
10: r ← r + lt(p) // the remainder is updated
11: p← p− lt(p)
12: end if

13: end while

14: return [a1, . . . , as], r
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About unicity (1/3)

∆-sets: The exponents of the monomials in r and in a1, . . . , as are
constrained to take certain values, defined by the following ∆-sets .

Let α(i) := mdeg≺(fi) ∈ Nn . We define the following partition of Nn:

∆1 = α(1) + Nn , ∆2 = α(2) + Nn −∆1 , . . . ,

∆i = α(i) + Nn −
(
∪i−1

j=1∆j

)
, . . . , ∆s = α(s) + Nn −

(
∪s−1

j=1∆j

)
.

and finally ∆ = Nn − ∪s
j=1∆j . We have Nn = ∪s

j=1∆j ∪∆

Proposition 6 Any monomial Xα occuring in the remainder r verifies

α ∈ ∆ . If Xβ is a monomial occuring in ai, then β + α(i) ∈ ∆i .

Proof:(On the blackboard. . . ) 2
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About unicity (2/3)

Corollary 1 Let ≺ be a monomial order on a polynomial algebra in n

variables k[X1, . . . , Xn]. Given a polynomial f and a sequence of
polynomials [f1, . . . , fs], the remainder r and the sequence [a1, . . . .as]
computed by the division algorithm, are unique.

Proof:(On the blackboard. . . ) 2

Corollary 2 If we fix the sequence [f1, . . . , fs] as above, then the map:

k[X1, . . . , Xn] → k[X1, . . . , Xn]

f 7→ r,

is well-defined (unicity of the previous Corollary) and linear.

Proof:(On the blackboard. . . ) 2
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About unicity (3/3)

Let I = 〈f1, . . . , fs〉 be the ideal generated by the polynomial system
(fi)1≤i≤s (as in the previous slide).

Aim: Like for the Euclidean division, we would like a linear map

k[X1, . . . , Xn]/I −→ k[X1, . . . , Xn] (this map is not

f + I 7−→ r. correct in general!)

The ideal I would be the kernel of the map of Corollary 2.

But it doesn’t work in general: the remainder r depends on the sequence
[f1, . . . , fs] and not on the ideal 〈f1, . . . , fs〉 (easy counter-examples).

Also, if r = 0 then f ∈ I, but there are some g ∈ I whose division by
[f1, . . . , fs] does not give a remainder r = 0.

However, if f1, . . . , fs is a Gröbner basis, it is OK. . .
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