MMA 数学特論 I

Algorithms for polynomial systems: elimination & Gröbner bases 多項式系のアルゴリズム: グレブナー基底 & 消去法

Lecture II: Univariate polynomials, (polynomials in one variable)

April, 22th 2010. Part I: Generalities Part II: The quotient ring $\mathbb{k}[X]/\langle P \rangle$ Part III: When $\mathbb{k}[X]/\langle P \rangle$ is it a field ? **May, 6th 2010.** Part IV: Algebraic numbers

Part I: Generalities

The polynomial algebra k[*X*]

 $P \in \mathbb{k}[X]$ written as: $P = \sum_{i=0}^{n} p_i X^i$, with $p_i \in \mathbb{k}$. The largest integer *n* such that $p_n \neq 0$ is called the degree of *P*. Then, the leading coefficient of *P* is p_n : $\text{LC}(P) = p_n$. Let $Q = \sum_{i=0}^{m} q_i X^i$ be a polynomial of degree $m \leq n$. Addition: $P + Q = \sum$ *m i*=0 $(q_i + p_i)X^i +$ $\sqrt{2}$ \sum *n i*=*m*+1 $p_i X^i$] appears only if *m<n* Multiplication: $P Q =$ *m* \sum +*n* $\sum_{i=0}^{n+n}$ \sum $p_k q_\ell$ $\sum_{i=1}^{n}$ *Xⁱ*

 $k+\ell = i$

 \Leftrightarrow LC(*PQ*) = $p_n q_m$ = LC(*P*)LC(*Q*) which is not zero (true over any field).

The ring k[*X*]

The following three points are easy to check:

- 1. $PQ = QP$ (the multiplication is commutative)
- 2. $(PQ)R = P(QR)$ (the multiplication is associative)
- 3. $P(Q + R) = PQ + PR$ (the multiplication is distributive with respect to the addition)
- \Rightarrow k[X] is a commutative ring.

Definition 1 *A* ring *R is a set endowed with an addition* + *so that* $(R,+)$ *is a commutative group, and a multiplication* \times *, with a* unit element 1_A *, which verifies points 2 and 3 above.*

If \times *verifies point 1 as well, then R is a* commutative ring.

The degree

Proposition 1 *For any polynomials P and Q in* k[*X*]*, we have:*

- (*i*) deg($P + Q$) \leq max{deg(P), deg(Q)}, with *equality* if deg(P) \neq deg(Q). *(true over any ring, not only fields* k*).*
- *(ii)* deg(PQ) = deg(P) + deg(Q) *(not true over any ring, but true over any* integral domain *→ Definition 7)*

Proof:Exercise. □

Example: $P = X^2 + X$ and $Q = -X^2 + 1$, then $\deg(P + Q) < 2$.

Consequence: Let $L \in \mathbb{N}^*$ and let $\mathbb{k}[X]_{< L} = \{P \in \mathbb{k}[X] \mid \deg(P) < L\}.$

This a k-vector space of dimension *L*, with monomial basis *{*1*, X, X², . . . , X^{L−1}</sub>} (<i>Comment:* there are many other bases of $\mathbb{k}[X]_{< L}$!).

Lagrange bases of $\mathbb{K}[X]_{\leq L}$

Nodes: Let a_1, \ldots, a_L be *L* distinct points in \mathbb{k} (assume $L < |\mathbb{k}|$, if \mathbb{k} is finite). Idempotents: For $1 \leq i \leq L$, let $\ell_i(X) := \prod$ $j \neq i$ *X−a^j ai−a^j* .

• $\ell_i(a_j) = 0$ if $j \neq i$, and $\ell_i(a_i) = 1$.

•
$$
\deg(\ell_i) = L - 1
$$

Lagrange interpolation formula: For any $P \in \mathbb{k}[X]_{\leq L}$, we have $P(X) = \sum_{i=1}^{L} P(a_i) \ell_i(X)$. Indeed, let $Q(X) = P(X) - \sum_{i=1}^{L} P(a_i) \ell_i(X)$: $Q(a_i) = P(a_i) - P(a_1)\ell_1(a_i) - P(a_2)\ell_2(a_i) - \cdots - P(a_i)\ell_i(a_i) - \cdots - P(a_L)\ell_L(a_i)$ $P(a_i)$ 0 - 0 - $P(a_i)$ 1 - 0 - 0 $= 0.$

⇒ Q is of degree *L −* 1 and has *L* roots, hence *Q* = 0 (Corollary 1, Lect. I). Consequences: $1 = \ell_1(X) + \ell_2(X) + \cdots + \ell_L(X)$. $\{\ell_1(X), \ldots, \ell_L(X)\}\$ generates $\mathbb{K}[X]_{\leq L}$ as a vector space, so it is a basis.

The graded commutative algebra k[*X*]

Consequence: ... The multiplication in $\mathbb{k}[X]$ induces a k-bilinear map of $\Bbbk[X]$:

$$
Mult: \mathbb{k}[X]_{< L_1} \times \mathbb{k}[X]_{< L_2} \longrightarrow \mathbb{k}[X]_{< L_1 + L_2}
$$

$$
(A, B) \longmapsto AB
$$

We say that $\mathbb{k}[X]$ is a graded ring.

Also $\mathbb{k}[X]$ is a k-vector space (of infinite dimension...) \Rightarrow it is an algebra over k.

⇒ Finally, k[*X*] is a ring, a k-vector space, graded, commutative: it is a graded commutative algebra over k.

Definition 2 *An* algebra *A over a field k is a ring that is a k-vector space.*

Part II: The quotient ring $\mathbb{k}[X]/\langle P \rangle$ **The remainder map**

Let $P \in \mathbb{k}[X]$ be a non-constant polynomial of degree $L \geq 1$. For any $A \in \mathbb{K}[X]$, let $A = BP + R$ be the Euclidean division of A by P. The map ϕ_P is well-defined, because the remainder R is uniquely determined by *A* and *P*.

$$
\begin{array}{rcl} \phi_P & : & \Bbbk[X] & \longrightarrow & \Bbbk[X]_{< L} \\ & A & \longmapsto & R, \end{array}
$$

Easy to check: For any $A_1, A_2 \in \mathbb{k}[X]$ we have: $\phi_P(A_1 + A_2) = \phi_P(A_1) + \phi_P(A_2).$

For any $\lambda \in \mathbb{k}$: $\phi_P(\lambda A_1) = \lambda \phi_P(A_1)$.

 \Rightarrow ϕ_P is a linear map between the k-vector spaces $\mathbb{k}[X]$ and $\mathbb{k}[X]_{\leq L}$.

Kernel of the remainder map

$$
\begin{aligned} \ker \phi_P &= \{ A \in \mathbb{K}[X] \mid \phi_P(A) = 0 \} \\ &= \{ A \in \mathbb{K}[X] \mid P \mid A, \quad \text{``}P \text{ divides } A\text{''} \}. \end{aligned}
$$

Hence ker $\phi_P = \langle P \rangle$ (the principal ideal generated by P). Notation: For $a \in \mathbb{k}[X]$ let $a + \langle P \rangle = \{a + QP \mid Q \in \mathbb{k}[X]\} \subset \mathbb{k}[X]$. (*Comment:* sometimes denoted *a* mod *P*, or even $a\langle P\rangle \dots$)

Definition 3 *An ideal I of a commutative ring A is a subset which verifies:*

- *1. I is a subgroup of A for the addition.*
- 2. *for all* $a \in A$ *and* $b \in I$ *, we have* $ab \in A$

An ideal I is said to be principal if $I = \langle b \rangle$ *(where* $\langle b \rangle := \{ ab \mid a \in A \}$ *).*

A quotient algebra

Let $\mathbb{k}[X]/\langle P \rangle := \{a + \langle P \rangle \mid a \in \mathbb{k}[X]\}.$

Lemma 1 k[X]/ $\langle P \rangle$ *is a* k-algebra (a k-vector space and a ring).

PROOF:Let $\langle P \rangle \in \mathbb{K}[X]/\langle P \rangle$ be the zero element.

Addition: $(a + \langle P \rangle) + (b + \langle P \rangle) := (a + b) + \langle P \rangle$

Multiplication: $(a + \langle P \rangle) \cdot (b + \langle P \rangle) := ab + \langle P \rangle$. (indeed: $(a + \langle P \rangle) \cdot (b + \langle P \rangle) = ab + (a + b) \langle P \rangle + \langle P^2 \rangle$, but $(a + b) \langle P \rangle + \langle P^2 \rangle \subset \langle P \rangle$. Easy to check: with this addition and multiplication, $\mathbb{k}[X]/\langle P \rangle$ is a ring (Cf. Definition 1)

Finally, for $\lambda \in \mathbb{k}^*$, we have: $\lambda(a + \langle P \rangle) = \lambda a + \langle P \rangle$, because $\langle \lambda P \rangle = \langle P \rangle$.

This defines on $\mathbb{k}[X]/\langle P \rangle$ a structure of vector space over k.

By Definition 2 this shows that $\mathbb{k}[X]/\langle P \rangle$ is an algebra. \Box

An isomorphism

For two polynomials $a, b \in \mathbb{k}[X]$, if $a - b \in \langle P \rangle = \ker \phi_P$ then: $\phi_P(a-b) = 0 \Rightarrow \phi_P(a) = \phi_P(b) \Rightarrow \forall b \in a + \langle P \rangle, \ \phi_P(b) = \phi_P(a).$ Then $\bar{\phi}_P(a + \langle P \rangle) := \phi_P(a)$ is well-defined.

$$
\begin{array}{cccc}\n\mathbb{k}[X] & \xrightarrow{\mod P} & \mathbb{k}[X]/\langle P \rangle & \xrightarrow{\bar{\phi}_P} & \mathbb{k}[X]_{< L} \\
a & \mapsto & a + \langle P \rangle & \mapsto & \bar{\phi}_P(a + \langle P \rangle).\n\end{array}
$$

By definition : $\phi_P = \bar{\phi}_P \circ \text{mod} P$. \Rightarrow ker $\bar{\phi}_P = \langle P \rangle$ which is zero in $\mathbb{k}[X]/\langle P \rangle$. $\Rightarrow \bar{\phi}_P$ is an isomorphism of vector spaces between $\mathbb{k}[X]/\langle P \rangle$ and $\mathbb{k}[X]_{\leq L}$. \Rightarrow dim_k k|X|/ $\langle P \rangle = L$.

Comment: $\mathbb{k}[X]_{< L}$ is not a subring of $\mathbb{k}[X]$, because there exists $P_1, P_2 \in \mathbb{k}[X]_{< L}$, such that $\deg(P_1P_2) \geq L$ (so that $P_1P_2 \notin \mathbb{k}[X]_{\leq L}$). But we can transport the multiplication of $\mathbb{k}[X]/\langle P \rangle$ to $\mathbb{k}[X]_{\leq L}$ by this linear isomorphism: $P_1 \cdot P_2 := \bar{\phi}_P(P_1 P_2)$. Then, $\bar{\phi}_P$ is a ring homomorphism, and also an isomorphism.

Abstraction to general rings

Let *A* be a commutative ring and *I* an ideal of *A*.

The *quotient* ring *A/I* is a ring defined in the following way:

Addition: $(a + I) + (b + I) = (a + b) + I$.

Multiplication: $(a+I)(b+I) = ab + (a+b)I + I^2 \subset (ab) + I$.

Let *B* be another ring, and $\phi: A \rightarrow B$ a ring homomorphism:

1.
$$
\phi(0) = 0
$$
, $\phi(1_A) = 1_B$ and for all $a_1, a_2 \in A$:

2.
$$
\phi(a_1 + a_2) = \phi(a_1) + \phi(a_2)
$$
 and $\phi(a_1 a_2) = \phi(a_1)\phi(a_2)$,

First isomorphism theorem: As before, $I := \ker \phi$ is an ideal of A, and $\forall a' \in a + I, \, \phi(a') = \phi(a).$

The map $\bar{\phi}(a+I) := \phi(a)$ is well-defined and verifies, $\phi = \bar{\phi} \circ \text{mod} I$:

$$
A \xrightarrow{\mod I} A/I \xrightarrow{\bar{\phi}} B, \text{ and } \bar{\phi} \text{ is one-one}
$$

Another very similar ring: $\mathbb{Z}(1/2)$

 \mathbb{Z} and $\mathbb{k}[X]$ are 2 rings with an Euclidean division: they are Euclidean rings. Let $n \in \mathbb{N}$ and let $\phi_n : \mathbb{Z} \to \{0, 1, \ldots, n-1\},\$ $r \mapsto r \mod n$ (euclidean remainder of *r* by *n*).

As usual: $\phi_n(x + y) = \phi_n(\phi_n(x) + \phi_n(y)) = x + y \mod n$. $\phi_n(xy) = \phi_n(\phi_n(x)\phi_n(y)) = xy \mod n.$

/! \langle {0, . . . , *n* − 1} has no structure: no addition, multiplication...

We transport the addition and multiplication of \mathbb{Z} to $\{0, \ldots, n-1\}$ by the map ϕ_n : ϕ_n becomes then a ring homomorphism that is onto.

Definition 4 *A principal ideal domain (PID for short) is an integral domain in which each ideal is principal.*

Proposition 2 *Any Euclidean ring is a PID (but some PID are not Euclidean).*

Another very similar ring: $\mathbb{Z}(2/2)$

Kernel of the map ϕ_n : ker $\phi_n = \{r \in \mathbb{Z} \mid n|r$ "*r* divides n " $\} = n\mathbb{Z}$. This is an ideal of Z. The quotient ring is denoted Z*/n*Z. An element of $\mathbb{Z}/n\mathbb{Z}$ is denoted $a + n\mathbb{Z}$ (= { $a + rn \mid r \in \mathbb{Z}$ } $\subset \mathbb{Z}$). The addition and multiplication of $\mathbb{Z}/n\mathbb{Z}$ are defined naturally. If $a' \in a + n\mathbb{Z}$, then $\phi_n(a') = \phi_n(a)$, so the map

$$
\overline{\phi}_n : \mathbb{Z}/n\mathbb{Z} \rightarrow \{0, \dots, n-1\},
$$

$$
a + n\mathbb{Z} \mapsto \phi_n(a)
$$

is well-defined.

The first isomorphism theorem is written in this case:

 \mathbb{Z} mod *n −−−−→* Z*/n*Z $\frac{\bar{\phi}_n}{\rightarrow} \{0, \ldots, n-1\}$, with $\phi_n = \bar{\phi}_n \circ \text{mod } n$, and $\bar{\phi}_n$ is one-one

Part III: When $\mathbb{k}[X]/\langle P \rangle$ is it a field ? **Bézout identity**

Let *a* and *b* be two polynomials of $\mathbb{k}[X]$; denote $\gcd(a, b) = g$. This means: $\langle a, b \rangle = \langle g \rangle$, so there exists, $u, v \in \mathbb{R}[X]$ such that

 $au + bv = q$ *(Bézout identity)*

Euclid's Lemma: Let p and x be 2 relatively prime $(\iff \gcd(p, x) = 1)$ polynomials in $\mathbb{k}[X]$, and *y* another one. Assume that: $p|xy$ (*p* divides xy). *Then* $p|y$ (*p divides y*).

PROOF: The Bézout identity of *p* and *x* is here : $up + vx = 1$ for 2 polynomials $u, v \in \mathbb{k}[X]$.

So $upy + vxy = y$ and since $p|xy$, there exists p' such that $pp' = xy$: \Rightarrow $upp' = y \Rightarrow p(uy + vp') = y$, so $p|y$.

Prime ideal and irreducible element

Definition 5 *A polynomial* $P \in \mathbb{K}[X]$ *is* irreducible *if it is non-constant* $(\iff \deg(P) > 0), \text{ and if we have:}$

 $P = P_1 P_2$, *then* P_1 *or* $P_2 \in \mathbb{k}$ ($\iff \deg(P_1)$ *or* $\deg(P_2) = 0$).

Comment: If *P* is an irreducible polynomial, then *P* has no root in k (indeed if $\alpha \in \mathbb{R}$ is such a root, then $X - \alpha$ is a factor in $\mathbb{K}[X]$ of P, contradiction). The converse is false: $X^4 - X^2 + 2$ has no root in k, but factorizes into $(X^2 + 1)(X^2 - 2).$

Proposition 3 *If P is an irreducible polynomial, then the ideal it generates* $\langle P \rangle$ *in* $\mathbb{K}[X]$ *, is a* prime ideal.

Definition 6 An ideal *I* of a ring A is prime if for all $x, y \in A$ such that $xy \in I$, then $x \in I$ or $y \in I$.

Field $\mathbb{k}[X]/\langle P \rangle$

PROOF:(of Proposition 3) Let $x, y \in \mathbb{k}[X]$ such that $xy \in \langle P \rangle$. This is equivalent to $p|xy$. By Euclid's Lemma, $p|x$ or $p|y$; so x or $y \in \langle P \rangle$. This implies: if *P* is irreducible, then $\mathbb{k}[X]/\langle P \rangle$ is an integral domain. There is actually a stronger result:

Proposition 4 If P is an irreducible polynomial, then $\mathbb{k}[X]/\langle P \rangle$ is a field

PROOF:Given $a + \langle P \rangle \neq 0$ in $\mathbb{k}[X]/\langle P \rangle$ ($\iff a \notin \langle P \rangle$), what is its inverse ? (1) If $a \in \mathbb{k}^*$, then $(a + \langle P \rangle)(\frac{1}{a} + \langle P \rangle) = 1 + \langle P \rangle$. (2) If $a \notin \mathbb{k}$, $(\iff \deg(a) > 0)$, then *a* and *P* are relatively prime (since *P* is supposed irreducible), and the Bézout identity holds: $au + Pv = 1$. It comes: $(a + \langle P \rangle)(u + \langle P \rangle) = 1 + \langle P \rangle$.

Definition 7 *A ring A is an* integral domain *if* $xy = 0 \Rightarrow x = 0$ *or* $y = 0$ *.* **Lemma 2** *If I is a prime ideal, then A/I is an integral domain.*

Computing Bézout identity

Extended Euclidean Algorithm

Inputs: $f, g \in \mathbb{k}[X]$ with $f \neq 0$ and $\deg(f) \geq \deg(g)$ $\#$ Outputs: $\ell \in \mathbb{N}$, $r_{\ell}, s_{\ell}, t_{\ell} \in \mathbb{K}[X]$, with $r_{\ell} = \gcd(f, g)$ and $r_{\ell} = fs_{\ell} + gt_{\ell}$. 1: $r_0 \leftarrow f$, $s_0 \leftarrow 1$, $t_0 \leftarrow 0$ $2: r_1 \leftarrow g, s_1 \leftarrow 0, t_1 \leftarrow 1$ $3: i \leftarrow 1$ $4\colon \mathtt{while}\ (r_i\neq 0)$ do 5: (q_i, r_{i+1}) ← EuclideanDivision (r_{i-1}, r_i) //*so that:* $r_{i-1} = q_i r_i + r_{i+1}$ 6: s_{i+1} ← s_{i-1} − $q_i s_i$ 7: t_{i+1} ← t_{i-1} *−* $q_i t_i$ 8: $i \leftarrow i+1$ end while $9: \ell \leftarrow i-1$ 10: return ℓ , r_{ℓ} , s_{ℓ} , t_{ℓ} .

Termination

Does the algorithm terminate ? Yes.

We must show that the while loop at Step 4 exits after a finite number of iterations. For all $i = 1, 2, \ldots$ by Step 5, $r_{i-1} = q_i r_i + r_{i+1}$, with $r_{i-1} \neq 0$ and $\deg(r_{i-1}) < \deg(r_i)$ or $r_{i-1} = 0$.

Starting with $r_0 = f$, and $r_1 = g$, the sequence $(\deg(r_i))_{i \geq 0}$ is strictly decreasing, and then there exists $i \geq 1$ such that $r_i = 0$. Then the while loop does a finite number of iterations.

Actually, this shows that the number of iterations is at most $deg(r_1) = deg(g).$

Comment: If we replace $\mathbb{k}[X]$ by \mathbb{Z} , and deg(.) by the absolute value $| \cdot |$, the algorithm and the proof of termination are the same.

Correctness

Is the algorithm correct ? Or is $r_\ell = fs_\ell + gt_\ell$ the Bézout identity ?

For $i = 0, \ldots, \ell$, the equality $r_i = fs_i + gt_i$ (*)*i* holds.

Proof by induction. By the initialization step, $r_0 = f$ and $s_0 f + t_0 g = f$. Then if we assume Equality $(*)_j$ true for $j = 0, \ldots, i$ then by Steps 5,6 and 7:

$$
r_{i+1} = r_{i-1} - r_i q_i = (s_{i-1}f + t_{i-1}g) - (s_i f + t_i g)q_i
$$

=
$$
(s_{i-1} - q_i s_i)f + (t_{i-1} - q_i t_i)g = s_{i+1}f + t_{i+1}g,
$$

which is $(*)_{i+1}$.

Finally, if $r_i = 0$, then we have $r_{i-1} = \gcd(f, g)$ (this is the standard Euclidean algorithm) and Step 9 denotes $r_\ell = \gcd(f, g)$. So $r_\ell = fs_\ell + gt_\ell$

Comment: This proof is correct if we exchange $\mathbb{k}[X]$ by \mathbb{Z} (or any Euclidean ring).

Example over Z

 $f = 126$ and $g = 35$.

We have $r_5 = 0$ so $\ell = 4$ and $gcd(f, g) = r_4 = 7$ and the Bézout identity is:

$$
7 = 2.126 - 7.35
$$

Example over k[*X*]

 $f = 18X^3 - 42X^2 + 30X - 6$ and $g = -12X^2 + 10X - 2$

Here $r_3 = 0$ so $\ell = 2$ and $gcd(f, g) = r_\ell = r_2 = \frac{9}{2}$ $\frac{9}{2}X-\frac{3}{2}$ $\frac{3}{2}$. The Bézout identity:

$$
\frac{9}{2}X - \frac{3}{2} = 1.(18X^3 - 42X^2 + 30X - 6) + \left(\frac{3}{2}X - \frac{9}{4}\right)(-12X^2 + 10X - 2)
$$

Application of the EEA, 1

Linear Diophantine equations : What are the $x, y \in \mathbb{Z}$ such that $6x - 8y = 1$? $gcd(6, 8) = 2 \Rightarrow (8, 6) = \langle 2 \rangle$. But $1 \notin \langle 2 \rangle$, so there is no solutions in $\mathbb{Z} \times \mathbb{Z}$. What about $6x - 8y = 4$? We can divide by the gcd : $3x - 4y = 2$ This time, $gcd(3, 4) = 1$, so $2 \in \langle 1 \rangle = \mathbb{Z}$ and there are some solutions. Compute the Bézout identity by the Extended Euclidean Algorithm (EEA):

 $3 \cdot (-1) + (-4) \cdot (-1) = 1 \Rightarrow 3 \cdot (-2) + (-4) \cdot (-2) = 2.$

 \Rightarrow this gives one solution $(x, y) = (-2, -2)$.

All solutions are $(x, y) = (-2 + 4a, -2 + 3a), a \in \mathbb{Z}$.

Application of the EEA, 2

Chinese remaindering theorem : If $n, m \in \mathbb{Z}$ are coprime $\langle n, m \rangle = \langle 1 \rangle$ There is an isomorphism between the two following rings:

 $\mathbb{Z}/mn\mathbb{Z} \simeq \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$ $a \mod mn \rightarrow a \mod n, a \mod m$ $(bun + avm) \mod mn \leftarrow a \mod n, b \mod m$ Bézout identity: $u_n + v_m = 1$

Similarly, given 2 coprime polynomials $A, B \in \mathbb{k}[X]$ $\langle A, B \rangle = \langle 1 \rangle$ There is an isomorphism between the two following rings:

 $k[X]/\langle AB \rangle \simeq k[X]/\langle A \rangle \times k[X]/\langle B \rangle$ $P \mod AB \rightarrow P \mod A$, $P \mod B$ $(QUA + PVB) \text{ mod } AB \leftarrow P \text{ mod } A, Q \text{ mod } B$ Bézout identity: $UP + VQ = 1$

Part IV: Algebraic numbers Back to the rationals: $\mathbb{k} = \mathbb{Q}$

Let $\alpha \in \mathbb{C}$, and let $\mathbb{Q}[\alpha] := \{P(\alpha) \mid P \in \mathbb{Q}[X]\}.$ This is a subring of \mathbb{C} . Consider $\phi_{\alpha} : \mathbb{Q}[X] \to \mathbb{Q}[\alpha], P(X) \mapsto P(\alpha)$.

This a ring homomorphism, that is onto by definition of $\mathbb{Q}[\alpha]$

Let
$$
\text{ker } \phi_{\alpha} := \{ P \in \mathbb{Q}[X] | P(\alpha) = 0 \}
$$
 be its kernel.

1st case, ker $\phi_{\alpha} = \{0\}$: then α is a transcendental number.

2nd case, ker $\phi_{\alpha} \neq \{0\}$, then α is an algebraic number.

By the first isomorphism theorem $\mathbb{Q}[X]/\ker \phi_\alpha \simeq \mathbb{Q}[\alpha]$ as rings.

Since $\mathbb{Q}[\alpha]$ is an integral domain, then ker ϕ_{α} must be a prime ideal (Lemma 2). Assume that α is algebraic. Since ker $\phi_{\alpha} \neq \{0\}$, there exists an unique

irreducible monic polynomial *P* such that $\langle P \rangle = \ker \phi_{\alpha}$.

Definition 8 *P is called the* minimal polynomial *of* α *.*

The field embedding problem

 $\langle P \rangle$ generates the ideal of vanishing polynomial at *α*.

 $\mathbb{Q}[X]/\langle P \rangle$ is a field \Rightarrow the ring $\mathbb{Q}[\alpha]$ also, denoted often $\mathbb{Q}(\alpha)$.

Let β be another root of *P* (α and β are conjugate).

Then $\mathbb{Q}[\beta]$ is a field isomorphic to $\mathbb{Q}[X]/\langle P \rangle$.

An embedding $\sigma : \mathbb{Q}[X]/\langle P \rangle \hookrightarrow \mathbb{C}$ is an injective homomorphism, that induces the identity on $\mathbb{Q}(\sigma(x) = x \text{ for all } x \in \mathbb{Q}).$

For each root $\alpha_1, \ldots, \alpha_n$ of P, there is an embedding σ_i of $\mathbb{Q}[X]/\langle P \rangle$ whose image is $\mathbb{Q}(\alpha_i) \subset \mathbb{C}$.

Embedding problem: Among the fields $\mathbb{Q}(\alpha_i)$, $i=1,\ldots,n$, which fields $\mathbb{Q}[X]/\langle P \rangle$ is it representing ? (\iff which embedding $\sigma_1, \ldots, \sigma_n$ choosing ?) No answer, if necessary, numerical approximations of the roots of *P* can be done then it is satisfactory.

Computation in $\mathbb{Q}(\alpha)$ (1/2)

Because $\{1, X, \ldots, X^{n-1}\}$ is a basis of the Q-vector space $\mathbb{Q}[X]/\langle P \rangle$, and because $\mathbb{Q}[X]/\langle P \rangle \to \mathbb{Q}[\alpha], X \mapsto \alpha$ is an isomorphism, we deduce that $\{1, \alpha, \alpha^2, \dots, \alpha^{n-1}\}$ is a basis of $\mathbb{Q}(\alpha)$.

To compute in $\mathbb{Q}(\alpha)$ we compute in $\mathbb{Q}[X]/\langle P \rangle$ Let $\beta, \gamma \in \mathbb{Q}(\alpha)$. $\beta = \beta_0.1 + \beta_1.\alpha + \beta_2\alpha^2 + \cdots + \beta_{n-1}\alpha^{n-1}$, with $\beta_i \in \mathbb{Q}$. $\gamma = \gamma_0.1 + \gamma_1.\alpha + \gamma_2\alpha^2 + \cdots + \gamma_{n-1}\alpha^{n-1}$, with $\gamma_i \in \mathbb{Q}$. Let $P_{\beta}(X) = \sum_{i=0}^{n-1} \beta_i X^i \in \mathbb{Q}[X]$ and $P_{\gamma}(X) = \sum_{i=0}^{n-1} \gamma_i X^i \in \mathbb{Q}[X]$. We have $P_\beta(\alpha) = \beta$ and $P_\gamma(\alpha) = \gamma$. Addition: $\beta + \gamma$ is equal to $P_{\beta}(\alpha) + P_{\gamma}(\alpha)$, so $P_{\beta+\gamma} = P_{\beta} + P_{\gamma}$. Multiplication: $\beta \cdot \gamma$ is equal to $P_{\beta}(\alpha) \cdot P_{\gamma}(\alpha)$, so $P_{\beta \cdot \gamma} = P_{\beta} \cdot P_{\gamma} \mod P$.

Computation in $\mathbb{Q}(\alpha)$ (2/2)

Division: Assume that $\beta \neq 0$. How to compute β^{-1} ?

 \iff How to compute $(P_\beta \mod P)^{-1}$ in the field $\mathbb{Q}[X]/\langle P \rangle$?

By Proposition 4, we compute the Bézout identity $uP_\beta + vP = 1$ using the EEA.

And $(P_\beta \text{ mod } P)^{-1} = u \text{ mod } P$ in $\mathbb{Q}[X]/\langle P \rangle$.

So $P_{\beta^{-1}} = u \Rightarrow \beta^{-1} = u(\alpha) = P_{\beta^{-1}}(\alpha)$.

Effective primitive element theorem (1/2)

Let k be a finite extension of \mathbb{Q} , and let *n* the degree [k : \mathbb{Q}] of the extension. **Theorem 1** *There exists exactly n distinct embeddings of* k*.* PROOF:*(No proof, admitted. It is not the purpose of this class.)* **Corollary 1 (Theorem of the primitive element)** *There exists* $\alpha \in \mathbb{C}$ *such that* $\mathbb{k} = \mathbb{Q}(\alpha)$ *. Such an* α *is called a primitive element of* \mathbb{k} *over* \mathbb{Q} *.* PROOF: (On the blackboard...)

Definition 9 *A* field \mathbb{L} *is an* extension of a field \mathbb{K} *if* $\mathbb{K} \subset \mathbb{L}$ *. The field* \mathbb{L} *is then a* K*-vector space, and we say that* L*|*K *is a field extension.*

If the dimension of L *over* K *is* finite*, then the extension* L*|*K *is said finite. This dimension is called the* degree *of the extension* L*|*K*, denoted* [L : K]*.*

Effective primitive element theorem (2/2)

How to compute a primitive element *α* ?

Answer: There are a lot of possibilities $! \Rightarrow$ choose one at random...

In practice, k is given by some algebraic elements $\alpha_1, \ldots, \alpha_t$ so that $\mathbb{k} = \mathbb{Q}(\alpha_1, \dots, \alpha_t)$. We assume that

Today, we assume $t = 2$, so $\mathbb{k} = \mathbb{Q}(\alpha_1, \alpha_2)$, and we know the degree $[\mathbb{k} : \mathbb{Q}] := n$

Proposition 5 *Let* $0 < \epsilon < 1$ *be fixed. Let* $M \in \mathbb{N}$ *, verifying* $M \ge \frac{n(n-1)}{4\epsilon}$ $\frac{n-1)}{4\epsilon}$. *Let* $c \in [-M; M]$ *be an integer chosen at random.*

Then $\alpha_1 + c\alpha_2$ *is* not *a primitive element for* \Bbbk ($\iff \mathbb{Q}(\alpha_1 + c\alpha_2) \subsetneq \Bbbk$) *with probability* $\leq \epsilon$.

 $PROOF: (On the blackboard...)$