MMA 数学特論 I

Algorithms for polynomial systems: elimination & Gröbner bases

多項式系のアルゴリズム: グレブナー基底 & 消去法

Lecture II: Univariate polynomials, (polynomials in one variable)

April, 22th 2010. Part I: Generalities

Part II: The quotient ring $k[X]/\langle P \rangle$

Part III: When $\mathbb{k}[X]/\langle P \rangle$ is it a field?

May, 6th 2010. Part IV: Algebraic numbers

Part I: Generalities

The polynomial algebra $\mathbb{k}[X]$

 $P \in \mathbb{k}[X]$ written as: $P = \sum_{i=0}^{n} p_i X^i$, with $p_i \in \mathbb{k}$.

The largest integer n such that $p_n \neq 0$ is called the degree of P.

Then, the leading coefficient of P is p_n : $LC(P) = p_n$.

Let $Q = \sum_{i=0}^{m} q_i X^i$ be a polynomial of degree $m \leq n$.

Addition:
$$P + Q = \sum_{i=0}^{m} (q_i + p_i) X^i + \left[\sum_{i=m+1}^{n} p_i X^i \right]_{\text{appears only if } m < n}$$

Multiplication:
$$PQ = \sum_{i=0}^{m+n} \left(\sum_{k+\ell=i} p_k q_\ell \right) X^i$$

 $\Leftrightarrow LC(PQ) = p_n q_m = LC(P)LC(Q)$ which is not zero (true over any field).

The ring k[X]

The following three points are easy to check:

- 1. PQ = QP (the multiplication is commutative)
- 2. (PQ)R = P(QR) (the multiplication is associative)
- 3. P(Q+R) = PQ + PR (the multiplication is distributive with respect to the addition)
- $\Rightarrow k[X]$ is a commutative ring.

Definition 1 A ring R is a set endowed with an addition + so that (R, +) is a commutative group, and a multiplication \times , with a unit element 1_A , which verifies points 2 and 3 above.

If \times verifies point 1 as well, then R is a commutative ring.

The degree

Proposition 1 For any polynomials P and Q in k[X], we have:

- (i) $\deg(P+Q) \leq \max\{\deg(P), \deg(Q)\}$, with equality if $\deg(P) \neq \deg(Q)$. (true over any ring, not only fields \mathbb{k}).
- (ii) deg(PQ) = deg(P) + deg(Q) (not true over any ring, but true over any integral domain \rightarrow Definition 7)

Proof:Exercise.

Example: $P = X^2 + X$ and $Q = -X^2 + 1$, then deg(P + Q) < 2.

Consequence: Let $L \in \mathbb{N}^*$ and let $\mathbb{k}[X]_{\leq L} = \{P \in \mathbb{k}[X] \mid \deg(P) \leq L\}.$

This a k-vector space of dimension L, with monomial basis $\{1, X, X^2, \dots, X^{L-1}\}$ (Comment: there are many other bases of $k[X]_{\leq L}$!).

Lagrange bases of $k[X]_{\leq L}$

Nodes: Let a_1, \ldots, a_L be L distinct points in k (assume L < |k|, if k is finite).

Idempotents: For $1 \leq i \leq L$, let $\ell_i(X) := \prod_{j \neq i} \frac{X - a_j}{a_i - a_j}$.

- $\ell_i(a_j) = 0$ if $j \neq i$, and $\ell_i(a_i) = 1$.
- $\deg(\ell_i) = L 1$

Lagrange interpolation formula: For any $P \in \mathbb{k}[X]_{\leq L}$, we have

$$P(X) = \sum_{i=1}^{L} P(a_i) \ell_i(X)$$
. Indeed, let $Q(X) = P(X) - \sum_{i=1}^{L} P(a_i) \ell_i(X)$:

$$Q(a_i) = P(a_i) - P(a_1)\ell_1(a_i) - P(a_2)\ell_2(a_i) - \dots - P(a_i)\ell_i(a_i) - \dots - P(a_L)\ell_L(a_i)$$

= $P(a_i) - 0 - 0 - \dots - P(a_i)1 - \dots - 0$

$$= 0.$$

 $\Rightarrow Q$ is of degree L-1 and has L roots, hence Q=0 (Corollary 1, Lect. I).

Consequences: $1 = \ell_1(X) + \ell_2(X) + \cdots + \ell_L(X)$.

 $\{\ell_1(X), \ldots, \ell_L(X)\}$ generates $k[X]_{\leq L}$ as a vector space, so it is a basis.

The graded commutative algebra k[X]

Consequence: ... The multiplication in $\mathbb{k}[X]$ induces a \mathbb{k} -bilinear map of $\mathbb{k}[X]$:

$$Mult: \ \mathbb{k}[X]_{\leq L_1} \times \mathbb{k}[X]_{\leq L_2} \longrightarrow \mathbb{k}[X]_{\leq L_1 + L_2}$$

$$(A, B) \longmapsto AB$$

We say that $\mathbb{k}[X]$ is a graded ring.

Also k[X] is a k-vector space (of infinite dimension...) \Rightarrow it is an algebra over k.

 \Rightarrow Finally, k[X] is a ring, a k-vector space, graded, commutative: it is a graded commutative algebra over k.

Definition 2 An algebra A over a field k is a ring that is a k-vector space.

Part II: The quotient ring $k[X]/\langle P \rangle$

The remainder map

Let $P \in \mathbb{k}[X]$ be a non-constant polynomial of degree $L \geq 1$.

For any $A \in \mathbb{k}[X]$, let A = BP + R be the Euclidean division of A by P.

The map ϕ_P is well-defined, because the remainder R is uniquely determined by A and P.

$$\phi_P : \mathbb{k}[X] \longrightarrow \mathbb{k}[X]_{\leq L}$$

$$A \longmapsto R,$$

Easy to check: For any $A_1, A_2 \in \mathbb{k}[X]$ we have:

$$\phi_P(A_1 + A_2) = \phi_P(A_1) + \phi_P(A_2).$$

For any $\lambda \in \mathbb{k}$: $\phi_P(\lambda A_1) = \lambda \phi_P(A_1)$.

 $\Rightarrow \phi_P$ is a linear map between the k-vector spaces k[X] and $k[X]_{\leq L}$.

Kernel of the remainder map

$$\ker \phi_P = \{ A \in \mathbb{k}[X] \mid \phi_P(A) = 0 \}$$
$$= \{ A \in \mathbb{k}[X] \mid P \mid A, \text{ "}P \text{ divides } A \text{"} \}.$$

Hence $\ker \phi_P = \langle P \rangle$ (the principal ideal generated by P).

Notation: For $a \in \mathbb{k}[X]$ let $a + \langle P \rangle = \{a + QP \mid Q \in \mathbb{k}[X]\} \subset \mathbb{k}[X]$.

(Comment: sometimes denoted $a \mod P$, or even $a\langle P\rangle \dots$)

Definition 3 An ideal I of a commutative ring A is a subset which verifies:

- 1. I is a subgroup of A for the addition.
- 2. for all $a \in A$ and $b \in I$, we have $ab \in A$

An ideal I is said to be **principal** if $I = \langle b \rangle$ (where $\langle b \rangle := \{ab \mid a \in A\}$).

A quotient algebra

Let $k[X]/\langle P \rangle := \{a + \langle P \rangle \mid a \in k[X]\}.$

Lemma 1 $\mathbb{k}[X]/\langle P \rangle$ is a \mathbb{k} -algebra (a \mathbb{k} -vector space and a ring).

PROOF:Let $\langle P \rangle \in \mathbb{k}[X]/\langle P \rangle$ be the zero element.

Addition: $(a + \langle P \rangle) + (b + \langle P \rangle) := (a + b) + \langle P \rangle$

Multiplication: $(a + \langle P \rangle) \cdot (b + \langle P \rangle) := ab + \langle P \rangle$. (indeed:

$$(a + \langle P \rangle) \cdot (b + \langle P \rangle) = ab + (a + b)\langle P \rangle + \langle P^2 \rangle$$
, but $(a + b)\langle P \rangle + \langle P^2 \rangle \subset \langle P \rangle$.

Easy to check: with this addition and multiplication, $k[X]/\langle P \rangle$ is a ring (Cf. Definition 1)

Finally, for $\lambda \in \mathbb{k}^*$, we have: $\lambda(a + \langle P \rangle) = \lambda a + \langle P \rangle$, because $\langle \lambda P \rangle = \langle P \rangle$.

This defines on $\mathbb{k}[X]/\langle P \rangle$ a structure of vector space over \mathbb{k} .

By Definition 2 this shows that $\mathbb{k}[X]/\langle P \rangle$ is an algebra.

An isomorphism

For two polynomials $a, b \in \mathbb{k}[X]$, if $a - b \in \langle P \rangle = \ker \phi_P$ then:

$$\phi_P(a-b) = 0 \Rightarrow \phi_P(a) = \phi_P(b) \Rightarrow \forall b \in a + \langle P \rangle, \ \phi_P(b) = \phi_P(a).$$

Then $\bar{\phi}_P(a + \langle P \rangle) := \phi_P(a)$ is well-defined.

$$\mathbb{k}[X] \xrightarrow{\mod P} \mathbb{k}[X]/\langle P \rangle \xrightarrow{\bar{\phi}_P} \mathbb{k}[X]_{\langle L}$$

$$a \mapsto a + \langle P \rangle \mapsto \bar{\phi}_P(a + \langle P \rangle).$$

By definition: $\phi_P = \bar{\phi}_P \circ \text{mod} P$.

- $\Rightarrow \ker \overline{\phi}_P = \langle P \rangle$ which is zero in $\mathbb{k}[X]/\langle P \rangle$.
- $\Rightarrow \bar{\phi}_P$ is an isomorphism of vector spaces between $\mathbb{k}[X]/\langle P \rangle$ and $\mathbb{k}[X]_{\leq L}$.
- $\Rightarrow \dim_{\mathbb{k}} \mathbb{k}[X]/\langle P \rangle = L.$

Comment: $k[X]_{\leq L}$ is not a subring of k[X], because there exists $P_1, P_2 \in k[X]_{\leq L}$, such that $\deg(P_1P_2) \geq L$ (so that $P_1P_2 \notin k[X]_{\leq L}$). But we can transport the multiplication of $k[X]/\langle P \rangle$ to $k[X]_{\leq L}$ by this linear isomorphism:

 $P_1 \cdot P_2 := \bar{\phi}_P(P_1 P_2)$. Then, $\bar{\phi}_P$ is a ring homomorphism, and also an isomorphism.

Abstraction to general rings

Let A be a commutative ring and I an ideal of A.

The *quotient* ring A/I is a ring defined in the following way:

Addition: (a + I) + (b + I) = (a + b) + I.

Multiplication: $(a+I)(b+I) = ab + (a+b)I + I^2 \subset (ab) + I$.

Let B be another ring, and $\phi: A \to B$ a ring homomorphism:

- 1. $\phi(0) = 0$, $\phi(1_A) = 1_B$ and for all $a_1, a_2 \in A$:
- 2. $\phi(a_1 + a_2) = \phi(a_1) + \phi(a_2)$ and $\phi(a_1 a_2) = \phi(a_1)\phi(a_2)$,

First isomorphism theorem: As before, $I := \ker \phi$ is an ideal of A, and $\forall a' \in a + I$, $\phi(a') = \phi(a)$.

The map $\bar{\phi}(a+I) := \phi(a)$ is well-defined and verifies, $\phi = \bar{\phi} \circ \text{mod } I$:

$$A \xrightarrow{\mod I} A/I \xrightarrow{\bar{\phi}} B$$
, and $\bar{\phi}$ is one-one

Another very similar ring: \mathbb{Z} (1/2)

 \mathbb{Z} and $\mathbb{k}[X]$ are 2 rings with an Euclidean division: they are Euclidean rings.

Let
$$n \in \mathbb{N}$$
 and let $\phi_n : \mathbb{Z} \to \{0, 1, \dots, n-1\},$
 $r \mapsto r \mod n \text{ (euclidean remainder of } r \text{ by } n\text{)}.$

As usual: $\phi_n(x+y) = \phi_n(\phi_n(x) + \phi_n(y)) = x + y \mod n$.

$$\phi_n(xy) = \phi_n(\phi_n(x)\phi_n(y)) = xy \bmod n.$$

 $/! \setminus \{0, \ldots, n-1\}$ has no structure: no addition, multiplication...

We transport the addition and multiplication of \mathbb{Z} to $\{0, \ldots, n-1\}$ by the map $\phi_n : \phi_n$ becomes then a ring homomorphism that is onto.

Definition 4 A principal ideal domain (PID for short) is an integral domain in which each ideal is principal.

Proposition 2 Any Euclidean ring is a PID (but some PID are not Euclidean).

Another very similar ring: \mathbb{Z} (2/2)

Kernel of the map ϕ_n : $\ker \phi_n = \{r \in \mathbb{Z} \mid n | r \text{ "} r \text{ divides } n \text{"} \} = n \mathbb{Z}.$

This is an ideal of \mathbb{Z} . The quotient ring is denoted $\mathbb{Z}/n\mathbb{Z}$.

An element of $\mathbb{Z}/n\mathbb{Z}$ is denoted $a + n\mathbb{Z}$ (= $\{a + rn \mid r \in \mathbb{Z}\} \subset \mathbb{Z}$).

The addition and multiplication of $\mathbb{Z}/n\mathbb{Z}$ are defined naturally.

If $a' \in a + n\mathbb{Z}$, then $\phi_n(a') = \phi_n(a)$, so the map

$$\bar{\phi}_n : \mathbb{Z}/n\mathbb{Z} \to \{0, \dots, n-1\},$$

$$a + n\mathbb{Z} \mapsto \phi_n(a)$$

is well-defined.

The first isomorphism theorem is written in this case:

$$\mathbb{Z} \xrightarrow{\mod n} \mathbb{Z}/n\mathbb{Z} \xrightarrow{\bar{\phi}_n} \{0,\ldots,n-1\}, \quad \text{with } \phi_n = \bar{\phi}_n \circ \text{mod } n, \text{ and } \bar{\phi}_n \text{ is one-one}$$

Part III: When $k[X]/\langle P \rangle$ is it a field?

Bézout identity

Let a and b be two polynomials of k[X]; denote gcd(a,b) = g.

This means: $\langle a,b\rangle = \langle g\rangle$, so there exists, $u,v\in \mathbb{k}[X]$ such that

$$au + bv = g$$
 (Bézout identity)

Euclid's Lemma: Let p and x be 2 relatively prime ($\iff \gcd(p,x)=1$) polynomials in $\Bbbk[X]$, and y another one. Assume that: p|xy (p divides xy). Then p|y (p divides y).

PROOF: The Bézout identity of p and x is here : up + vx = 1 for 2 polynomials $u, v \in \mathbb{k}[X]$.

So upy + vxy = y and since p|xy, there exists p' such that pp' = xy:

$$\Rightarrow upy + vpp' = y \Rightarrow p(uy + vp') = y$$
, so $p|y$.

Prime ideal and irreducible element

Definition 5 A polynomial $P \in \mathbb{k}[X]$ is irreducible if it is non-constant $(\iff \deg(P) > 0)$, and if we have:

$$P = P_1 P_2$$
, then P_1 or $P_2 \in \mathbb{k}$ (\iff deg (P_1) or deg $(P_2) = 0$).

Comment: If P is an irreducible polynomial, then P has no root in \mathbb{k} (indeed if $\alpha \in \mathbb{k}$ is such a root, then $X - \alpha$ is a factor in $\mathbb{k}[X]$ of P, contradiction).

The converse is false: $X^4 - X^2 + 2$ has no root in \mathbb{k} , but factorizes into $(X^2 + 1)(X^2 - 2)$.

Proposition 3 If P is an irreducible polynomial, then the ideal it generates $\langle P \rangle$ in $\mathbb{k}[X]$, is a prime ideal.

Definition 6 An ideal I of a ring A is prime if for all $x, y \in A$ such that $xy \in I$, then $x \in I$ or $y \in I$.

Field $\mathbb{k}[X]/\langle P \rangle$

PROOF: (of Proposition 3) Let $x, y \in \mathbb{k}[X]$ such that $xy \in \langle P \rangle$. This is equivalent to p|xy. By Euclid's Lemma, p|x or p|y; so x or $y \in \langle P \rangle$.

This implies: if P is irreducible, then $\mathbb{k}[X]/\langle P \rangle$ is an integral domain. There is actually a stronger result:

Proposition 4 If P is an irreducible polynomial, then $\mathbb{k}[X]/\langle P \rangle$ is a field

PROOF: Given $a + \langle P \rangle \neq 0$ in $\mathbb{k}[X]/\langle P \rangle$ ($\iff a \notin \langle P \rangle$), what is its inverse?

- (1) If $a \in \mathbb{k}^*$, then $(a + \langle P \rangle)(\frac{1}{a} + \langle P \rangle) = 1 + \langle P \rangle$.
- (2) If $a \notin \mathbb{k}$, (\iff deg(a) > 0), then a and P are relatively prime (since P is supposed irreducible), and the Bézout identity holds: au + Pv = 1. It comes: $(a + \langle P \rangle)(u + \langle P \rangle) = 1 + \langle P \rangle$.

Definition 7 A ring A is an integral domain if $xy = 0 \Rightarrow x = 0$ or y = 0.

Lemma 2 If I is a prime ideal, then A/I is an integral domain.

Computing Bézout identity

Extended Euclidean Algorithm

```
# Inputs: f, g \in \mathbb{k}[X] with f \neq 0 and \deg(f) \geq \deg(g)
# Outputs: \ell \in \mathbb{N}, r_{\ell}, s_{\ell}, t_{\ell} \in \mathbb{k}[X], with r_{\ell} = \gcd(f, g) and r_{\ell} = fs_{\ell} + gt_{\ell}.
1: r_0 \leftarrow f, s_0 \leftarrow 1, t_0 \leftarrow 0
2: r_1 \leftarrow q, s_1 \leftarrow 0, t_1 \leftarrow 1
3: i \leftarrow 1
4: while (r_i \neq 0) do
5: (q_i, r_{i+1}) \leftarrow \text{EuclideanDivision}(r_{i-1}, r_i) / so \ that: r_{i-1} = q_i r_i + r_{i+1}
6: s_{i+1} \leftarrow s_{i-1} - q_i s_i
7: t_{i+1} \leftarrow t_{i-1} - q_i t_i
8: i \leftarrow i + 1
      end while
9: \ell \leftarrow i-1
10: return \ell, r_{\ell}, s_{\ell}, t_{\ell}.
```

Termination

Does the algorithm terminate? Yes.

We must show that the while loop at Step 4 exits after a finite number of iterations. For all i = 1, 2, ... by Step 5, $r_{i-1} = q_i r_i + r_{i+1}$, with $r_{i-1} \neq 0$ and $\deg(r_{i-1}) < \deg(r_i)$ or $r_{i-1} = 0$.

Starting with $r_0 = f$, and $r_1 = g$, the sequence $(\deg(r_i))_{i \geq 0}$ is strictly decreasing, and then there exists $i \geq 1$ such that $r_i = 0$. Then the while loop does a finite number of iterations.

Actually, this shows that the number of iterations is at most $deg(r_1) = deg(g)$.

Comment: If we replace $\mathbb{k}[X]$ by \mathbb{Z} , and deg(.) by the absolute value |.|, the algorithm and the proof of termination are the same.

Correctness

Is the algorithm correct? Or is $r_{\ell} = fs_{\ell} + gt_{\ell}$ the Bézout identity?

For $i = 0, ..., \ell$, the equality $r_i = fs_i + gt_i$ (*)_i holds.

Proof by induction. By the initialization step, $r_0 = f$ and $s_0 f + t_0 g = f$. Then if we assume Equality $(*)_j$ true for $j = 0, \ldots, i$ then by Steps 5,6 and 7:

$$r_{i+1} = r_{i-1} - r_i q_i = (s_{i-1}f + t_{i-1}g) - (s_i f + t_i g)q_i$$
$$= (s_{i-1} - q_i s_i)f + (t_{i-1} - q_i t_i)g = s_{i+1}f + t_{i+1}g,$$

which is $(*)_{i+1}$.

Finally, if $r_i = 0$, then we have $r_{i-1} = \gcd(f, g)$ (this is the standard Euclidean algorithm) and Step 9 denotes $r_{\ell} = \gcd(f, g)$. So $r_{\ell} = fs_{\ell} + gt_{\ell}$

Comment: This proof is correct if we exchange k[X] by \mathbb{Z} (or any Euclidean ring).

Example over \mathbb{Z}

f = 126 and g = 35.

i	$\mid q_i \mid$	r_i	$\mid s_i \mid$	$\mid t_i \mid$	$r_i = s_i f + t_i g$	$r_{i-1} = q_i r_i + r_{i+1}$
0		126	1	0	126 = 1.126 + 0.35	
1	3	35	0	1	35 = 0.126 + 1.35	126 = 3.35 + 21
2	1	21	1	-3	21 = 1.126 - 3.35	35 = 1.21 + 14
3	1	14	-1	$\mid 4 \mid$	14 = -1.126 + 4.35	21 = 1.14 + 7
4	2	7	2	-7	7 = 2.126 - 7.35	14 = 2.7 + 0
5		0	-5	18	0 = -5.126 + 18.35	

We have $r_5 = 0$ so $\ell = 4$ and $gcd(f, g) = r_4 = 7$ and the Bézout identity is:

$$7 = 2.126 - 7.35$$

Example over k[X]

$$f = 18X^3 - 42X^2 + 30X - 6$$
 and $g = -12X^2 + 10X - 2$

i	q_i	r_i	s_i	t_i
0		$18X^3 - 42X^2 + 30X - 6$	1	0
1	$-\frac{3}{2}X + \frac{9}{4}$	$-12X^2 + 10X - 2$	0	1
2	$-\frac{8}{3}X + \frac{4}{3}$	$\frac{9}{2}X - \frac{3}{2}$	1	$\frac{3}{2}X - \frac{9}{4}$
3		0	$\frac{8}{3}X - \frac{4}{3}$	$4X^2 - 8X + 4$

Here $r_3 = 0$ so $\ell = 2$ and $gcd(f, g) = r_\ell = r_2 = \frac{9}{2}X - \frac{3}{2}$. The Bézout identity:

$$\frac{9}{2}X - \frac{3}{2} = 1.(18X^3 - 42X^2 + 30X - 6) + \left(\frac{3}{2}X - \frac{9}{4}\right)(-12X^2 + 10X - 2)$$

Application of the EEA, 1

Linear Diophantine equations: What are the $x, y \in \mathbb{Z}$ such that 6x - 8y = 1? $gcd(6, 8) = 2 \Rightarrow \langle 8, 6 \rangle = \langle 2 \rangle$. But $1 \notin \langle 2 \rangle$, so there is no solutions in $\mathbb{Z} \times \mathbb{Z}$.

What about 6x - 8y = 4? We can divide by the gcd: 3x - 4y = 2

This time, gcd(3,4) = 1, so $2 \in \langle 1 \rangle = \mathbb{Z}$ and there are some solutions.

Compute the Bézout identity by the Extended Euclidean Algorithm (EEA):

$$3.(-1) + (-4).(-1) = 1 \Rightarrow 3.(-2) + (-4).(-2) = 2.$$

 \Rightarrow this gives one solution (x, y) = (-2, -2).

All solutions are $(x, y) = (-2 + 4a, -2 + 3a), a \in \mathbb{Z}$.

Application of the EEA, 2

Chinese remaindering theorem: If $n, m \in \mathbb{Z}$ are coprime

$$\langle n, m \rangle = \langle 1 \rangle$$

There is an isomorphism between the two following rings:

$$\mathbb{Z}/mn\mathbb{Z} \simeq \mathbb{Z}/n\mathbb{Z} imes \mathbb{Z}/m\mathbb{Z}$$
 Bé $a \mod mn \mapsto a \mod n \ , \ a \mod m$ un $(bun + avm) \mod mn \leftarrow a \mod n \ , \ b \mod m$

Bézout identity:

$$un + vm = 1$$

Similarly, given 2 coprime polynomials $A, B \in \mathbb{k}[X]$

$$\langle A, B \rangle = \langle 1 \rangle$$

There is an isomorphism between the two following rings:

Part IV: Algebraic numbers

Back to the rationals: $k = \mathbb{Q}$

Let $\alpha \in \mathbb{C}$, and let $\mathbb{Q}[\alpha] := \{P(\alpha) \mid P \in \mathbb{Q}[X]\}$. This is a subring of \mathbb{C} .

Consider $\phi_{\alpha} : \mathbb{Q}[X] \to \mathbb{Q}[\alpha], P(X) \mapsto P(\alpha)$.

This a ring homomorphism, that is onto by definition of $\mathbb{Q}[\alpha]$

Let $\ker \phi_{\alpha} := \{ P \in \mathbb{Q}[X] | P(\alpha) = 0 \}$ be its kernel.

1st case, $\ker \phi_{\alpha} = \{0\}$: then α is a transcendental number.

2nd case, $\ker \phi_{\alpha} \neq \{0\}$, then α is an algebraic number.

By the first isomorphism theorem $\mathbb{Q}[X]/\ker\phi_{\alpha}\simeq\mathbb{Q}[\alpha]$ as rings.

Since $\mathbb{Q}[\alpha]$ is an integral domain, then $\ker \phi_{\alpha}$ must be a prime ideal (Lemma 2).

Assume that α is algebraic. Since $\ker \phi_{\alpha} \neq \{0\}$, there exists an unique irreducible monic polynomial P such that $\langle P \rangle = \ker \phi_{\alpha}$.

Definition 8 P is called the minimal polynomial of α .

The field embedding problem

 $\langle P \rangle$ generates the ideal of vanishing polynomial at α .

 $\mathbb{Q}[X]/\langle P \rangle$ is a field \Rightarrow the ring $\mathbb{Q}[\alpha]$ also, denoted often $\mathbb{Q}(\alpha)$.

Let β be another root of P (α and β are conjugate).

Then $\mathbb{Q}[\beta]$ is a field isomorphic to $\mathbb{Q}[X]/\langle P \rangle$.

An embedding $\sigma: \mathbb{Q}[X]/\langle P \rangle \hookrightarrow \mathbb{C}$ is an injective homomorphism, that induces the identity on \mathbb{Q} ($\sigma(x) = x$ for all $x \in \mathbb{Q}$).

For each root $\alpha_1, \ldots, \alpha_n$ of P, there is an embedding σ_i of $\mathbb{Q}[X]/\langle P \rangle$ whose image is $\mathbb{Q}(\alpha_i) \subset \mathbb{C}$.

Embedding problem: Among the fields $\mathbb{Q}(\alpha_i)$, i = 1, ..., n, which fields $\mathbb{Q}[X]/\langle P \rangle$ is it representing? (\iff which embedding $\sigma_1, ..., \sigma_n$ choosing?)

No answer, if necessary, numerical approximations of the roots of P can be done then it is satisfactory.

Computation in $\mathbb{Q}(\alpha)$ (1/2)

Because $\{1, X, ..., X^{n-1}\}$ is a basis of the \mathbb{Q} -vector space $\mathbb{Q}[X]/\langle P \rangle$, and because $\mathbb{Q}[X]/\langle P \rangle \to \mathbb{Q}[\alpha]$, $X \mapsto \alpha$ is an isomorphism, we deduce that $\{1, \alpha, \alpha^2, ..., \alpha^{n-1}\}$ is a basis of $\mathbb{Q}(\alpha)$.

To compute in $\mathbb{Q}(\alpha)$ we compute in $\mathbb{Q}[X]/\langle P \rangle$

Let β , $\gamma \in \mathbb{Q}(\alpha)$.

$$\beta = \beta_0.1 + \beta_1.\alpha + \beta_2\alpha^2 + \dots + \beta_{n-1}\alpha^{n-1}$$
, with $\beta_i \in \mathbb{Q}$.

$$\gamma = \gamma_0.1 + \gamma_1.\alpha + \gamma_2\alpha^2 + \dots + \gamma_{n-1}\alpha^{n-1}$$
, with $\gamma_i \in \mathbb{Q}$.

Let
$$P_{\beta}(X) = \sum_{i=0}^{n-1} \beta_i X^i \in \mathbb{Q}[X]$$
 and $P_{\gamma}(X) = \sum_{i=0}^{n-1} \gamma_i X^i \in \mathbb{Q}[X]$.

We have $P_{\beta}(\alpha) = \beta$ and $P_{\gamma}(\alpha) = \gamma$.

Addition: $\beta + \gamma$ is equal to $P_{\beta}(\alpha) + P_{\gamma}(\alpha)$, so $P_{\beta+\gamma} = P_{\beta} + P_{\gamma}$.

Multiplication: $\beta \cdot \gamma$ is equal to $P_{\beta}(\alpha) \cdot P_{\gamma}(\alpha)$, so $P_{\beta \cdot \gamma} = P_{\beta} \cdot P_{\gamma} \mod P$.

Computation in $\mathbb{Q}(\alpha)$ (2/2)

Division: Assume that $\beta \neq 0$. How to compute β^{-1} ?

 \iff How to compute $(P_{\beta} \mod P)^{-1}$ in the field $\mathbb{Q}[X]/\langle P \rangle$?

By Proposition 4, we compute the Bézout identity $uP_{\beta} + vP = 1$ using the EEA.

And $(P_{\beta} \mod P)^{-1} = \mathbf{u} \mod P$ in $\mathbb{Q}[X]/\langle P \rangle$.

So
$$P_{\beta^{-1}} = \mathbf{u} \Rightarrow \beta^{-1} = \mathbf{u}(\alpha) = P_{\beta^{-1}}(\alpha)$$
.

Effective primitive element theorem (1/2)

Let \mathbb{k} be a finite extension of \mathbb{Q} , and let n the degree $[\mathbb{k} : \mathbb{Q}]$ of the extension.

Theorem 1 There exists exactly n distinct embeddings of k.

Proof: (No proof, admitted. It is not the purpose of this class.)

Corollary 1 (Theorem of the primitive element) There exists $\alpha \in \mathbb{C}$ such that $\mathbb{k} = \mathbb{Q}(\alpha)$. Such an α is called a primitive element of \mathbb{k} over \mathbb{Q} .

Proof: (On the blackboard...)

Definition 9 A field \mathbb{L} is an extension of a field \mathbb{K} if $\mathbb{K} \subset \mathbb{L}$. The field \mathbb{L} is then a \mathbb{K} -vector space, and we say that $\mathbb{L}|\mathbb{K}$ is a field extension.

If the dimension of \mathbb{L} over \mathbb{K} is finite, then the extension $\mathbb{L}|\mathbb{K}$ is said finite. This dimension is called the degree of the extension $\mathbb{L}|\mathbb{K}$, denoted $[\mathbb{L} : \mathbb{K}]$.

Effective primitive element theorem (2/2)

How to compute a primitive element α ?

Answer: There are a lot of possibilities $! \Rightarrow$ choose one at random...

In practice, k is given by some algebraic elements $\alpha_1, \ldots, \alpha_t$ so that $k = \mathbb{Q}(\alpha_1, \ldots, \alpha_t)$. We assume that

Today, we assume t = 2, so $\mathbb{k} = \mathbb{Q}(\alpha_1, \alpha_2)$, and we know the degree $[\mathbb{k} : \mathbb{Q}] := n$

Proposition 5 Let $0 < \epsilon < 1$ be fixed. Let $M \in \mathbb{N}$, verifying $M \ge \frac{n(n-1)}{4\epsilon}$.

Let $c \in [-M; M]$ be an integer chosen at random.

Then $\alpha_1 + c\alpha_2$ is not a primitive element for \mathbb{k} ($\iff \mathbb{Q}(\alpha_1 + c\alpha_2) \subsetneq \mathbb{k}$) with probability $\leq \epsilon$.

Proof: (On the blackboard...)