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Computational Mathematics ?

TRADITIONAL MATHS

. wr s COMPUTERS
(LRI 72 B

Typical problems are: (& % LAY 7 [Hi}E):

1. How to represent into computers the mathematical objects ? (data

structure)
DX ICE AR E QY E 2 —y —TET 2 (F— 5 )
2. design fast and reliable algorithms to compute with these objects
DB BN REGHRT 272012, B TE#ERT VT Y AL Z2ES,
3. solve new problems related to 1 and 2.

1212k, o > -RE% L



Computational Mathematics?

Main problem: Solve equations (7 @ A Z M)

Physics/Mechanic/Chemistry etc.
VIBLSE S tE AL,

modell

Equations (linear, polynomial)
X (B0, ZHA, %)
or (BX)

PDE, ODE (fi & #3f=0)
optional

Boundary conditions (5i5t5&ff) «———— real life problem  (BiZED[H]RH)



Physics/Mechanic/Chemistry etc.
VIBLE 2t AU, S

modell

Equations (linear, polynomial)

R (P, ZHA, )
or (BXUY)

PDE, ODE (fid ##rf2x0)

Boundary conditions (5&55cF) SPUonal yeal life problem (B DHA)

l

Existence of solutions etc. .
: \ «——— theoretical work (PHamHY7%f1:55)
fROFAIE, 72 &



Equations (linear, polynomial)
R (o, ZHEA %)
or (BXY)

PDE, ODE (fi~##rf2=0)

Boundary conditions (Bi¥5&ff)

l

Existence of solutions etc.

fROFAE, o &

l

Method of resolution

(discretization scheme, etc.)

Rk o)k (ML A ¥ —24)

model

optional

/additional

work

Physics/Mechanic/Chemistry etc.
VIBLE S 2E AL,

real life problem  (BlFZD[H]/E)

theoretical work (BHmy7efl=H)

efficiency (convergence,

discretization error etc.)

BER (DOR., HERdbiE. %)



The two main methods (ZDDERKRTFE)

1. Numerical analysis: uses approximation of a solution
(BfiEfgtr: MhalzHMd %)
e LExtremely used in engineering science and in companies.

(TH#ThH, &HTh, FMICHH SN T )

o (i) Usually fast. ¥ .
(ii) Optimized implemetations for computer’s architecture
AVE2—=FDT =77 F v DIDITEHEERETH 5
(iii) Approximation errors do occur. YTPLERADIFEERIZEZ 5,

2. Symbolic Computation: uses exact numbers or expressions. . .
(Flioatf « IEELR BT 2325 H T %)



The two main methods (ZDDERKRTFE)

2. Symbolic Computation: uses exact numbers or expressions. . .

e Very large expressions may appear ! Not always fast. ..

FEEICRKRELADBDH2DIEAE! LT LHEL R, .
e No error . i27%2=7 L,

e The algorithms use more algebraic tools.
ZDOTNTY) ALDBMEN LY =V 2 RIHT 5,
= new applications using algebraic techniques. ..

B THET, FilZIDHTE %,
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Some applications of computer algebra (L)< DHETEREL
:)

e Cryptography: algebraic computations over finite fields (RSA, elliptic

curves etc.)
e L IR CREMGETR (RSA.  BEHONE. FEHBh#ig =, )

e Error-correcting codes theory (Guruswami-Sudan decoding algorithm,
Algebraic-geometry codes) in 0 BT IERT 5 5 (Guruswami-Sudan @
He7nray XL, REER a2 —F, 5F)

e Transform of the input equations into easier ones (for example, before

applying a numerical scheme).

ANTEAZERIZT 5 (P, Bl z () i)

e Polynomial systems computation: numerical methods are still quite

inefficient.

AR 2 BUEGTRIEDS R LI 2 L 3dH 5,
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Computer Algebra Systems

Not free: (fEELTIZ )
Mathematica: will be used in this class (2 D7 5 AT 9 FE)

Maple. Quite similar with Mathematica. Better for polynomial systems, but

not available at Kyudai.

Mathematica & KRR L, ZHEFICHOWT, o B0LWER, ukTlI.
%L,

Magma: very avanced algebraic functionalities. Efficient algorithms

implemented. No graphical interface.

REWEERREDL D 5, IR T7NVITY XL H D, J7 774 H)NL 4V F—
7 rx—A7% L,
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Computer Algebra Systems

Freeware: (#&EELY 7 )

Risa/Asir: the Japanese computer algebra system. Good for polynomial

systems. COUDSHADERENEY 7 F 72, ZHADDIZR W,
Sage: open-source. Gather many free softwares into one.

Others: Singular — Cocoa — Mathemagix — Reduce — Axiom. ..
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Polynomial systems

Example: System of 2 equations with 3 unknowns

filz,y, 2) = 2%yz — 33yt — v +y + 1
fo(z,y,2) =2 +y* + 22 + 2y +yz + w2

What for 7 (i) over the real : robot motion planning, quantifier
elimination etc. (ML ; vy M, HEEDRE)

(ii) for the algebraists: permits to do “experimental calulations” in
commutative algebra. (fREFHICE > T @ AJHABRGE O ERRINETEITZ 3)

(iii) over small finite fields: important in cryptography. (R L @ #HL
> i 5 S )

15



Polynomial systems

Learning to solve polynomial systems is good for:

e understanding computational mathematic in general: mix of typical
algorithmic problems and non trivial mathematical background.
—MRINICEIBER 2 05 L B2 7L 3 X LD & BN 5
DAHAEDEIZNG,

e getting a concrete view of the underlying notions of algebraic geometry.

RECRMDOHEEL 702 2 L ICEHENBIRZ 5 9,

e the methods used can be generalized to the solve some differential

equations (it is harder)

DT, oo —# 2 o, — b TE %,

16



Textbooks

e Ideals, varieties and algorithms. Cox, Little and O’Shea. Springer.

o JLTF—EBEDHEERR-STERHAF 1 . Bl A5, Bim 1B
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Case of linear polynomials (—RZIER)

Linear equation < polynomial of degree 1: (—XJTHEN & —XZIEHRA).

p

fi(z,y,2) =42 + 2y +32—3 4 2 3 T
 Pmy ) =z+29+32-3 5 1 2 3 y | =
\ fs(x,y,2) = —x —2y — 2z —3 -1 -2 -1 z

Each equation defines a plane in R3: (F A ENIFFHZIRET )

Hy :={(a,b,c) € R?| fi(a,b,c) = 0}
Hy :={(a,b,c) € R® | f3(a,b,c) =0}
Hsz :={(a,b,c) € R® | f3(a,b,c) =0}

Solution= H; N Hy N Hj

19



Case of 1 variable (—JTZEXDIEZS)

Polynomial with 1 unknown < univariate polynomial
Solving 1 polynomial with 1 unknown: f(X) =0.
Case 1: deg(f) =0 or 1 or 2 then it is easy.

Case 2: deg(f) = 3 or 4, then CARDANO and FERRARI gave general
formulas (xVI-th century) for the roots of f.

Case 3: deg(f) > 5, then GALOIS showed that there is no general formula

for the roots of f — numerical approximation.

In this course, we always assume that we can solve univariate polynomials.

20



Case of 1 variable (—JTZEADIER)

System of 2 polynomials with 1 unknown: {f(X) =0, g(X) = 0}.

Recall: o € C is a root of f and g < « is a root of | gcd(f, g)

Solving with 1 variable < computing gcd.

Review: computing gcd with the Extended Fuclidean Algorithm (EEA).

21



Ideals of commutative rings

Definition 1 Let A be a commutative ring (example: A = k| X1, ..., X,]).

A subset I C A is called an ideal of A if the following three properties are
verified:

1. 0el

2.Vf,gel, f+gel.

3. Vfel, YVheA, fhel.
Example: Finitely generated ideals. The subset (f1,..., fs) of k[ X1,..., X,]:

<f17°-'7f8 L= {Zfzgu g; € Xl,... Xn]}a

is an ideal of k[X71,..., X,,]. Its basis fi1,..., fs is finite (it s a finitely
generated ideal)

22



Polynomials in 1 variable

Definition 2 Let P = ag X" + a1 X"+ -+ a,_1X +a, € k[X] be a
polynomial in 1 variable over a field k, with ag # 0 (< deg(P) = n). Define:

The leading term of P: LT(P) := agX".

The leading coefficient of P: LC(P) := ag.

The leading monomial of P: LM(P) = X™.

P is monic if Lc(P) = 1.

Example: If P, @ € k|X] then deg(P) < deg(Q) < vT(P)|LT(Q) (LT(P)
“divides” LT(Q)).

P =3X%242X+1, Q = 2X3+3 = L1(P) = 3X2, L1(Q) = 2X3, LT(P)|LT(Q),

Q) _
g~ 1x

and

23



Euclidean division

Proposition 1 Let a,b € k| X]|, with b # 0 and assume that
deg(a) > deg(b). There exists 2 polynomials q,r € k|X], such that

a=bq+r, with either r = 0 or either deg(r) < deg(b).

PROOF:Algorithmic. O

Remark: The Euclidean division holds if a and b are in any polynomial ring
A[X], where A is an integral domain (a commutative ring where for all

elements x,y, holds: xy = 0=z =0 or y = 0) and if Lc(d) is invertible in A
(is a unit in A).

24



The division algorithm in 1 variable

# Inputs: a,b € k| X], b # 0, deg(a) > deg(d)
# Outputs: (q,7) such that a = bqg + r, with » = 0 or deg(r) < deg(b)

I: r+—a
g+ 0
: while (r # 0 and LT(b)|LT(r)) do // equivalent to deg(b) < deg(r)

LT ()
LT(b)

2
3
4
D: q—q-+s
6
7
8

S

r <« 1 — sb
: end while

: return (q,7)

Remark: usually, the symbol // after a line in an algorithm denotes just a

comment.

25



Some well-known consequences

Corollary 1 A polynomial over a field k of degree m has at most m roots in

k.

Corollary 2 Let k be a field. For each ideal I of k|X|, there exists a
polynomial f such that I = (f). If g is another polynomial such that (g) = I,
then g = Af, for a A € k.

In particular, there exists a unique monic generator.

Remark: Such generators have minimal degree among the non-zero
polynomials in 1.

Example: Let M be a square matrix with entries in k. The ideal Ip; in k[ X]
of the polynomials P such that P(M) is the null matrix, contains a non-zero
polynomial, (the characteristic polynomial for example, so {0} C Ips). The
generator of this ideal that is monic, is called the minimal polynomial of M.
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Finding a generator of ideals in k[ X]: GCD (1/3)

Problem: Given an ideal I C k[X] generated by polynomials f1,..., fs,
how to find a generator g of I 7

Definition 3 A GCD of f,h € k|X] is a polynomial g such that:
(i) glf and g|h
(ii) if a polynomial p|f and p|g, then plg as well.

Remark: In k[X], a gcd of f and h is such that the ideals (g) = (f,h).
Hence, by Corollary 2, given two GCDs g1 and g-, there exists A € k such
that: g1 = Agy. In particular, there exists one monic GCD.

The definition above with “divisibility” conditions, makes sense in more
general rings than Z or k| X|, called unique factorization domains (UFD for

short).

Proposition 2 A gcd in k[ X] always exists and we can compute it.

27



Euclidean algorithm in k[ X]: finding GCD (2/3)

# Inputs: f,h € k[X]| with f # 0 and deg(f) > deg(h)
# Outputs: a GCD of f and h

a<«— f

b« h

while (b #0) do
(q,7) < EuclideanDivision(a,b) //so that: a = bq +
a<«b
b«—r

end while

SN LN A S A i e

return a

Again, // means the beginning of a comment.
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Finding a generator of ideals in k[ X]: GCD (3/3)

Problem: Given an ideal I C k[X] generated by polynomials f1,..., fs,
how to find a generator g of I 7

Property: gcd(f1,gcd(f2, f3)) = ged(ged( f1, f2), f3)

This permits to define gcd( f1, fa, f3), and more generally multiple GCDs
denoted gcd(fy1,..., fs).

Remark: As usual GCDs, multiple GCDs are not unique. Also, there is one
monic multiple GCD.

Consequence: Solve the ideal membership problem in one variable.
1. Compute recursively a multiple GCD g of f1,..., fs.
2. Compute the Euclidean division of f by g: f = qg + .

3. f€(fi,....fs) & r=0.
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